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RECTANGULAR LATTICE DESIGNS:
EFFICIENCY FACTORS AND ANALYSIS

BY R. A. BAILEY AND T P. SPEED
Rothamsted Experimental Station and C.S.I.R.O.

Rectangular lattice designs are shown to be generally balanced with
respect to a particular decomposition of the treatment space. Efficiency
factors are calculated, and the analysis, including recovery of interblock
information, is outlined. The ideas are extended to rectangular lattice designs
with an extra blocking factor.

1. Introduction. The class of incomplete block designs known as rectangu-
lar lattice designs was introduced by Harshbarger (1946), with further details and
extensions being given in a subsequent series of papers by Harshbarger (1947,
1949, 1951) and Harshbarger and Davis (1952). Apart from a contribution by
Grundy (1950) concerning the efficient estimation of the stratum variances and
the papers by Nair (1951, 1952, 1953) relating rectangular lattice designs to
partially balanced designs, little further theoretical discussion of this class of
designs seems to have occurred. Expositions of the basic results about rectangular
lattice designs in two and three replicates, as well as tables of designs, can be
found in Robinson and Watson (1949) and Cochran and Cox (1957). Discussions
exist in other standard texts on the design and analysis of experiments, for
example Kempthorne (1952), but, apart from recent contributions by Williams
(1977) and Williams and Ratcliff (1980), the literature seems to end in the early
1950’s. [In his recent note, Thompson (1983) uses the results in the present paper,
as he acknowledges.] A possible explanation of this fact may be the observations
of Nair (1951, 1953) that every 2-replicate rectangular lattice design is a partially
balanced incomplete block design with four associate classes, whilst the obvious
extension of the argument to r-replicate rectangular lattice designs for r > 3 fails
in general, although the classes of rectangular lattice designs for n(n — 1)
treatments in n — 1 or n replicates again turn out to be partially balanced.
Perhaps it was felt that, in not being partially balanced, rectangular lattice
designs were rather too complicated.

In his fundamental papers on designed experiments with simple orthogonal
block structure Nelder (1965a,b) introduced the notion of general balance, this
being a relationship between the treatment structure and the block structure of
the design. It is immediate from his definition that all block experiments (in the
usual sense of the term) are generally balanced for some treatment structure [see
Houtman and Speed (1983)], although here we might more properly use the term
treatment pseudo-structure, and when this structure is elucidated for a given
class of designs they can be regarded as understood and readily analysed. In a
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later paper, Nelder (1968) showed the importance of general balance in permit-
ting the straightforward estimation of stratum variances, introducing a method
equivalent to that which has come to be known as restricted maximum likelihood
estimation of variances [see Patterson and Thompson (1971) and Harville (1977)].
The definition of general balance in block designs is intimately connected with
the eigenspaces of a certain linear transformation, denoted by Ly in this paper,
and in this form a number of other authors have recently emphasised the same
concept [see, for example, Pearce, Calihski, and Marshall (1974), who called the
eigenvectors of Ly basic contrasts, and Corsten (1976)].

In Sections 3 and 4 of this paper we obtain an orthogonal decomposition of the
space of all treatment contrasts associated with a general r-replicate rectangular
lattice design. In Section 5 we use this decomposition to identify all the eigen-
spaces of the linear transformation L. An equivalent description of our results is
that we determine the treatment pseudo-structure relative to which the designs
are generally balanced; equivalently again, we describe the basic contrasts of the
design. Using these results, a full analysis, modelled on Nelder’s (1965b, 1968)
general approach, of rectangular lattice designs is given in Section 6, involving
the derivation of a fully orthogonal analysis of variance and estimates of the
stratum variances, and the calculations of estimates of treatment contrasts,
together with their standard errors. A recursive analysis along the lines of
Wilkinson (1970) is most satisfactory, as the eigenspaces are orthogonal comple-
ments of subspaces each of which has a simple formula for its orthogonal
projection in terms of averaging operators, and so these subspaces can be swept
out successively in a quite straightforward manner. Our general approach to the
analysis of designed experiments is framed in vector space terms, similar to that
used by James and Wilkinson (1971) and Bailey (1981), but in the multistratum
framework of Nelder’s papers.

Finally, we use the foregoing ideas to sketch the design and analysis of an
experiment in which an extra blocking factor was imposed on a rectangular
lattice design. Two examples are used throughout the paper to illustrate the
theory.

ExampLE 1. This is a rectangular lattice for 20 treatments in three replicates
of five blocks of four plots. Although this is an entirely abstract example, there
being no associated experiment, it illustrates the general theory well because it
has no special features: the design is not partially balanced, and its construction
does not use a complete set of mutually orthogonal Latin squares. Tables 1, 3-5,
7, and 12-15 refer to Example 1.

