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ON ASYMPTOTICALLY EFFICIENT ESTIMATION IN
SEMIPARAMETRIC MODELS

By ANTON SCHICK

State University of New York-Binghamton

A general method for the construction of asymptotically efficient esti-
mates in semiparametric models is presented. It improves and modifies
Bickel’s (1982) construction of adaptive estimates and obtains asymptotically
efficient estimates under conditions weaker than those in Bickel.

1. Introduction. In this paper we give a general method for the construction
of asymptotically efficient estimates in semiparametric models. More specifically,
our estimates are regular with smallest possible asymptotic variance as discussed
in Begun, Hall, Huang, and Wellner (1983) and are LAM-adaptive in the sense of
Fabian and Hannan (1982) and adaptive in the sense of Begun, Hall, Huang, and
Wellner (1983) if Stein’s (1956) necessary condition for adaptive estimation holds.
Our construction improves and generalizes Bickel’s (1982) method of constructing
adaptive estimates: We obtain asymptotically efficient estimates under weaker
conditions than in Bickel and use the entire sample to construct estimates of the
score function or the nuisance parameter and not just a small fraction as Bickel
does. Our construction compares also favorably with a construction given by
Huang (1982) in a thesis.

We show that Bickel’s condition S* which he reasons is “heuristically neces-
sary” for the existence of adaptive estimates in convex models and which
motivates Bickel’s construction is not necessary for adaptive estimation in
general. We replace it by a weaker condition and show that this condition is
necessary for our construction. It is seen that if S* does not hold adaptive
estimates are more difficult to construct in that a certain rate of convergence is
required for the estimate of the nuisance parameter.

Our paper is organized as follows. In Section 2 we present the construction of
asymptotically efficient estimates. In Section 3 we present examples and show
that condition S* is not necessary for the construction of adaptive estimates.

Some notation will be introduced next. { ) will be used to denote finite or
infinite sequences, and, in particular, points in R%. In matrix calculations, points
in R* are columns.

If (A,, A,, P,) is a probability space and g, is a measurable function on A4,
to R* foreach n = 1,2,..., and if ¢ € R¥, then (i) we write g, — ¢ in ( P, )-prob.
if P(llg,— c|l>¢) — 0 for every ¢ >0 and (ii) we say (g,) is bounded in
(P,)-prob. if (F,) is tight, where F, is the distribution of g, under P,.
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2. The construction of asymptotically efficient estimates. Throughout
this section we assume that { f,, § € 0} is a family of probability densities with
respect to a sigma-finite measure » on a measurable space (S, S), that the index
set ® = 0, X 0, for some open subset ®, of R? and some arbitrary nonempty
set ©,, and that, for every § € @, there is a p, in LJ(») such that

(2.1) | 12 a0y = 17 = a4 = o(llal),

where || - ||, denotes the Ly(r)-norm. We also assume that the matrix

1,(6) = 4 [ojos™ dv

is nonsingular for all § € O, where p; is the vector whose components are the
projections of the components of p, onto the orthogonal complement of J,(8), the
set of all ¢ in Ly(») for which there is a map 7 on (—1,1) into ®, such that
1(0) = 6, and

2
” £ anieyy — 1677 — @'pg — bY “ = o(llall® + 5?).

The above conditions generalize some of the concepts in Begun, Hall, Huang,
and Wellner (1983) to the case of an arbitrary nuisance parameter set @,. The
reader familiar with their paper will recognize that J,(8) plays the role of their
tangent space {AB: B € B} and p; generalizes what they call the effective score
function. Observe also that Stein’s (1956) necessary condition for adaptive esti-
mation as reformulated by Bickel (1982) and Fabian and Hannan (1982) can be
stated, in the present context, as

(S) oy = py foralld e @B.

For convenience in notation we shall often write f(-, ¢, v) instead of f, ,, and
similarly for other functions gy, § € 0.

