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AN APPROACH TO UPPER BOUND PROBLEMS FOR RISKS OF
GENERALIZED LEAST SQUARES ESTIMATORS

BY YasuYUKI ToYOOKA AND TAKEAKI KARIYA

Osaka University and Hitotsubashi University

First, an approach to an upper bound for the risk matrix of GLSE’s is
established when the information on the parameter space of the structural
parameter in the covariance matrix of the error can be utilized. Second, this
result is applied to regression with (i) serial correlation and (ii) heteroscedastic
covariance structure. In the heteroscedastic regression, the problem of esti-
mating the common mean of two normal populations is studied in detail.

.

1. Introduction. As is well known, in the regression model

(1.1) y=XB+u, E(u)=0 and Cov(u)=02Z,
the Gauss—Markov estimator
(1.2) B(Z) = (X'="1X) 'X's

is the best linear unbiased estimator of 8, provided X is known. Here X is an
n X k fixed matrix of rank k& and Z is a positive definite matrix. Often, however,
3 is a function of an estimable parameter, say 2 = 2(4), so that £ can and must
be estimated based on y. In such a model, = in (1.2) is replaced by an estimator,
say 3 = 3(0), and estimators of the form B($) are often used in practice [see
Theil (1971), Chapter 6]. In this article an estimator of this form shall be called a
generalized least squares estimator (GLSE).

In many applications, the estimator for 6 is based on the ordinary least
squares (OLS) residual,

(1.3) e=Ny=Nu withN=1-X(X'X)'X".

In Kariya and Toyooka (1985), when £ = S(d(e)) and when the density function
of u belongs to a class of spherical density functions with mean 0 and covariance
623,

f(u) = 1023 V2%(u(022) " 'u)

(where the class is denoted as S,(0, 623) below), it was shown that the risk
matrix of B(2) is bounded below by the covariance matrix of S(2):

(14) R(B(2)) = E[B(2) - BI[A(Z) - B]' = Cov(B(2)) = o*(X'=7'X) ",

where throughout this article, inequalities for matrices should be understood in
terms of nonnegative definiteness. Moreover, it is shown that (1.4) is valid for the
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class which contains B(2),
P, = {B|B = C(e)y, C(e): k X n measurable function of e such
that C(e)X = I and E| B> < x},
where ||a||2 = a’a for a € R*. On the other hand, the uniform bounds for the
approximation to the p.d.f. and the c.d.f. of GLSE were given in Toyooka and
Kariya (1983).

In this paper we consider the problem of evaluating an upper bound for risk
matrix of a GLSE in (1.4) under normality of u. Kariya (1981) also derived upper
bounds for the risk of some GLSE’s in Zellner’s SUR model and a heteroscedastic
model. Our approach here is different, more systematic, and thus applicable to
many regression models with complicated covariance structure. As discussed in
Remark 2.2 and Remark 2.3, our resulting upper bound- uses the fourth moment
of the estimator for the structural parameter to preserve the magnitude of the
order. On the other hand, the upper bound using the second moment does not
preserve the magnitude of the order which is discussed in Remark 2.2. In Section
2 a general approach to the upper-bound problem is established and in Section 3
it is applied to regressions with (i) serial correlation and (ii) heteroscedastic
covariance structure. In the heteroscedastic regression, we treat as a special case
the problem of estimating the common mean of two normal populations and
compare the upper bound with the exact variance [see, e.g., Khatri and Shah
(1975) and Cohen and Sackrowitz (1974) for the problem].

2. Upper bound for the risk matrix of GLSE. Let
(2.1) y=XB+ u, E(u) =0, and Cov(u) =02Z(9),
where X is a fixed n X k matrix of rank (X) =% and 6 € ® (nonempty
open) C R'. Assume that =(#) is nonsingular in ® such that
(2.2) SN 8)=1I,+A,(0)C,

where A ,(0) is a continuous function of @ defined on © into R'. Let B be an
orthogonal matrix such that

(2.3) B'CB = diag{d,, d,,...,d,} =D withd, < --- <d,.