EXAMPLE 2. In an experiment into the digestibility of stubble, 12 feed
treatments were applied to sheep. There were 12 sheep, in three rooms of four
animals each. There were three test periods of four weeks each, separated by
two-week recovery periods. Each sheep was fed three treatments, one in each test
period. During the recovery periods all animals received their usual feed, so that
they would return to normal conditions before being subjected to a new treat-
ment.
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TABLE 1
Transversal of a 5 X 5 Latin square

@ 3
2 ®@
3 1
4 5
5 2

.—A@Awm

2 4
1 5
® 2
3 1
4 ®

It was desired that each treatment should be fed once in each room and once
in each period. If periods are ignored, a suitable design is a rectangular lattice
design in which sheep are blocks and rooms are replicates. We shall ignore the
periods until Section 7, where we show how to deal with this extra blocking
factor. Tables 9-11 and 18-19 refer to Example 2.

2. Construction. In this section we review the construction of rectangular
lattice designs, partly in order to establish our terminology and notation.

A rectangular lattice design is a resolvable incomplete block design for ¢
treatments in r replicates of n blocks of size n — 1, where ¢t = n(n — 1) and
2 < r < n, for some integer n. We write b for rn, the total number of blocks, and
N for b(n — 1), the total number of plots. The design has the property that any
pair of treatments occur together in at most one block. The design is constructed
from a set of r — 2 mutually orthogonal n X n Latin squares A,,..., A,_,.

A transversal of such a set of Latin squares is defined [see Dénes and
Keedwell (1974), pages 28 and 331] to be a set of n cells with one cell in each row
and one in each column, which between them have all the letters of all the
squares Aj,..., A,_,. In Table 1 a transversal of a single 5 X 5 Latin square is
indicated with circles. Transversals do not always exist: Table 2 shows a 4 X 4
Latin square with no transversal. A sufficient condition for the existence of a
transversal is the existence of a Latin square A,_; orthogonal to each of
Ay, ..., A, _,, for then each letter of A, _; corresponds to a transversal. Such a set
of mutually orthogonal n X n Latin squares A,,..., A,_, exists whenever n is a
prime or prime power and r is less than or equal to n [see Dénes and Keedwell
(1974), page 165]. However, this condition is not necessary, because the square in
Table 1 has no orthogonal mate.

It is convenient (although not essential) to permute the rows and columns of
Ay, ..., A, _, simultaneously so that the transversal lies down the main diagonal.

TABLE 2
A 4 X 4 Latin square with no transversal

DN W o =
W W = N
>N
= DN W
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TABLE 3a
Table 1 with rows permuted

1 2 3 4 5

3 5 1 2 4

2 1 4 5 3

5 4 2 3 1

4 3 5 1 2
TaBLE 3b

Table 3a with letters permuted

CLO DN O b =
VU SIS
N U W= A
[l RS V)
Qv oA W N

This is achieved by moving the ith row to the jth row if the unique transversal
cell in row i is in column j. It is also convenient to rename the “letters” of each
square independently so that the letters on the main diagonal are in natural
order. Tables 3a and 3b show the results of applying these processes to the square
in Table 1.

An n X n square array is drawn. The diagonal cells are left blank, and the ¢
treatments are allocated to the remaining cells, as in Table 4. In this example we
have labelled the treatments A, B, ..., T, but we shall usually use w to denote a
general treatment, to avoid confusion with other symbols. We denote the n
diagonal cells by i, j,... and the r classifications (that is, rows, columns, letters
of Aj,...,lettersof A,_,)bya,b,....

We define subsets of the treatments called spokes and fans. A I-spoke is the
set of n — 1 treatments in any row; a 2-spoke is the set of n — 1 treatments in
any column. For a = 3,..., r, an a-spoke is the set of n — 1 treatments in the
positions of any one letter of square A, ,. Fora=1,...,randi=1,...,n we
denote by %,; the unique a-spoke which would naturally go through the ith
diagonal cell if the diagonal cells were not excluded. For each fixed i, the fan %,
through the ith diagonal cell is defined to be the union of all spokes through that

TABLE 4
Treatment array for Example 1

O~
TS
O *
NrRQQ
Ll " Euliv i)
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TABLE 5
Rectangular lattice block design (Example 1)
(blocks are columns)

replicate 1 replicate 2 replicate 3
A E 1 M Q E A B C D F D C B A
B F J N R I J F G H J K H E G
C G K (0] S M N (0] K L P M N L I
D H L P T Q R S T P T S Q R o

diagonal cell; that is,
F=F,UF U - UL,

The terminology is suggested by the fact that all spokes in a fan have the

corresponding diagonal cell in common, while no two spokes in the same fan have
any further cells in common. In the example given by Tables 3b and 4, we have

1= {4, B,C, D},
Fu=1{C,G,K,T},
s ={D,K,M,S},
%s,={Q,R,S,T,D,H,L,P,A,G, 1,0}.

The design is now constructed very easily. For a = 1,..., r, the blocks of the
ath replicate are just the a-spokes. Table 5 shows the (unrandomized) design
which emerges in this way from Tables 3b and 4. Thus spokes have a genuine
statistical meaning, as each spoke gives a block of the design. Fans have no direct
statistical meaning, but they are a combinatorial consequence of the spokes
which prove useful for the analysis of the design.

