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SIMULTANEOUS ESTIMATION IN THE MULTIPARAMETER
GAMMA DISTRIBUTION UNDER WEIGHTED QUADRATIC
LOSSES

By ANIRBAN Das GupTa
Purdue University

A new class of solutions to a general differential inequality often encoun-
tered in multiparameter estimation problems is obtained. Using these solu-
tions as guidelines, improved estimators for the scale parameters as well as
the natural parameters of independent gamma distributions are obtained for
a large class of weighted quadratic losses. The improved estimators have an
empirical Bayes interpretation. They also permit an exact analytical represen-
tation of the risk improvement. For the ordinary squared-error loss, a larger
class of improved estimates is obtained which may allow for incorporation of
prior information in choosing an alternative estimate. Numerical results are
given which indicate the extent of risk improvement in certain situations.

1. Introduction. Since the pioneering work of Stein (1956), a great amount
of research has been done on exhibiting the presence of the Stein effect in various
probability structures with an infinite number of points in the sample space.
Scattered inadmissibility results were gradually unified after the powerful tech-
nique of improving upon an inadmissible estimator via integration by parts was
found by Stein (1973). The technique of explicitly constructing improved estima-
tors by solving differential (difference) inequalities on the sample space has since
been very productively used by many authors, notably, Hudson (1978), Berger
(1980a), Hwang (1982), and Ghosh, Hwang, and Tsui (1983). The beauty of the
method lies in the facts that it often allows for consideration of a large number of
losses of general quadratic form since the solutions to the differential inequalities
often follow a general pattern and that the technique also offers one a choice
from a big class of improved estimators. (For an indication of how this scope for
choice leads to highly interesting selection problems, see Berger (1982)). However,
one should perhaps mention in the same breath that the improved estimators
thus obtained may be most extremely loss-specific and also moderately to highly
unwieldy; in fact some of the recent skepticism about inadmissibility results has
a lot to do with these undesirable features.

This paper deals primarily with simultaneous estimation of parameters in
independent gamma distributions, although some of the results in the next
section extend to the problem of estimating the vector of natural parameters in
the general continuous exponential family. In Berger (1980a), the problem of
estimating the vector of scale parameters 6;',6,,...,6,"' of p independent
gamma distributions was considered for four different losses X2_,0/(8,0, — 1),
where m = -2, —1, 0, or 1, and explicit-improved estimators were obtained.
Unfortunately, the improved estimators looked completely different for the four
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different losses and their functional form did not allow for study of actual risk
improvement except through possible simulation. (This of course is the typical
picture in multiparameter estimation problems.) In the next section we shall
treat the problem of estimating gamma scale parameters under general weighted
quadratic losses YP_,c;0/"(8,0, — 1)? where ¢; and m; (# 0) are any constants.
Losses of this kind will obviously include three of the four losses studied in
Berger (1980a) as special cases. (The excluded case m = 0 refers to the invariant
quadratic loss. Why the invariant loss has to be left out will be discussed later.)
Note also that similar losses were considered by Hwang (1982) in the multi-
parameter Poisson problem and analogs of these losses in the normal case were
considered in Brown (1980), although with a somewhat different purpose. Im-
proved estimators are obtained for all these losses for p > 2 and it will be seen
that the improved estimates are functionally similar and look alike for the
different losses. Improved estimates are also obtained for a variety of losses for
the natural parameters and again they are functionally similar for different
losses.

Berger (1980a) showed how certain terms in his differential inequalities played
the dominant role in obtaining improved estimators. It will be seen that solutions
to the dominant inequality suggest improved estimators in all the problems we
consider. These suggested estimators can then be shown to be actually dominat-
ing by exactly calculating the risk difference. Towards this end, in the next
section we obtain a new class of solutions to the general differential inequality

P P
(1.1) Ax) = ¢(x) X o(x)e + X wi(x)¢3(x) <0
i=1 i=1

first studied in Berger (1980a). Solutions were first found by him and then his
class of solutions was extended by Ghosh and Parsian (1980) in the spirit of Efron
and Morris (1976). Our solutions are new and these are then used to form possibly
improved estimators in the gamma problems. We then calculate the risk dif-
ference analytically and show that the estimators heuristically obtained are
indeed improvements in terms of risk for all the losses mentioned above. The
scale parameters as well as the natural parameters are considered. Next, for the
ordinary squared-error loss (m = —2), the inadmissibility results have been
extended to give a broader class of improved estimators. For the ordinary
squared-error loss, we also show that our class of improved estimators has an
empirical Bayesian justification. The question of the actual amount of risk
improvement is of great interest in practice. Since our improved estimators
permit exact analytical representation of the risk improvement, we have studied
this aspect analytically to some extent and then actually calculated the per-
centage risk improvements in some situations. For the ordinary squared-error
loss, there is considerable improvement in terms of risk.