Now consider probability measures {P,, § € ®} and S-valued random vari-
ables X, X,,..., such that under each P;,, X,, X,,... are independent and
identically distributed with density f,. Our goal is to construct an estimate
(Z,) = (z,(X,,..., X)) which satisfies

(2.2) nV*(Z,- Z,60)) > 0 in P,-prob.
for each @ € O, where
1 n
Z,(8)=0,+— ) L(X;,0)
n ;5
and

Lu(+,8) = IN0)2 5 0ix (1, 0)-

We call an estimate (Z,) that satisfies (2.2) asymptotically linear at 8 and write
(Z,) is AL(0). An estimate that is AL(#) for all § € O is said to be asymptoti-
cally linear. Our interest in asymptotically linear estimates is based on the
following results.
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Suppose (Z,) is AL(8), then (Z,) is regular at 6§, i.e., for every sequence
(t,, b,) in ®, X (—1,1) such that (n'/%(¢, — 0,, b,)) is bounded and every map
1 as described in the definition of J,(8)

g(nl/2(zn - tn)'ﬂ,,,n(bn)) = '/V(O’ I;l(a))

This follows from a straightforward contiguity argument. Moreover, under mild
additional assumptions (Z,) has the smallest possible asymptotic variance among
all estimates regular at 6 [see Begun, Hall, Huang, and Wellner (1983), Theorem
3.1], and if the necessary condition for adaptive estimation p; = p, holds, then
(Z,) is LAM-adaptive at 6 in the sense of Fabian and Hannan (1982) and
adaptive at @ in the sense of Begun, Hall, Huang, and Wellner (1983).

REMARK 1. Bickel (1982) defines adaptivity at 6 for an estimate (Z,) by
(i) For every sequence (t,) in ©, such that (n'/%(t, — 6,)) is bounded
£(n'%(2, - t,)IP, 4,) = #(0, I7Y(8)),

where 1(0) = 4/p,of dv.
Condition (i) is equivalent to

1 n
(ii) n'?(Z, -0, - ~ > I(X;6)| >0 in Pyrprob.,
j=1

where I(-, 8) = I"X8)2 ;205X (1, > 0}-

This follows from Theorem 6.3 in Fabian and Hannan (1982) and Theorem 6.1 in
Bickel (1982) and the note thereafter. Thus an estimate adaptive in Bickel’s
sense is AL(#) if and only if pj = p,. Bickel claims that the existence of
estimates adaptive in his sense implies the necessary condition for adaptive
estimation which would imply that such estimates are automatically asymptoti-
cally linear. But the proof of this claim is incorrect due to an inappropriate
reference to Hajek (1972): Bickel considers only local alternatives of the first
component of the parameter # and not local alternatives of both components as
needed in Hajek’s Theorem 4.2.

We shall now consider the construction of asymptotically linear estimates. We
begin by introducing the following assumptions.

(A.1) The map ¢t € O, ~ pf, , is continuous for all v € @,.

(A2) (U,) is a O,-valued estimate such that (n'/?(U, — 6,)) is bounded in
Py-prob. for all § € 6.

(A.3) For every n=1,2,..., fn is a measurable map on S X @, X S™ into R”

such that for each 6§ € ® and every sequence (¢,) in ©, for which

(n'/*(t, — 8,)) is bounded
(2.3) nlﬂﬁn(-, ty, X,,..., X,){(-,t,,0,)dv > 0 in Pyprob.

and
24) [I5( st Xiyeees X,) = Ll £, 8) £+, £,,8,) dv — 0 in Pyprob.
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Assumption (A.1) corresponds to Bickel’s condition URC(iii). It allows us to
conclude that

(2.5) n*(Z,(t,,0,) — Z,(8)) - 0 in Psprob.

for every § € © and every sequence (¢,) in O, for which (n'/%(t, — 0,)) is
bounded.

Assumption (A.2) is Bickel’s condition GR(iv) and is obviously necessary for
the existence of asymptotically linear estimates.