Orthogonal cyclic Latin squares may be constructed by the automorphism
method of Mann (1942), which is described in Section 7.2 of Dénes and Keedwell
(1974). If p is the smallest prime divisor of n then p — 1 orthogonal squares are
obtained, and hence rectangular lattice designs may be constructed for r < p
(reserving one of the squares for the transversal). The same designs may also be
constructed as a-designs [Patterson and Williams (1976)]. Let q,, ¢5,..., ¢,_; be
any integers such that no two are congruent modulo p and none is divisible by p.
Without loss of generality we may take g, = 1. The generating a-array is in
Table 6, in the format used by Patterson and Williams (1976), whose series I, II,
and IV are all examples of the array shown here.

3. Decomposition of the treatment space. Let R’ be the real vector space
of vectors indexed by the ¢ treatments. We need to find an orthogonal decomposi-
tion of R’ that will enable us to analyse data from experiments with the
rectangular lattice design. To this end, we define certain special vectors in and
subspaces of R".

Let u be the vector (1,1,...,1). Fora=1,...,rand i = 1,..., n let v,; be the
characteristic vector of the spoke .%,;; that is, the w-entry (v,;), of v,, is 1 if
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TABLE 6
Generators for a-designs which are also rectangular lattice designs
(entries in the array should be reduced modulo n)

0 0 0 0

0 1 a3 Tt qr—1

0 2 2q, 29, ,

0 n-2 - (n-2gq, (n-9q,_,

0 n—1 (n—1)g, (n - 1gq,_,
w € %,; and 0 otherwise. Similarly, for i = 1,..., n, let w; be the characteristic
vector of the fan %, so that

W, =V, + Vy, + - V.

Let U, be the subspace spanned by u; let U; be the subspace spanned by the fan
vectors w; let U, be the subspace spanned by the spoke vectors v,; and let U, be
the whole space R’ [Our conventions for labelling the first and last of these
spaces agree with those used by Throckmorton (1961) and Kempthorne (1982).]
Then

Uctlclcl.,.

For Example 1 we display each vector in R? in a two-dimensional array
corresponding to Table 4. Tables 7a and 7b give examples of vectors in U, \ U;
and in U; respectively.

The dimension of U, is 1. The space R’ has an inner product (, ) on it defined
by

t
<Z,Z'> = Z szZo’
w=1

TABLE 7a
The vector v,; — 2vy, + 5V,

* 1 1 -1 6
0 * 0 -2 0
0 0 * 3 0
5 0 0 * 0
0 0 5 -2 *
TABLE 7b
The vector w; + 3w
* 4 1 1 4
1 * 1 3 3
4 1 * 0 3
1 0 3 * 4
4 3 3 4 *
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We use this to find the dimensions of the spaces U; and U;. Note that
(Vaus Vi) =[S0 N Ll

n—1 ifa=b and i=j,

(3.1) 0 ifa=b and i#j],
0 ifa#b and i=,

1 ifa¥b and i#],

so that
<wi’“'j> =|#, ng’;'

(3.2) fr(n-1) ifi=j,
r(r—1) ifi=+j.

Moreover, L ,w; = ru. Suppose that ¥, A\,w; = 0 for some real numbers A,. If
r # n, taking inner products with individual w, shows that A, = .-+ = A, and
hence that A, = - = A, = 0: thus the fan vectors are linearly independent and
so U; has dimension . On the other hand, if » = n then w; = u for i,..., n: thus
U; = U,. Now suppose that ¥ XA ,;v,, = 0 for some real numbers A,;. Taking
inner products with individual v,, shows that there are real numbers 6, and ¢;
such that A, = 6, + ¢, for all a and i. Since
va1+va2+ e +Van=u

for @ = 1,..., r, this implies that (X 0,)u + X,;¢,w; = 0. Hence U, has dimension
nr—(r—1)ifr#n,and nr — (r—1) —(n—-1)if r = n.

For Example 1, Equations (3.1) and (3.2) are demonstrated in Tables 7a and
7hb, respectively. For example, the six entries equal to 4 in Table 7b correspond to
the elements of #, N #;. In this case the five fan vectors form a basis for Uj;
while a basis of U, consists of u and all but three spoke vectors, one being omitted
for each classification.

We can form the orthogonal complements of the U-subspaces, and thus obtain
the subspaces that really interest us. Specifically, we put

Vi=Uo

V; = the orthogonal complement of U, in Uj,
V, = the orthogonal complement of U; in U,
V, = the orthogonal complement of U, in U..

Then V; is spanned by vectors of the form w;, — w; while V, is spanned by
vectors of the form v,; — v,,. Now R’ is the orthogonal direct sum

R'=V,eVeV,eV,.

We record the important facts about this decomposition in Table 8.