Using B and rewriting (2.1) as B’y = B’X + B’u, without loss of generality, we
can assume

(2.4) 3°Y8) =1I,+ A,(6)D.

And we further assume that d, > 0 for all i and d, > 0. Typical examples in
which (2.4) is satisfied are the covariance structure of serial correlation, intraclass
correlation, and heteroscedasticity. The parameter 6 is to be estimated based on
the OLS residual e in (1.3), which is often possible. For A = A (8) = A(f) in (2.2)
we shall consider an estimator of the form A = A(d), where we assume § € © so
that A € A = {(A]A = \(9), 0 € ©)}.

To state a main result in this section, we introduce some notation. Let Z be

(2.5) 7ZZ'=N, Z2ZZ=1I,, and Z'X=0
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and fix it throughout the article. Let

A= (X2'X)"", X=3"2XA?
(2.6)

Z=32(22Z)""? and T =[X,Z].

Then T is an n X n orthogonal matrix. Define

_I‘I"'_ X/il —
YTz | T |E,

where & = £ 24, Now from (1.2) with 3 ' =T+ AD, the GLSE B(3) is
expressed as .

[

(2.7)

B(2)-B=(X2'X)'X3
— A2 YIS -1y L AN
(28) A(X'E'X) XS
=A% + AVA(X'S'X) X3 Zi,
= (I) + (1) (say),
where
(29) S=3"123(0)2 2, b=0(e), and e=2(2'3Z)"*i,.

Note that the second term (IT) is a function of i, only.

LEMMA 2.1 (Kariya and Toyooka, 1985). Let i € S,(0,I). If the second
moments of B(X) exist, then

R=E[B(E) - BI[A(Z) - B]' = o’A + APE[AN] A

= Cov(B(2)) + E[B(Z) - B()IB(2) - (D),
where A = (X'$7'X)"'X'3"'Zi,.

(2.10)

First it is remarked that this result is not restricted to the case 2(§) ' = I +
A(6)D but it holds for any form of X. Second, a sufficient condition for the
existence of the second moments of ,ﬁ’(ﬁ) — B is that 6= f(e) is continuous and
scale invariant, i.e., #(e) = 6(ae) for a € R' [see Kariya and Toyooka (1985)].
Third, in the decomposition of the risk matrix in (2.10), the first term is the risk
of the Gauss—-Markov estimator and the second term is the loss of efficiency due
to the estimation of 4.

The evaluation of the loss A'/2E[AA]A'/2 is our concern. To do so, let

B,={A-A>0}), By,={A-A<0)},

(211) (W, =1, W,=(1+Ad,)’/(1+Xd,)’,
F = diag{d,/(1 + Ad,),...,d,/(1 + Ad,)} and L =X'FZ.
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_ THEOREM 2.1.  Assume that £7'(8) is of the covariance structure (2.4) and
# = O (a.e.). Then

(2.12) AV2E[AN]AV? < (g, + &,)A,
where g; = E[x 5(A — \)?W, i, L'Lii,] (i = 1,2).
PrOOF. Since 3 = 3 1/2835-1/2
(2.13) A= (X'HX) 'X'HZi, with H=3""1=328"1351/2
Then

H e di 1+ Ad, 1+Ad,*
BT ING, T T+ A,
=I,+ (A= \)F.

From (2.13) and X'Z = 0,
A= {L+(A-NXFX) (A - \)XFZi,.
Let o = I, + (A — A\)X'FX. Then
(2.14) A= (A= \)J 'Li,.
Now, for any a € R*, by Schwarz’s inequality,

215 aE[AN]a = E[(\ = A)a¥ 'L, ]’

< E[(A - N\)’ad %@y L'LE,|".

Since o depends on the sign of (A — M), we evaluate it on each B, in (2.11). On
B, ={A-Ax=0}
J=L+(A-NXFX>1I,

since X’FX > 0. Then with W, = 1 in (2.11)

(2.16) ‘ a'J %a < a'a = W,aa.