Assumption (A.3) generalizes Bickel’s condition H. We replace his requirement
that in(', X, X,) is Hvalued, ie.,

(2.6) fi,,(-,al, X0, X,)f(-,0)dv =0 foralld c®

by the weaker (2.3). Bickel argues that his condition S* which suggests (2.6) is
“heuristically necessary” for adaptive estimation in convex models. Condition S*,
however, is not necessary in general, i.e., there exist nonconvex models for which
S* does not hold but adaptive estimates exist. For an example see Section 3. If S*
does not hold the set

= {h: hisamapon S X 0, into R” such that

fh(-,al)f(-,a)dv = 0forall € @}

may not be large enough for Bickel’s condition H to hold. In view of this (2.3)
appears to be a necessary improvement.

Next we introduce our estimate. For technical reasons we adopt Bickel’s idea
of splitting the sample, but modify it to obtain better estimates of the score
function. Bickel splits the sample in two unequal parts, estimates the score
function based on the observations in the smaller subsample, and evaluates the
estimate of the score function only at observations of the larger part. We divide
the ample in two equal parts, obtain an estimate of the score function from each
part, and evaluate the estimate of the score function obtained from the first part
only with observations from the second part and vice versa. Thus our estimates
of the score function are based on half of the sample and not just on a small
proportion of the sample. Our estimate is formally defined by

. o 1k — n _
(2.7) Z,=-U,+— Z L(X,0,)+ X Lu(X;T,)|,
ny; J=kn+1
where k, is the integer part of n/2, L, = lk( sy Xiyevows Xp )y Lpg =
Lok (s Xy s15--+» X,,), and U,) is a discretized version of (U, ) For a discus-
sion and the use of dlscrete estimates we refer to Fabian and Hannan (1982) and
Bickel (1982).

THEOREM 1. If assumptions (A.1), (A.2), and (A.3) hold, then (Z,) is
asymptotically linear.
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PROOF. Let § € ©. We must show that (Z,) is AL(8). Since (U,) is discrete
it suffices to show that

1
tn+;

is AL(0) for any sequence (¢,) in @,, such that (n'/%(t, — 6,)) is bounded. Fix
now such a sequence (¢,). In view of (2.3) and (2.5) it suffices to show

kn

¥ LX)+ 3 L,,1<X,-,t,,>)>

Jj=1 J=k,+1

kn
n_1/2 Z (zn2(Xj7 tn) - l*(Xj, tn’ 02)) -0 in Po-pI'Ob.
Jj=1

and
n
n V2 Y (Lu(X,t,) — L(X;, t,,6,)) > 0 in Pyprob.,
J=k,+1
where L, (-, t,) = L,(*, t,) — [Lp(-, t)f(:5 £,y 05) dv, i = 1,2.
These two statements are proved exactly as is (3.7) in Bickel (1982). We omit
the details. This concludes the proof. O

REMARK 2. Actually, more can be shown. Suppose (A.1), (A.2), and the
conditions of (A.3) except possibly (2.3) hold and

1 kn k
Zn(t)=t+; ZLn2(Xj’t)+ Z Lnl(Xj;t) .
Jj=1 J=k,+1
Then the following are equivalent for each § € ©.

(a) For every sequence (¢,) in ©, such that (n'/%(¢, — 0,)) is bounded (Z,(t,))
is AL().
(b) For every sequence (t,) in O, such that (n'/%(¢, — 6,)) is bounded

72 (L (-, ,)f(- t,,8,) dv = 0 in Py-prob.

The proof is easy. Fix § € 0. Let
k, n—k,
Rn(t)=7an2(°at)f('ata02)dV+ n anl('1t)f("t102)dV~

In the proof of Theorem 1 we have shown that (Z,(t,) — R,(¢,)) satisfies (2.2)
for every sequence (¢,) in ©, such that (n'/%(¢, — 6,)) is bounded. This did not
require (2.3). Thus (a) is equivalent to

(c) For every sequence (¢,) in ©, such that n'/%(¢, — 6,)) is bounded
n'?R,(t,) = 0 in P,-prob.

And this is easily seen to be equivalent to (b).



1144 A.SCHICK

Obviously we do not want the asymptotic linearity of (Z ) to depend on the
way we discretize, i.e., we want ( Z > to be asymptotically linear for every
discretized version (U, of ( U,). This is equivalent to requiring (a) for all § € ©.