2. Construction of improved estimators. In this section we first obtain a
new class of solutions to the differential inequality (1.1). The importance of this
general differential inequality in multiparameter estimation is now very well
known. See Berger (1980a) and Ghosh and Parsian (1980) for an extensive
discussion.
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THEOREM 1. Consider the differential inequality (1.1), and assume ¢(x) > 0.
Define g(x;) as g/(x;) = 1/(vy(x,)). Suppose for some a # 1/(p + 1), for some
k>0,

1 P
(2.1) el wi(x)|gi(x;)|?>* <k forall x.
i=1
Th’en 4) = (¢1’ ¢2) ey ¢p) with
P
(2:2) ¢;(x) = csgn gi(xi)i=l—[1 Igi(xi)|(a_l)/p|gi(xi)|a

solves A(x) < 0, whenever c{a(p + 1) — 1} + kc? < 0.

PRrooF. Clearly, for almost all x,

¢ "(x) = (x)
~w®%umaHWHM(W”%M)
(2.3) (1)
2 a-1 (a—=1)/p ,
tc (sgn g,(x;))" | &i(x,)] i=1_[1|gi(xi)| gi(x;)
cla 1) -1 a2 a-1)/p
= [ (P‘;) ]Igi(xi)la E'gi(xi)l( g gl(x;).
Hence,
300 =0 T A e+ £ g
+C2i=-I]1 |gi(xi)|(2(a_l»/p Z wi(x)lgi(xi) |2a
=¢(x)g|g,»(x,~)|“‘“’/”[c[“(p;1)_ 253 L le=)
(a—1)/p 2a
4/( L (x;)] Zw(x)lg.(X)| ]
(2.4) lid cla(p + 1) -1] »
-")lI;II |gi(xi)|(a—l)/p[ » ; |gi(xi)|a_l

P
rek [Tl (e[|
cla(p+1)—1]
»
P a1 CR P o
X Z Igi(xi)| 4 —p— )) |gi(x;)] 1]
i=1 i=1

<0, ifefa(p+1) -1} + ke?< 0.0

< ()1 Igi(x,-)|“‘“’/"[
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REMARK 1. Under appropriate conditions similar to condition (2.1), a class of
solutions to A(x) <0 was found in Berger (1980a). The solutions there were
essentially of the form

—cgi(x;)
b+ I lg(x )P’
where b, ¢ and B are suitable positive numbers. The constant ¢ can be gener-
alized to an appropriate function 7(x) (see Ghosh and Parsian (1980)).

(2.5) ¢,(x) =

REMARK 2. The new class of solutions in (2.2) can be used to anticipate
improved estimates of the scale as well as the natural parameters of independent
gamma variables under a wide class of weighted quadratic losses. At this stage,
we merely mention that if the loss is L2_97(8;n; — 1)® (where 7, = 6, or 1/6,),
one may heuristically arrive at [x,/(a + DJ[1 + cx™ /(1P x;7™:/2P)]
and [(a; — 2)/x;)[1 + c;x; ™/*(1P_,x™:/2P)] as possibly improved estimators of
the scale and natural parameters, respectively, by considering certain dominant
parts of the relevant differential inequalities (see Berger (1980a)).

We now actually prove that the estimators heuristically obtained above
dominate the standard estimators in terms of risk.

THEOREM 2. Let X; ~;.4,,. 8amma (a;, 0;), where a;’s are considered known.
Consider the problem of estimating (6;,0;",...,0,") under a loss L(,38) =
TP c,0m (1 — §8,0,)%, where ¢;>0, m;# 0, and i = 1,2,..., p. Consider the

estimates 8,(x) and 8(x) defined as

x;
60,;'(") = @+ 1 ,
(2.6) x;
8(x) = @+ 1 (1 + ¢i(x))a
where

p
i=1

¢ > 0 sufficiently small (see (2.10)).
Then R(8,8) < R(0,8,) for every 8 if p > 2 and hence 8,(X) is inadmissible.

Proor. Letting A(8) = R(6,6) — R(4, d,),

A(6)
2 2
“ X, x,0;(x) L - }
= m: - =1+ 6., — 0 6, -1
E E‘lc‘o‘ {ai+10‘ 1 a;+1 '} E’lc" {ai+1
(2.7) P x? p x?
=E et ———— ¢H(x) + 2 ), 0™ E— $i(x)
f El (a; + 1) ( ,:LI (a; + 1)

