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1. General remarks. I would like to begin by saying that I enjoyed this
paper very much. As with their previous works, both individual and joint,
Martin and Yohai have achieved in this paper a nice combination of analytical
rigor and practical significance driven by clearly presented intuition. I congratu-
late the authors on this contribution.

Despite their central role in many areas of robust statistics, the traditional
influence curves proposed by Hampel have played a somewhat limited role in the
study of robustness properties of statistical signal processing procedures for
applications such as communications and control, primarily because of the
restriction of their applicability to static models. Other approaches, such as
minimax robustness, have proven to be much more useful in this context (see, for
example, the recent surveys by Kassam and Poor (1985) and Poor (1986)).
However, by allowing for the treatment of dynamic models, the notion of
influence functionals as proposed by Martin and Yohai eliminates this principal
disadvantage. The introduction of a heuristic tool of this type is thus a major
advance from the viewpoint of robust statistical signal processing, and I can
foresee a wide range of applications of Martin and Yohai’s ideas in this area.

2. System identification. System identification is among the many appli-
cations that can be examined in the context of the Martin—Yohai influence
functional. For example, consider the simple problem of identifying a first-order
time-invariant linear system from measurements of inputs and noisy outputs.
This problem corresponds to the model

s,=0s,_, +u,, 1€ Z,
(1) _ .

q,=s;+n, 1€ Z,
in which we assume that {u;};c; and {n,},c; are independent ii.d. A47(0,1)
sequences and || <1. The nominal observation process {x;},c consists

of the inputs and noisy outputs (i.e., x, = (;)), and so we can think of actual
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830 DISCUSSION

observations y, = (j) where {v;};cz and {r,},oz are generated by replacement
models from {u;};., and {q;}; c z, respectively.

M-estimates of 8 in (1) (see, for example, Poljak and Tsypkin (1980)) are of
the form

le<1,2;

n 13
(2) T, € arg{min ZP(J’;‘ Y t“’"um)}
m=1
for appropriate functions p. The estimates of (2) have limit { function given by

(3) J(y;t)=¢(q1— > t“’"vm) Y (m—1)t ™,

m=—o0 m=—o0

where ¢ = p'.

Within regularity on ¢, the influence functional of (3) for patchy outliers can
be evaluated via Martin and Yohai’s Theorem 4.2. Upon examination of IF in
this case one sees immediately that, for constant outlier-level ¢, the least-squares
estimate of # in (1) is linearly unbounded in ¢ for outliers in the output
observations and is quadratically unbounded in { for outliers in the observations
of the input. Also, although the usual robust ¢ functions yield bounded influence
against output outliers, we see that any nondecreasing ¢ is at least linearly
unbounded in { for input-observation outliers. Thus, from the viewpoint of gross
error sensitivity, redescending ¢ functions are called for in this model. (Alterna-
tively, ¢(§,)é, could be replaced by a bounded n({,, ¢,) as in the directly
observed AR case discussed in the paper.)

The general trend of the influence of patch length on M estimation in this
model is not as obvious as that for the influence of outlier amplitude. For the
particular case of least-squares estimation with constant-level outliers, analysis
of (3) via Theorem 4.2 shows that patch length is irrelevant for output outliers.
However, the influence of input-observation outliers on least-squares is
O(6 %k /k) where k is the average patch length. Thus, there is clearly a need to
consider permutation dependent issues when analyzing robustness in such
models.

3. Time-varying models. Although it has nothing particularly to do with
the consideration of influence functionals versus influence curves, another useful
aspect of Martin and Yohai’s formulation is the idea of analyzing estimates via
the limiting form T(p) regardless of whether or not T), is actually given by T(p,,)
for the empirical measure p,. This idea allows the analysis of some time-varying
models of interest. For example, consider the problem of estimating the ampli-
tude of a signal of known form from noisy observations,

(4) xl=osl+nt, i=1,2,...,

where {n,}?2, isiid. and {s;}2, is a known sequence. M-estimates of 8 based on
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corrupted observations {y,}?2, are of the form

(5) T, < arg{ min i p(y. - tS,)},

i=1

which can be analyzed via

- R
(6) ¥(y; ¢) = lim — ¥ s(y, — 8s,)
n—oo N =1
(with ¢ = p’), assuming this limit exists in an appropriate sense. Note that, as in
the i.i.d. case, T(p) (i-e., the solution of [Y(y; t)u(dy) = 0) is a function of only
the marginal distribution of y in this situation.

4. Long-term serial dependencies. As a final comment, I mention another
type of statistical contamination that would be interesting to examine from the
viewpoint of influence functionals. In particular, the influence on time-series
procedures of long-term serial dependencies such as those present in electrical
systems due to so-called fractional or “1/f ” noises (see also Graf et al. (1984))
might be studied in this context. For example, one might consider the influence
functionals of parameter estimates along a measurement-error-model trajectory
{n,; 0 <y < 1} where p, is a Gaussian measure with zero mean and autocovari-
ance [y, ¥, ,mM(dy) = 3[|k+ 1"t + |k — 1**! — 2|k|**!]. A process described
by u, would arise, for example, from the increments of a fractional Brownian
motion (Mandelbrot and Van Ness (1968)) with self-similarity parameter H =
(y + 1)/2. The tail behavior of the spectrum of this process is O(f~7), with
v = 0 yielding white noise. Alternatively, one might consider a mixed error
process of the form (1 — y)e, + yw, with {¢;} white and {w,} the increments of a
fixed fractional Brownian motion. Examination of the local behavior of time-series
procedures at y = 0 in either of these models would give an indication of the
tolerance of such procedures to unexpected long-term dependencies.
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