The above shows that, in the presence of the other assumptlons, (2.3) is
necessary for (Z,) to be asymptotically linear for every discretized version (U, )
of (U,).

We shall now discuss (2.3) in more detail. For this discussion we suppose 0, is
a topological space, [, is measurable and satisfies, for every § € O,

f|ll*(', t,v) — l*(‘a t,az)”zf(‘a 5,02) dv -0

as t — 6, and v - 0,, and
(C.1) (V,) is a Oyvalued estimate which satisfies V, = 8, in Py-prob. for all

0 € ©® and

(C.2) For every @ € O and every sequence (t,) in ©®, such that (n'/*(¢, — 6,)) is
bounded

(2.8) n*?Q(¢,,V,,0,) = 0 in Pyprob.,

where @ is the map on 0, X 0, X 0, to R? defined by

(2.9) Q(t, 0,w) = [Lu(-, £, 0)f(-, t,w)d

if the integral is well defined and 0 otherwise.

It is now easily seen that (A.3) holds with [ (-, -, X,,..., X,) = 14(-, -, V,). Note
that (2.8) corresponds to (2.3).

Condition (C.2) implies a certain rate of convergence for the estimate (V). @
measures how difficult the construction of asymptotically linear estimates is by
specifying this rate. In particular, if @ = 0, no specific rate is necessary. Bickel’s
condition S* implies @ = 0 and this explains why Bickel is able to construct
adaptive estimates using only a small fraction of the sample to estimate the
nuisance parameter.

REMARK 3. In a thesis Huang (1982) considers a different method of con-
structing asymptotically linear estimates. His estimate is a solution of the
equations

(+) [o*(x, £, V) (1/2(x) dv(z) =0,

where (V) is an appropriate estimate of the nuisance parameter 6, and ( f:,) is
an appropriate estimate of the density f,. He proves that this estimate is
asymptotically linear if it is consistent and if strong additional regularity condi-
tions hold. These regularity conditions severely limit the use of his estimate and
proving consistency of his estimate may pose difficult mathematical problems.



ASYMPTOTICALLY EFFICIENT ESTIMATION 1145

We feel also that our estimate is easier to calculate, since a solution of (*) may
require much more extensive calculations.

3. Examples. This section serves two purposes. It illustrates the above
results and provides an example of a model for which adaptive estimates exist but
condition S* does not hold.

Throughout ¥~ denotes the set of all real valued functions v on [0,1] which
are absolutely continuous with square integrable derivatives and satisfy
fov(t)dt = 0, and g denotes a Lebesgue density which satisfies

(3.1) [re(»)dy=o,
(3.2) [¥%8(y) dy = 0? < o0,
g is absolute continuous with finite Fisher information
63 e [TV,
g(y) ¥
and
(3.4) J(L(y =) - L(9))&(y) dy = o(2),

where L = — Jg_ l(gl/g)x (g>0}*

Now consider the regression model
(3.5) Y=20,+0,T) + e,
where ¢ and T are independent random variables, ¢ has density g, T has uniform
distribution on [0,1], 6, is an unknown real number, and 6, is an unknown
function in ¥,

This model belongs to a class of models which has been recently proposed by
Engle, Granger, Rice, and Weiss (1986) and is of considerable practical interest.
For generalizations and related models see also Wahba (1984).

For our model, ®, = R, 0, = ¥", S = R X [0, 1], v is the Lebesgue measure on
the Borel field of S and the densities f, are given by

fo(x) = g(x, — 6, — 0,(x,)), x€S.
From (3.3) we obtain that (2.1) holds with

’

g
pol(x) = — W(xl — 8, — 0y(x,)), x€S.