Next, let

(2.17) w= max {d/(1+Ad;)} =d,/(1+Ad,),
1gign

since f(x) = x/(1 + Ax) (x > 0) is increasing in x for any A. Then on B,,
Jz L+ (A= Nwl,= {1+ (- Nw},
whence with W, = (1 + Ad,)?/(1 + Ad,)? in (2.11),

(2.18) ad %a< {1+ (A = Mw) “a'a = Wya'a.
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Therefore from (2.16) and (2.18),
2
aE[AN]a < Y E{xy(A — N)’WiyL'Li,|aa
(2.19) [AX]a < igl [XB,( ) Wit z]
= (8 + &)a.

Thus, the desired result is obtained. O

REMARK 2.1. In the original term, i, L’Li, is expressed as

By LLE, =y [T - = 'X(X'='X) ' x'|G[I - X(X'2'X) 'X'5 ],
where G = S V2F2-12X(X'S X)) X' 12F3 172

To evaluate the upper bound in (2.12) further, we assume that
i~ N(0,0%I,).

LEMMA 2.2. When v ~ N(0,¢%I,) and C is an m X m matrix,
(2.20) E[(vCo)?] = o*[(trC)’ + rCC + rC?).

Using this lemma with C = L’L and applying Schwarz’s inequality to g; in
(2.12) yield
(2.21) g, < 02[E{x,,,u/ﬁ(5\ - A)“}]w[(tquL)2 +ot(LLYY]” (i=1,2).
Now, combining (2.21) with (2.12) and (2.10), we obtain

THEOREM 2.2. For X in (2.4),
(2.22) o’A < R=R(B(2)) < 0’A + 8(8, + &,)0’A,
where 8 = [(tr LL')* + 2tr(LL")*1"/? and g, = [ E{x s WA — M)*}1V/2 (i = 1,2).

If A@(e) is an_even function of e, B(2) is unbiased for B in which case
R(B(2)) = Cov(B(2)).

A difficulty here is the evaluation of g, and g,, which may be replaced by
[E{(A — X\)*}]"/2 and [ E{WA(A — X)*}]'/?, respectively, or may be both replaced
by [E{((A =M1

REMARK 2.2. As is discussed in Section 3, 8 = 8(e) with e = Z(Z'SZ)"/2i1,
in (2.9) is often assumed to be 6 = f(ae) = 6(e) for a € R'. So we assume
0 = 0(it,/\it,|)). Therefore, A= it,/||lt,|). In this case, another evaluation for
(2.15) is possible via Schwarz’s inequality, i.e., for any a € R*,

2
@E[AX]a < (n—k) Y E[(A-A)'W]a%as,,
i=1

where §, = tr L’L. However, the r.h.s. of the above inequality is generally O(1) as
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n — o since E[(A — A)2W,] = O(1/n). Therefore, this upper bound does not
preserve the magnitude of the order as compared to the upper bound obtained in
our theorem. See also Remark 2.3.

REMARK 2.3. The inequality (2.22) holds for any regressor X and any
estimator A = )\(9). Further, the second term of the r.h.s. of (2.22) is of higher
order in general. To see this, assume that A = (X'Z7'X)"! = O1/n)
or hmn_'xX’E 'X/n > 0 exists as usual, and § — § = O,(1/Vn). Then g, <
E[(A = X)*1"/2 = 0(1/n) and from (2.18) &, < E[{WZ(}\ A }]‘/2 O /n)
at least under such a condition as the boundedness of W,. Hence, since § = O(1)
as is easily seen from the definitions of F and §, 8(g, + §2)(02A) = O(1/n?),
while 624 = O(1/n). Therefore, our upper bound (2.22) preserves the order
structure, contrary to the case in Remark 2.2.