In two special cases this decomposition can be described in simpler terms. If
r = n then the set {A,,..., A,_,} is only one square short of a complete set of
mutually orthogonal Latin squares. Thus there exists a (unique) Latin square
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TABLE 8
Decomposttion of the treatment subspace

subspace \A Vi V, V.
description mean contrasts contrasts orthogonal
between fans between spokes to spokes
within fans
dimension (r < n) 1 n—-1 (n—1)(r—1 (n—r)(n-1)-1
dimension (r = n) 1 0 (n— 1)? n—2

A, _, orthogonal to all the others, by Theorem 1.6.1 of Rhagavarao (1971). One
letter of A,_, must correspond to the transversal. Each other letter of A, _;
occurs just once in each a-spoke, for each classification a. Hence the contrasts
between these n — 1 other letters are orthogonal to spokes, and so they form the
whole space V,. Since V; is null in this case, V, must consist of all treatment
contrasts which are orthogonal to the letters of A,_,. Thus the treatments have
the simple nested structure (n — 1) — n [in the notation of Nelder (1965a)], and
the treatment space decomposition is the familiar one into mean, between letters
of A, _, and within letters.

If r=n—1 and n # 4, the results of Shrikhande (1961) and Bruck (1963)
show that there is a unique complete orthogonal set {A,,..., A,_,} containing
the original set {A,,..., A,_;} and that the original transversal corresponds to a
letter of one of the two extra squares, say A, _,. The same result is true even
when n = 4, because the existence of the original transversal prevents A; from
being isotopic to the square in Table 2, which is the only 4 X 4 Latin square (up
to isotopy) which is not uniquely embeddable in a complete set of mutually
orthogonal Latin squares [isotopy classes are also called transformation sets (see
Fisher and Yates (1934))]. The treatments now have the simple crossed factorial
structure @, X Q,, where the levels of @, are the n — 1 other letters of A,_, and
the levels of @, are the n letters of A,_,. Now V_ is the main effect of @,; while
V; is the main effect of @, and V, is the @,Q, interaction.

Example 2 has r = n — 1 = 3. The rectangular lattice design is constructed
from the set of mutually orthogonal 4 X 4 Latin squares in Table 9 : the rows,
columns, and letters of A; are the three classifications; letter 1 of A, gives the
transversal; the remaining letters of A, and A, give the 3 X 4 factorial treat-
ment structure described above and shown in Table 10. The design is that shown
in Table 11, ignoring periods.

In both these special cases the factorial treatment decomposition has no direct
statistical meaning, but is merely an aid to the analysis. The factors @, and @,
are entirely analogous to the pseudo-factors used in the construction and analysis
of square lattice designs [Yates (1936)].

4. Treatment projection. Let z be a vector in R In order to use the spaces
V., Vi, V,, and V, in the analysis of an experiment we need to know how to
calculate the projections of z onto these spaces. This is done in terms of the
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TABLE 9a
Three mutually orthogonal 4 X 4 Latin squares
A, (*1” gives transversal;
other letters are Aj (letters are
A, (gives 3rd replicate) levels of @,) levels of Q,)
1 4 2 3 1 2 3 4 1 2 3 4
3 2 4 1 2 1 4 3 3 4 1 2
4 1 3 2 3 4 1 2 4 3 2 1
2 3 1 4 4 3 2 1 2 1 4 3
TABLE 9b
Array of twelve treatments for Example 2
* A B C
D * E F
G H * I
J K L *
TABLE 10
3 X 4 factorial structure for Example 2
treatment A B C D E F G H 1 J K L
level of @, 2 3 4 2 4 3 3 4 2 4 3 2
level of @, 2 3 4 3 1 2 4 3 1 2 1 4
TABLE 11
Design which is not generally balanced
room 1 2 3
sheep 1 2 3 4 5 6 7 8 9 10 11 12
time 1 B D I L K E F G A J C H
period 2 C E H K A L I J G B D F
3 A F G J H B C D E 1 K L

following totals:

grand total G(z) = ).z,

spoke total Sai(z) = Z {zw: wE ‘5pai} = <z’val>’

fan total F,(z) = ) {z,: w € %} = (z,W,).
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TABLE 12
A particular vector z in R?°

[ - - I

TN ¥~

N *x Ot

v ON

* =g W

It is immediate that
(4.1)

(4.2)

(4.3)

¥5..(2) - G(a),
2. 8.i(z) = F(2),
EFl(z) = rG(z).

Define the fan totals vector {(z) and the spoke totals vector s(z) by

i(z) = LF()w,,
5(2) = £ LS, (2)ve..

We also need the grand totals vector g(z), all of whose entries are equal to G(z).
Continuing our Example 1, a vector z is shown in Table 12. Its spoke totals are
in Table 13: the column margins are the fan totals, and the row totals are all the
grand total. The vectors f(z) and s(z) are shown in Table 14.
We aim to give the projections of z onto the spaces V,, V;, V,, and V_ in terms
of £(z), s(z), and g(z). The necessary calculations are contained in the following

two lemmas.

LeEMMA 1.
(i) (8(2), v,) = nS,i(2) + (r = 1)G(z) — Fy(2),
(ii) ((2),v,,) = (n = r)F(z) + r(r - 1)G(2),
(iii) (£(z),w;) = r(n — r)F(z) + r¥(r — 1)G(2).
TABLE 13
Spoke totals of z
i 1 2 3 4 5 total

row (a =1) 15 24 20 18 13 90
column (a = 2) 17 18 18 22 15 90
letter (a = 3) 13 15 13 20 29 90
fan totals 45 57 51 60 57 270

883
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TABLE 14
fan totals vector f(z) spoke totals vector s(z)

* 159 156 156 159 * 62 53 50 45
162 * 153 174 165 61 * 55 75 52
153 153 * 168 168 66 51 * 57 55
162 168 168 * 162 50 49 65 * 46
153 174 165 162 * 43 51 46 48 *

Proor. To simplify the expressions, we omit “(z)”, the vector z being
understood.