See Hajek (1972) for details. From Theorem 9.5 in Rudin (1974) we can derive
that 8, € R ~ p, is continuous in Ly(»).
- The tangent space JJ,(f) is the L,(»)-closure of the set of functions ¢ in Ly(»)
of the form

Y(x) = v(xy)0p(x), x €S,

for some v € ¥". Thus p, is orthogonal to Jy(8), p;y = pg, and l.(x,0) =
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L(x, — 0, — 0x(x,)), x € S. Consequently, the necessary condition for adaptive
estimation holds. Also, Bickel’s condition S* holds if g is the standard normal
density. But Bickel’s condition S* does not hold in general; e.g., if g is the double
exponential density, g(y) = le "), then L(y) = sign(y) and with @ as given
in (2.9)

Q(t, 02 + v, 02) = Q(O’ D,O)
= flfw sign(y — v(¢))ie dydt
0 Y —o0

- fo 'sign(v(2))(e 0 — 1) dt

= ['sen(o(0)(e 01 = 1 = Jo()])

= 0(/02(t) dt),
but @ # 0.

Suppose now that (Y}, T}),(Y,, T,), ... are independent copies of (Y, T'). We
have already seen that (A.1) is satisfied, and it is easy to verify that (A.2) holds
with (U,) = (Y,) = (1/nX}_,Y,). Thus we are left to show (A.3). We shall
construct an estimate (V) which satisfies

(3.7) fO‘V,,(t)dt=o and Eeﬁl(Vn(t)—02(t))2dt=0(n—2/3).

(3.6)

This implies (A.3) since there are functions (L, ) such that

(3.8) [ J(2aly = 08) = L(3))*8(y) dyde > 0
and
(39) n/2 [ [L(y = v(£))e(3) dydt - 0

whenever [jv,(t)dt =0 and [jv2(t) dt = O(n~?/?). For many important exam-
ples of g, such as the normal or the double exponential density, we can choose
L, = L. If this choice is not possible the functions (L, ) can be constructed as
follows. For a sequence (7,) of positive numbers such that 7, = c and nr,;*® >
o0, set

o= A =m%)w(x) dx,

where A, = (—1,) V L A 7, and ¢ is the standard normal density, and define

L=}, ~ [A(»)g(y) dv.
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It is easily verified that the sequence (L, ) satisfies

JLA()8(y) dy =0,

J(L(3) - L(3))8(y) dy > 0,

and
sup |LY(y)| = o(ri*1), i=0,1,2.
y

The statements (3.8) and (3.9) are now readily derived from this, e.g.,

/2 [ [L(y~ v,(t))g(y) dyat
=2 [ [(L(5 = 0.(t)) = L(3) + 0,() L(5))&(y) dydt

= 0(n1/21,ff()lvf(t) dt) =o(1)

if [1o,(t)dt=0and [lv3(t)dt=0(n"?3).

We shall now construct the estimate (V). For a related construction, under
slightly stronger assumptions, see Stone (1985). His results show also that better
rates of convergence are possible under additional smoothness conditions on §,.

Let (a,) denote a sequence of positive integers and set b, = a,'. For each
n =1,2,..., partition the unit interval [0,1] in @, intervals I,,;, i = 1,..., a,, of
equal length b, and let m,, denote the midpoint of I,; and x,; the indicator of
I,,;.- We assume that the intervals I,,; are numbered in such a way that m,; <m,,
for1 <j <k < a,. Next set

n
U=n')Y,
J=1
and

Yni = (n'bn)—1 YIXM(T})’ i=1,.. > Qs

1

n

J
and define V,, by

Y, -U, 0<t<m,,
t— mm-
(310) Vn(t) =Y, -U+ b (Yni+1 - Ym)r My St <My,
Y., — U, My, <t<1.

It is easily verified that

[yt = ¥ b,Y,, - U, =o.
0 i=1
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LEMMA. If the sequence {a,) is chosen such that
3
a

1 = 1,
(1) =

then
By (Vi(2) = 6,(0))" de = 0(n~).

Proor. Fori=12,...,a, set

1
(2) Cni = anj(; Xm(u)02(u) du
and note that
(3) EoY,; =0, + C,;.
Easy calculations show that for some constant ¢

c
(4) Ey(Y, -6, - C,)’" < b,
and
s C

(5) Ey(U, - 0)°< ~.

Next note that by the Schwarz inequality for0 < t<u <1

© (00 = 0, = [0sx) v = () f(0400))7 .