REMARK 2.4. It is interesting to see that if X is of the form P[ 2 ]Q with
permutation matrices P and @, § = 0, because

LL' = X'’FZZ'FX = X'F[I - XX'|FX = X'F2X - (X'FX)’
implies tr LL’ = 0 and tr(LL’)? < (tr LL’)?> = 0. From Theorem 2.2 this implies

that the GLSE is as efficient as the Gauss—Markov estimator. In fact, the
following proposition holds in general.

PrOPOSITION 2.1. 8 =0 if and only if X'ZZ = 0.

PROOF. & = 0implies tr LL’ = 0, which in turn implies L = X 'FZ = 0. Hence,
from the definition of F, X, and Z, X (I —AF)Z =0or X2ZZ = (X’'2Z = 0).
Tracing back this proof yields the converse, completing the proof. O

The condition X’ZZ = 0 in Proposition 2.1 is well known as a necessary and
sufficient condition for the OLSE B(I) to be identically equal to the
Gauss—Markov estimator B(Z) [see, e.g., Rao (1967)]. Hence, under this con-
dition, B(I) = B(Z) = B(2) and so Cov(B(Z)) = Cov(B(Z)). Theorem 2.2 to-
gether with Proposmon 2.1 provides an alternative proof of the above result by
Rao.

3. Applications. In this section the results obtained in Section 2 are applied
to two cases, regressions with (i) serial correlation and (ii) heteroscedastic covari-
ance structure.

ExAMPLE 1 (Regression with serial correlation). We consider the model (2.1)
with errors of first-order serial correlation:

(3.1) u,=0u,_ | + ¢, 60 ={0:10 <1},

where u = (u,,...,u,) and {¢,} ~ i.i.d. N(0,0?). As is well known, the inverse
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matrix of the covariance matrix V of u is given by
[ 1 -0 0
-0 1+ 6*

1+6%2 -6
L 0 -0 1 ]

This matrix is often approximated by the matrix W~! in which the (1,1)th and
(n, n)th elements of V! are replaced by 1 — § + 2. Then W' = [(1 — 6)*] +
6C1/02, where

1 -1 0
-1 2
(3.3) C=
. 2 -1
0 ' -1 1
Using the scale invariance of GLSE ,@(ﬁ), regard 2 in (2.1) as the inverse of
(3.4) S'=1 +A06)C withA=6/(1-6),

where 0% =02/(1 — 6%). Note — 1< A < oo from |f] < 1. As in Durbin and
Watson (1971), the eigenvalues of C are given by

(3.5) d;=2[1 — cos(n(j — 1)/n)] (j=1,...,n).

It is noted that 0 < d; < max,_;_,d;=d, <4 and d; # 0 except d, and that
d,=0<d,< -+ <d,. So we can assume by (2.4)

(3.6) 2 '=1 + X0)D with D = diag(0,d,,...,d,).

Next, choose an estimator 6 of 6 based on the OLS residual e such that

(3.7) {|A9(e)| <1, b(-e)=d(e), f(ae) = b(e) fora>0and

# is continuous.
A typical choice will be

(3.8) b, = Z ee, ./ Z e?=e'Ke/e'e,

t=1
where e = (e, €,,...,¢,) and K = (k;;)with k,; = O except k, ,,, =k, =3
(j=2,...,n,i=1,...,n — 1). Note that an application of Schwarz’s inequality
shows |0(,| < 1. The second and third conditions of (3.7) guarantee the unbiased-
ness and the existence of the second moment of the GLSE ,B(E), respectively.
Define

(3.9) A=06/(1-6)" and $=(I+AD)"’

Now we derive an upper bound for Cov(ﬁ(ﬁ)). Let ® = {#: |6] <1}. Since
# € O, the inequality (2.22) in Theorem 2.2 is valid.
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For the practical use it is necessary to evaluate 6”4 + §(g, + g,)0°A in the
inequality exactly. But here we obtain an approximation to this.
LEMMA 3.1. Assume 0 — 0 = 0,1/ Vn). Then
W, =1+ 0,(1/Vn).