(i) (8,Vy) = Xb:zsbj<vbj"’ai>
=(n-1)S, + bZ Z.Sbj (by (3.1))
=(n-1)8,;+ bZ (G -8S,) (by(41))

= nSat + (r - l)G - Esbl
b

= 1S+ (r=1G - F, (by (42)).
(i) (8 V) = TE (W, Var)
= (n-DE+(-DLF (by(1)

=(n-r)E + (r- 1)2[4;

=(n—r)E+r(r-1)G (by(4.3)).
(iili) Summing the equation in (ii) over all the spokes in %, gives
&,w,)=r(n—r)F +r*r-1)G. O

LEMMA 2. The orthogonal projections of z onto U,, U, U, U, respectively,
are

g(z) fz)  (r—1g(=)
n(n-1)’ rin-r) (n-1)(n-r)’
@ _fm) (sl

n nn-r) (n-1)(n-r)’

when r + n. When r = n then U, = U, and the orthogonal projection of z onto
U, is

@) (n-2g)
n n(n—1)
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ProOF. Put x=[r(n—r)] ¥ — (r— D(n - 1)(n — r)]"'g when r +#n.
Since f and g are both sums of fan vectors, x € Uj;. Thus it suffices to show that
z — x is orthogonal to U;. This is so if (z — x,w,) =0 for each fan %, By
Lemma 1(iii) and (3.2),
r(n=r)F+r¥(r-1)G r(n-1)(r-1)G

r(n-r) (n-1)(n-r)

Similarly, puty = n™'s + [n(n — r)] 4 — (r — D)[(n — 1)(n — r)]"'g. Then
y € U,, because s, f, and g are all sums of spoke vectors, so it suffices to show
that (z — y, v,;) = 0 for all spokes .%,,. Lemmas 1(i) and (ii) show that (y, v,,) is
equal to

nS,+(r-1)G-F (n—-r)F,+r(r-1)G (n-1)(r-1)G
+ - )
n n(n—r) (n=1)(n-r)
which is S,;, which is (z, v,;).
Nowlet r=nandputy =n"!'s — (n — 2)[n(n — 1)]"'g. Then

nS,+(n-2)G (n-2)(n-1)G =8, = (z,v,,)

xw,) = =F = (z,w,).

<y’vai> = n n(n _ 1)

so that y € U, and z — y is orthogonal to U,. O

Now subtraction gives the orthogonal projection of z onto V,, V;, V,, V..

THEOREM 1. Let T,, T}, T,, T, be the operators of orthogonal projection from
R’ onto V..V, Vi, V,, respectively. Then, for all z in R,

g(z)
Tz = n(n-1)’
f(z rg(z
T,z = @) - 8(2) when r # n and zero otherwise,
rin—r) n(n-r)
s(z) (z)
Sz =T T T
n m

Tz=1z-— (T”z + Tyz + T,z).

In Example 1 we have n = 5 and r = 3, so T,z = g(z)/20; T;(z) = £(z)/6 —
3g(z)/10; T,z = s(z)/5 — f(z)/15, and T,z is best obtained by subtraction. For
the particular vector z shown in Table 12, these four components of z are shown
in Table 15. The orthogonality of the decomposition may be verified by noting
that

IT,z||* + Ty z||* + |IT,2||* + | T 2|
= 405 + 24 + 47.2 + 21.8 = 498 = ||z||2.
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TABLE 15
T” z T, z
* 4.5 4.5 4.5 4.5 * -0.5 -1.0 -1.0 -0.5
4.5 * 4.5 4.5 45 0.0 * -1.5 2.0 0.5
4.5 45 * 4.5 45 -1.5 -1.5 * 1.0 1.0
4.5 4.5 4.5 * 4.5 0.0 1.0 1.0 * 0.0
4.5 4.5 4.5 45 * -1.5 2.0 0.5 0.0 *
T,z T.z
* 1.8 0.2 -04 -1.6 * 1.2 -0.7 -11 0.6
1.4 * 0.8 34 -0.6 0.1 * 1.2 -0.9 -0.4
3.0 0.0 * 0.2 -0.2 -1.0 -1.0 * 0.3 1.7
-0.8 -14 1.8 * -1.6 0.3 0.9 0.7 * -19
—-1.6 —-1.4 -1.8 -1.2 * 0.6 -1.1 -1.2 1.7 *

5. General balance. The block structure of a rectangular lattice design is
the double nested classification of plots within blocks within replicates. This is
one of the simple orthogonal block structures defined by Nelder (1965a). In what
follows we retain the notation of Nelder (1965a, b, 1968) and Bailey (1981) as far
as possible.