Using (2), (6), and Jensen’s inequality we obtain

J(6:(8) = Coi)"xnil8) dt
- f(a,,f(%(t) = 0(2)) x i) du)2x,,,~(t) dt

" < a, [ [(8(2) = () x pi(1) du X, (2) dt
< B2 [(85(x)) X () dx
and
(Cus = Cu* = (a2 [(8(8) = (0 s ()00 ]
(8) < a2 [ [(6(2) = 6,(1)) Xpusr(#) Xi((£) ducit

< 2bnf(02'(x))2(xn.+1(x) + Xni(x)) dx.
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Combining (4) and (8) shows that for some constant C

(9) ailEo(YmH - Y,) < C(n7'6,% + b,).
i=1
Next define
(10) 7= ¥ Yuxoi- U,
and -
(1) 7= X Cuor
=1

It follows from (1) and (9) that
a,—1

Eﬂf(v;z(t) - ‘_/n(t))z dt < Z Eﬂ(Yni+1 - Ym)zbn

(12) -
<C(n ;" + b2) = O(n%3)

and from (1), (4), and (5) that

(13) Ey [(V,(2) = Vi(£))" dt = O(n~%?).
Furthermore by (1) and (7)
(14) J(T(2) = 8(8))" dt = O(n=22).

Combining (12) to (14) gives the desired result. O

It follows from the above that
1

kn _ n _
Z,=U+ —| LL(Y, =T, = Vis(T) + L Ln(%~ T, = Vuu(T))

Jj=1 J=k,+1

is asymptotically linear and adaptive, where (U,) is a discrete version of
U,y = (1/n¥%_,Y;), (L,) is as described in (3.8) and (3.9), k,, is the integer part
of n/2, and (V,;) and (V,,) are the versions of (V,) based on the first £, and
the second n — k, observations, respectively. In particular, we obtain

k, n

Yosign(v,— T, - Vo(T)) + T sign(Y, - T, - V()

Z,=U,+ —
nij-1 Jekp+1

is an adaptive estimate, if g is the double exponential density. This provides an
example of a model for which Bickel’s condition S* does not hold (see (3.6)) but
adaptive estimates exist. Of course, Bickel’s convexity condition C does not hold
for this example.

We conclude this section with remarks dealing with extensions of our model
(3.5).
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REMARK 4. The above results are easily extended to cover the model

P
i=1
where ¢ and T are as in (3.5), B,..., B, are unknown real numbers, A,,..., h,

are square integrable functions on [0, 1] such that the matrix H = [ [h,(¢)h () dt
is the identity matrix, and w is an unknown function on [0, 1] that has a square
integrable derivative and satisfies fw(¢)h,(¢)dt =0, i =1,..., p. For this model
0,={(By...,B,) and 6, = w. Note that (3.5) is the special case p =1 and
h,=1.Let h= (h,,..., h,). Easy calculations show that the necessary condi-
tion for adaptive estimation holds and that

1.(x,0) = h(x,)L(x, — 87h(x;) — 0,(x,)), x€8.
Also, verify that

and
B[ (W) - 0,0))°dt = 00",

where W, = V,, — 2| [iV()h(t) dth; with ¥, = V, + 1/nE"_,Y; and V, as in
(3.10). It follows as above that

_ 1|k _

Un + ;[ Z h(Xj)Ln(Y] - Un - VVn2(T;))

J=1

+ L AX)L(Y, - T, - Wu(T)))
J=k,+1
is an adaptive estimate, where (17,,> is a discrete version of (1/nY}_,Y;A(T})),
(L,) is an appropriate modification of L in the spirit of (3.8) and (3.9), and
(W,,) and (W,,) are the versions of (W, ) which are based on the first %, and
second n — k, observations, respectively.

REMARK 5. A more realistic version of (3.11) is to assume that also the
density g is unknown, but satisfies (3.1) to (3.3). The nuisance parameter in this
case is 6, = (w, g) and the necessary condition for adaptive estimation holds if
and only if [h(t)dt=0forall i =1,..., p. This model deserves further investi-
gation. We believe that asymptotically linear estimates can be constructed for
this more general model.
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