ProoF. For the evaluation of W,, we consider the behaviour of
(3.10) (1+Ad,)/(1+Ad,).
Expanding A =X 9) around 6,

N . d . A
A =)(8) + (8- 8)—\(0) for < 6% < @

(3.11) 0=0%

= \(8) + O,(1/¥n).
Remark that by Taylor’s expansion,

el

2qr
=4 + 7 + o(l/n).

(3.12)

Put (3.11) and (3.12) into (3.10),
1+Ad, a+ 27A/n
1+Ad, a+27\/n+0,(1/Vn)

=1+ 0,(1/Vn) witha=1+4X>0,
which completes the proof. O

On the other hand,
(3.13) g < [E(w2A -0 (i=19.

Using Lemma-3.1, for the typical choice 90 in (3.8), the leading terms of the r.h.s.
of (3.13) are evaluated by the usual 8-method as

LEMMA 3.2. For the typical choice 90, the leading terms of the r.h.s. of (3.13)
are both evaluated as

2y ]1/2 _ 1V3(1+6)
[E{w2(h - 0))] “ZaTey Tovm (=12

ProOF. Since d/dON0) =1+ 6)/(1 — 0) , }\(00) — () is approximately
(0(, 6)1 + 6)/(1 — 6)*. By Lemma 3.1 W2(A — A\)* is asymptotically (8, —
6) 1 + 8)* /(1 — 6)'. Remark that yn (6, — 8) converges to N(0,1/(1 — 6?)) in
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distribution. Then by using the fourth-order central moment of a normal random
variable, the result is obtained. O
Since
(3.14) 0?A + 8(8, + 8,)0°A < 6?A + 8(h, + h,)d?%A,
where h, = [E{WXX — A\)*}]/2 (i = 1,2), the leading term of the r.h.s. of (3.14)

is obtained as

THEOREM 3.1. For the choice 90, an approximation to the r.h.s. of (3.14) is

1v/3(1+6 .
8——(——2 24 .

62A + 2 Y
(1-29)

ExaMPLE 2 (Regression with heteroscedastic covariances). The heteroscedas-
tic covariance structure in (2.1) is given by

6,1, 0 |
(3.15) Cov(u) = 0 61, (6,>0,86,>0).
For the scale invariance of GLSE, without loss of generality, assume
3 =0 w0l hé=4,8
( 16) ( ) - 0 0In2 wit - 1/ 2°

So the parameter space is ® = {§: § > 0}. Then
(3.17) 27Y(0) =1,+\6)D,
where A(8) = 6 — 1 and

P

1 2
D=diag(0,...,0, 1,...,1).

Hence from the inequalities (2.12) in Theorem 2.1 and (2.22) in Theorem 2.2, if
6 € © with probability one,

2
! A<R(B(3)) < {1 + Z E[XB,(é - 0)2mﬁ§L/Lf¢2]}g2A
(3.18) =

< {1 + é S[E{x,,,WiQ(é - 0)“}]'/2}0%4,

where 62 =6, B,={(0-60>0}, B,={0—60<0}, W,=1, and W, = (6/6)
Here the expression of i&,L’Lii, in the original term is given in Remark 2.1.
When 0 = 0,/6, > 1 is assumed so that ©, = {§ > 1}, a further evaluation is
given as follows.
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THEOREM 3.2. For 6 > 1, if € ©, with probability one,
c?A<R(B(2)) < {1+ (1+6*)E[(d - 0)°F, L'LE,) ) oA
< {1 + (1 +02)8[E(8 - 0)'] 1/2}02A.

A natural estimator for 0 is proposed as follows: let

R 1
0 = 'C; 1 =1,2
13 nl_ke le (l )
with
n, n, .
C —dlag(l, ,1,0,...,0)
and
n, n,
C2=diag(0,...,0, 1,...,1)
and let

90 = max(1, 9/92)

In this case, b, is a continuous, scale invariant, and even function of e. Then
B2y i is unbiased and the second moment of B(2) exists. Therefore, R(A(Z)) =
Cov(B(2)).