Let RN be the real vector space associated with the N plots. Each grouping of
the plots according to the block structure defines an averaging operation P on
R™. In our case there are four averaging operators: the grand mean averaging
operator P, = J/N, where J is the all-1’s matrix; the replicates averaging
operator Pg; the blocks averaging operator Pg; and the identity P, = I. Nelder
(1965a) showed that there is an orthogonal direct sum decomposition ® W, of R™
such that each W, is an eigenspace of every P. Let C, be the operator of
orthogonal projection from R™ onto W,. Nelder (1965a) showed that each C, is a
linear combination of the P’s with integer coefficients: Speed and Bailey (1982)
gave explicit formulae for these coefficients. In our case we have

C,-P, Cp=P,—P,
CB=PB—PR’ C€=PE—PB’

The spaces W, are called strata: they play an important role in analysis of
variance [see Nelder (1965b) and Bailey (1981)]. Our covariance model for the
data vector y is

(5.1) Cov(y) = §,C, + £5Cr + £5Cp + £.C,

for unknown scalars £, ér, €p,and £,

Denote by X the N X ¢ design matrix; that is, X, is 1 if plot p receives
treatment w and O otherwise. For each stratum W,, the matrix L, defined by
L, = X'C X is called the information matrix for that stratum. For designs with
equal replication r, we have L, = r'T,. If L, = 0 there is no information about
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treatments in stratum W,. Strata, other than W;, for which L, # 0, are called
effective strata.

Suppose that ®,V, is an orthogonal direct sum decomposition of R’. Nelder
(1965b) defined an equally replicated design to be generally balanced with
respect to this treatment decomposition if each V; is an eigenspace of every
information matrix; that is, there are numbers A, such that L, = X A ,T,,
where T, denotes orthogonal projection onto V. We have 0 < A, < r for all «
and 4; and X A, = r for all . The quantity A _,/r is the efficiency factor for
treatment term V, in the stratum W,. In a simple block design with blocks
stratum Wy, examination of the trace of Ly shows that ¥,A g,dim(Vy)/r =
b/r — 1, the so-called loss of information due to blocks.

Houtman and Speed (1983) have shown that in any design with only two
effective strata there must be some decomposition ® V, of R® with respect to
which the design is generally balanced. However, the decomposition may not be
easy to find, use or interpret. Qur claim is that a rectangular lattice design is
generally balanced with respect to the treatment decomposition given in Sec-
tion 3.

LEMMA 3. Fora=1,...,randi=1,...,n,
X'PyXv,, = (nv,, — w,+ (r — Du)/(n - 1).

ProoF. If & is any block and v is any vector in R’ then the entries of Py Xv
for the plots in 4 are all equal to the average of the entries of v for those
treatments which occurin 4. If v = v,, and Z consists of #,; then this average
is equal to (v,;,Vv;;)/(n — 1). Denote the characteristic vector of this block by
x,,- Then

(n - l)Pvaaz = Z Z<Vauvbj>xbj‘
b

Since X’x,; = v,; we have
(n — )X'PpXv,; = ). Z(Vauvbj>vbj
b J

=(r-1v,+ ¥ (u-v,) (by(3.1))

b+a
=nv,+(r—1u-w,. ]

THEOREM 2. Rectangular lattice designs are generally balanced with respect
to the treatment decomposition given in Section 3.

PrROOF. We always have L,u = ru, and L,z = 0 whenever z is orthogonal to
u. By definition of replicate, X'PrXz = rg(z)/n(n — 1) = X'P,Xz, so Lg = 0.
Moreover, Ly = X'PzX — X'P;X, and so
Lg(va — Vi) = n(n — 1)—1(Vai = V)

by Lemma 3. Since V is spanned by vectors of the form v,, — v,,, this shows that



888 R. A. BAILEY AND T. P. SPEED

TABLE 16
Efficiency factors of a rectangular lattice design

treatment subspace

v, Z v, v,
stratum
mean W, 1 0 0 0
replicates Wy 0 0 0 0
blocks W, 0 i, z
ocks W r(n—-1) r(n—-1)
n(r—1) rm—r—n
plots W, 0 1

r(n—-1) r(n—1)

V, is an eigenspace of Lz with eigenvalue A g, = n/(n — 1). Similarly, Lemma 3
shows that

Ly(w; = w;) = (n = r)(n = 1) (W, = w)),

so V; is an eigenspace of L with eigenvalue A 5, = (n — r)/(n — 1). Whether or
not r = n, Table 8 now shows that A g dim(V,) + A g dim(V;) = b — r, so there
can be no further nonzero eigenvalues in the blocks stratum. Thus V, must be an
eigenspace of Ly with Az, = 0.

By the result of Houtman and Speed (1983), the spaces V;,V,,V, are also
eigenspaces of L. O

The eigenvalues in stratum W, are calculated by subtraction. Division by r
gives the efficiency factors, which are shown in Table 16, which is laid out like the
table in Section 4.2 of Nelder (1968).