As a special case, let us consider the problem of estimating the common mean
of two normal populations and compare the upper bound for R( B(ﬁ)) in (3.18)
with the exact variance (risk). The problem has been treated by many authors.
Among others, Graybill and Deal (1959) raised the problem and proposed a GLS
type estimator, Cohen and Sackrowitz (1974) proposed different estimators using
an ancillary statistic, and Khatri and Shah (1975) presented methods for evaluat-
ing the exact variance of an estimator encountered in such a model. In our
context, the model is given by y = X8 + u, where Cov(u) = 6,2(8) is given by
(3.15) and (3.16) and

X=1=(1,...,1):(n, + ny) X 1.
Then a GLSE B(2) here is evaluated as

13’1 ny Y, n, n,
+ A 'T— + = >
St ol ll a4

where 3, = X71, y,/n, and 3 = £ri™) 5,/n, with y = (), and 6, = de) is
assumed to satisfy 0( e) = 0(e) and 0(ae) = 0(e) fora>0 (i = 1 ,2). First,
we shall evaluate the upper bound in (3.18). From Remark 2.1 and (3.16), it is
easily shown that &} L'Lii, is evaluated as

@ty L'Lit, = nin3( 3, ~ 5’1)2/01(’7'1 + n20)3.

(3.19) B(E) =
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Hence from (3.18) the upper bound for the covariance matrix F( B( 3$)) is given by
nin(0 - 0)%(3, - ) 0\
l l (XB, +X1;2(§) ) 0,4,

6,(ny + nyf)’
where A = (X'Z~ X))y '=(n,+n 0) 1. On the other hand, the exact variance
of B(E) in (3.19) can be evaluated in a 11ne w1th Khatri and Shah (1975). In
particular, if 0 1s a linear combination of s2, s, and (¥, — ¥,)% we can use their
result where s? is the sample unbiased variance of each population. However,
even in this case it is difficult to analytically compare (3.20) with the exact
variance provided by them. For this reason, we make use of Lemma 2.1 and
compare them indirectly. Since from (3.18)
P A my, + nz5’2é ny + nyy0
2) - B(2) = — —
A(2) = B(Z) n, + nyl n, + n,f
n1n2(9 —0)(%— )
(n, + nQé)(nl +nyf)’

(3.20) {1 +E

the exact variance of /;’(3) is obtained from Lemma 2.1 as

n2n(0 - 6) (3% - 3)" ]}M

0,(n, + n20)(n1 + n29)2

(3.21) Cov(B(2)) = {1 + El

Therefore the difference between the upper bound (3.20) and the exact variance
(3.21) is

n2n2(6 - 0)(3, - 3,)
¢ = 60,AE 12( )(3’233’1)
0,(n, + ny0)
(3.22) 0\2 (n, +n)
X X13,+Xn2(§) B Y
1 2

= E{n?n3(0 - 0)°(5, - 3)°L(0 — 0)Q]} /(n, + ns0)",

2”29X3 + 2n, N A n, 2
= -1 —— +(0-0)|6? — = |-
B(n, + ) OO0, (n1 +n 0)

If § — 6 = O (m~'/?) with m = min(n,, n,), then the difference { of the upper
bound and the exact variance is of order O(m~%/?) under regularity conditions.
Hence the m% = O(m‘l/ 2) and thus the upper bound is asymptotically equlv-
alent to the exact vanance up to O(m™?%). When 9 is independent of (¥, — yl)

as is the case of 0 =s?(i=1,2), (¥, — »;)* can be replaced by E(¥, — y,)? =
(n, + n20)02/n n, in (3 20), (3.21), and (3.22). If 8, = s?, using (n, — 1)sZ/
(n, — 1)s2 = 8v/(1 — v) with v being dlstnbutedasbeta((n1 -1)/2,(n, — 1)/2),
we can also evaluate (3.21) exactly if necessary.

where
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