Block designs are often classified by a single measure of efficiency: the
harmonic mean of the efficiency factors (taking account of multiplicity) in
stratum W,. It follows from Tables 8 and 16, that, whether r = n or r < n, the
harmonic mean efficiency factor for a rectangular lattice design is

n(r-1)(rmm—-r-n)(n>-n-1)

(r=-1n%(n2-n-1)-r(n-1>+m(r-1)

This efficiency factor is proportional to the reciprocal of the average variance of
the intrablock estimates of simple treatment differences, and so may also be
obtained from this average variance, which is given by Williams (1977, page 413).

6. Analysis. Since rectangular lattice designs are generally balanced, their
analysis follows the pattern described by Nelder (1965b, 1968), Wilkinson (1970),
and James and Wilkinson (1971). In this section we specialize their results to
rectangular lattice designs, retaining most of Nelder’s notation. We outline the
procedure for fitting the model, deriving a complete analysis of variance, estimat-
ing the stratum variances &5, £z, and £,, and obtaining minimum variance
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unbiased linear estimates (with estimated weights) of arbitrary treatment con-
trasts, together with their estimated variances.

Let t be the ¢ X 1 vector of individual treatment effects and let y be the N X 1
vector of observations. If A, # 0, the treatment effect T,t is estimated in
stratum W, by h_,, where h , = T,X'C,y/A 5. The contribution of treatment
term V, to the fitted value in stratum W, is C Xh ,, with the sum of squares
A llh pll%. Thus the overall fitted value in stratum W, is ¥,C,Xh ,, where ¥}
denotes summation over those 8 for which A, # 0. The residual sum of squares,
RSS,, in stratum W,, and its number of degrees of freedom, d,, are obtained by
subtraction:

(6.1) RSS, = y'C,y — X2 'A b 4l%,
[}
(6.2) d, = dim(W,) — Y dim(V}).
]

Thus we obtain the analysis of variance shown in Tables 17a (r < r) and 17b
(r =n).

If the stratum variances £, are known, we put w, = X A _,/£, and define
weights w,g by w,e = A 4/§,wy. The weighted effect corresponding to treatment
term V, is X w,oh 4, and the overall weighted fitted value tis X w,oh 4. If x is
any treatment contrast (that is, x € R* and (x,u) = 0) then the minimum
variance unbiased linear estimate of (x,t) is (x,t), with variance L|[Tyx||?/w,.

TABLE 17a
Analysis of variance whenr < n

source of
stratum variation df SS EMS
mean 1 y'C.y T + &,
replicates r—1 y'Cry £r
AgslIT )2
blocks v n-1 Ayl g1l % +&p
ATt
v (n=1)(r—-1) Al gl1? m + &g
total r(in—-1) y'Cpy
A TP
plots Vv n—-1 At 12 —:l__fll' +£
V, (n—1)(r—-1) Alh,, 2 _Ral T +¢
s &S &s (n—l)(r—l) €
V. (n=rn-1-1 A lb, AT + ¢
€ eellee (n-r)(n-1)-1 €
error n(rn—2r—n+1)+1 RSS, £,

total rn(n — 2) y'C.y
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TABLE 17b
Analysis of variance whenr = n

source of
stratum variation df SS EMS
mean 1 y'Cy I + &,
replicates r—1 y'Cry §r
Al T
blocks V, (n -1y A sl gl 'B——g? +&p
(n-1)
error n—-1 RSS, ép
total n(n—-1) y'Cpy
ATt
plots v, (n-1? Aslib g l® —— +&
(n-1)
y . e el TP
£ 113 EE n — 2 €
error (n—1)(nr?-2n-1) RSS, £
total n*(n - 2) y'C.y

Usually the stratum variances £, are not known. If d, # 0 then RSS_/d,
provides an unbiased estimate of £, but in general such estimates are based on
too few degrees of freedom, because one or more treatment terms have been fitted
and removed in more than one stratum. For a rectangular lattice design with
r < n there is no such estimate of {5, because dp = 0.

The solution to this difficulty is to estimate the stratum variances and the
weights simultaneously. With the weighted fitted value t given above, the sum of
squares, R, for the residual in stratum W, is given by

(63) Ra = RSSa + ;Aaoz:’zwﬁﬁw'yﬁ(hoﬁ - hBO’hao - hy0>’
B v
with expected value d/£,, where
(6.4) d; = dim(W,) — ¥ weedim(V;).
]

Equating observed and expected values of the R gives a set of equations in the
£,. As Nelder (1968) observed, (6.3) simplifies considerably when there are only
two effective strata. Thus for rectangular lattice designs we obtain the following
equations for {5 and &

RSSy + Zo:ABowezo”hBo - hea"2 = ’53["(” -1) - Zo:,wBodim(Vo)]’
RSS, + szowjgo“hso - hm”2 = £e[m(n -2) - Z'weodim(Ve)].
[ [

Note that RSSy is zero when r < n, and that the weights w,, also involve the
unknown £,. However, these equations may be solved, iteratively if necessary, to
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give us estimates £z and £,, which, under normality, correspond to the so-called
restricted maximum likelihood estimates, and these may be used to give the best
available estimates of linear combinations (x,t) and the estimated variances of
those estimates.

It is clear that the analysis depends on the availability of the projection
operators C, and T,. The former are quite standard, and correspond to fitting
and removing the grand mean, replicate means, and block means. The latter are
given by the fan and spoke totals, and so are straightforward to calculate, even
by hand. If the statistical programming language GENSTAT is used, spoke
totals are automatically calculated if r treatment pseudo-factors are declared,
one for each classification: the levels of the ath pseudo-factor are the a-spokes.
An alternative strategy is to input r copies of the data and use just two
treatment pseudo-factors, FAN and SPOKE. In the ath copy, treatments in
spoke #,; are declared to have level i of FAN and level a of SPOKE. The
treatment declaration FAN /SPOKE ensures that all the correct major calcula-
tions are done, using the sweeps of Wilkinson (1970), although minor adjust-
ments have to be made to the output to allow for the multiple copies. Thompson
(1983) explains this method, and its difficulties, in more detail, using the general
methods of Thompson (1984), and shows that this type of pseudo-factorial
structure is also useful for diallel experiments.

Thus, apart from the use of estimated weights because the stratum variances
are in general not known, a completely satisfactory analysis of any rectangular
lattice design can be made once the operators T, are available. Given these, the
analysis is analogous to that of a balanced incomplete block design with recovery
of interblock information.

Williams and Ratcliff (1980) gave a procedure for the analysis of rectangular
lattice designs which differs from ours in two respects. In the first place, their
covariance model is of the form

which differs from our equation (5.1). Secondly, our iterative analysis ensures
that the final estimates of £, £, and the treatment effects are consistent with
each other, while the Williams—Ratcliff procedure, which is based on that given
by Yates (1940) and Cochran and Cox (1957, Section 1.3), is, roughly speaking,
only the first cycle of the restricted maximum likelihood analysis of Patterson
and Thompson (1971). The differences between these methods, which apply not
only to rectangular lattice designs, will be discussed in more detail elsewhere.

7. Rectangular lattices with cross-blocking. The foregoing ideas may be
extended to a more complicated block structure.

In Example 2 we have so far ignored the periods. However, it was desirable
that each treatment should be fed once in each period. The experimenter
concerned found that, for the rectangular lattice design constructed at the end of
Section 3, the treatments could be permuted within sheep so that each treatment
occurred once in each period: his proposed design is shown in Table 11.
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Unfortunately, this design takes no account of the grouping of the 36 experi-
mental units into nine room-periods: each room-period consists of the four
observations made in the same test period in the same room. In the notation of
Nelder (1965a), the block structure is

3 periods X (3 rooms — 4 sheep).

The stratum projection matrices are given by

C.=P,

Cr=P-P,

Cp=Pp— P,“
Crp=Prp—Pp— P+ P,

Cs = Ps — Py,

C.=P, — Py — Pgp+ Py,

where, for example, Py, is the averaging matrix for room-periods. Although
V;, V;, V,, and V, are eigenspaces of C,, Cg, Cp, and Cg, they are not eigen-
spaces of C,p and C,, because the block design given by the room-periods
alone is not in any sense balanced with respect to the treatment decomposition
V.® V,® V, ® V. Thus the design is not generally balanced.

However, it is possible to permute the treatments given to each sheep so that
each treatment occurs once in each period and the design is generally balanced.
This may be done for n(n — 1) treatments in the simple orthogonal block
structure

(n — 1) periods X [(n — 1) rooms — n sheep]

as follows. Ignoring periods, the design is constructed from a set of mutu-
ally orthogonal Latin squares A,,..., A,,_;, as in Section 2. A supplementary
(n — 1) X (n — 1) Latin square A is needed, whose letters are the remaining
letters of A,_,. Let §,, be the letter in row a and column p of A. Then the
treatment in the pth period and the ith animal of the ath room is the unique
treatment which is in spoke &, and in letter §,, of A,_,. In our particular
example we may take the supplementary square A shown in Table 18: the
resulting design is in Table 19.

In the notation of Section 3, V, is the main effect of @,, where the levels of @,
are the remaining letters of A,_,. By our construction, @, is completely con-
founded with room-periods, while all treatment vectors which are orthogonal to
Q, are also orthogonal to room-periods. Hence the efficiency factors for this
extension of the rectangular lattice design are those shown in Table 20.

TABLE 18
Supplementary Latin square
2 3 4
3 4 2
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TABLE 19
Generally balanced design for [ periods X (rooms — sheep)]
room 1 2 3
sheep 1 2 3 4 5 6 7 8 9 10 11 12
time 1 A D I L G K B F H J C E
period 2 B F ¢} K J H E C L 1 D A
3 C E H J D A L 1 F B K G
TABLE 20
Efficiency factors of an extended rectangular lattice design
treatment subspace
V,, V= Q, V. =Q,Q, V.=,
stratum
mean W; 1 0 0 0
rooms Wg 0 0 0 0
periods W, 0 0 0 0
room-periods Wpp 0 0 0 1
1 n
sheep W, 0 —_— - 0
) (n=1)* (n=1)°
. n(n-2) n®-3n+1
units W, 0 —_— 0

(n -1y’ (n-1y’
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