X

P
-2) cmt?
E‘l v a, +1

i ¢i(x)]'
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Assuming that «; > m;/p, «; + 2> (m;1 — p))/p, and «a; + 1 >
(mi(1 — p))/2p, by direct calculations

cI'(a;+ m;+2—m;/p) P I‘(a—m/p)
E _ i i d 67 ™2 — LKL gmi/p,
X; ¢‘ (x) r(ai _ mi/p) jl—I=1 F( j) /
—c(sgn mi)I‘(ai +2+m;/2 - mi/2p)
Ex;(x) =
I‘(a,- - m¢/2p)
P T'(a;—m,/2p)
2.8 xg2-mi2[] —L—L=L gm/2»,
( ) 4 }:[1 F(aj) /
Erg(x) = —SCEmIT(e+ 1+ my/2 — mi/2p)
I'(a;— m;/2p)
P T(a;— m;/2p)
X ;1= mi /2 ___—f___.o’" /2p,
)
Setting
[(a;+m;+2—m;/p) I'(a; — mi/p) b
= a.’ —_— = i)
I'(a; = m;/p) l I(e;)
P(a,+1+m/2-m/2p) I'(e; — mi/2p)
Mo —my2p) 0 ™ Ma)
(2.7) and (2.8) give
A(6)
< i/
bo /P
-9 ____c(sgnm) (ai+ 1+ﬁ—ﬁ)di0.’m‘ﬂ(ﬁeieim‘/2p)
(2.9) (a; + 1) 2 2p i=1

Z

P c,(sgnm;) p

+2¢c Rt d.emi? e.Qmi/2p
igl (0‘,' + 1) i (E i )
L L o |mi(p-1) ( L )

=c?k [] b0™/P - 2¢ dom:/? e,0mi/?P |,
D ,Zl (¢;+1)°  2p ,=1_[1

where k = YP c,a;/(a; + 1)°. Let b =max b, e=mine; and d =

min ¢;|m;|d;/(a; + 1)%. Then (2.9) yields,

P dep -1
A(8) < c*kb? [ 1877 — —(;:—_) 1—[ o, (/2P E gmi /2
i1
P ,
(2.10) <e n 0imi /P{ckbp — dep(p _ 1)}
de”(p — 1)

<0, if0<c<
1 C kbp
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This completes the proof of Theorem 2. O

REMARK 1. The bounds following (2.9) have been rather crude; for the
special case a; = a, ¢; = 1, and m; = m, (2.9) gives

c¢’p T(a+m+2-m/p)

A(0)=(az+1)2 I'(a — m/p)
><(F(oz - m/p) )"IBI oo cm|(p — 1)
Ta i=1 (« +1)°p
(2.11) INae+1+m/2-m/2p) P 2
Ma-map) 5"
I'a—m/2p)\? P
X( la ) z=l_[1 or e
<0
if
0 <o !mp=1) Dlat1+m/2—m/2p)(T(a—m/2p))""
P Ma+m+2—m/p)(T(a—-m/p)) "
Further specializing to the case m = —2 (ordinary squared-error loss), the range

of cisO<c<2(p—-1)/p -(I'(a+1/p)/T(a + 2/p))*. It is clear that there is
no unique value of ¢ which maximizes the improvement in risk. However,
from (2.11) it is clear that the upper bound on A(f) is minimized at
c=(p—-1)/p - (I'(a+1/p)/T(a + 2/p))P. Thus there is no optimal choice of
¢ but if one has to choose one, the midpoint of the allowable values may be a
natural choice. Recent results in Berger and Das Gupta (1985), however, indicate
that the upper bound of ¢ may be the most appropriate choice in many restricted
risk Bayes problems.

REMARK 2. For the squared-error loss (m; = —2), the improved estimate
shifts by a multiple of the geometric mean. In a recent paper, Das Gupta and
Sinha (1984) have shown that for estimating £?_,/,6,"' under squared-error loss,
XP . l,X,/(a; + 1) is inadmissible and the improved estimate also shifts by a
multiple of the geometric mean.

REMARK 3. The shrinkage behavior of our improved estimators follows the
same pattern as the improved estimators in Berger (1980a); thus if m; < 0, the
improved estimate expands the natural estimate of that coordinate and if m; > 0,
the improved estimate shifts by a negative quantity.

REMARK 4. For the invariant quadratic loss £”_,(1 — §,0,)%, the estimate

d(x) with 8,(x) ==x,/(a + 1)+ ¢/(a + 1)(sgnlog x,)x,I17_,|logx,| /7 is sug-
gested as the alternative estimator by the solutions to A(x) < 0 in Theorem 1.
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For such an estimate, an analytical representation of the risk is difficult to
obtain; hence the natural way to prove that it dominates the standard estimate
would be by using the technique of solving an exact differential inequality (not
just the dominant terms); as is well known, certain tail and integrability restric-
tions must be imposed on the solutions for inadmissibility to be proved. These
integrability conditions are not met by the estimators described above and hence
the invariant loss has to be left out. We remark that for the invariant loss the
improved estimates obtained in Berger (1980a) are probably the most natural
because on making a log transform, they resemble the James—Stein estimators.

REMARK 5. Finally note that the improved estimates of Theorem 2 allow for
smaller values of the shape parameters «; to be accommodated than could
previously be done. For example, if all m; = 1, then Theorem 2 only requires
a; > 1/p for every i, while Berger (1980a) requires a; > 4 for every i if a;s are
possibly unequal. Note that for large p, a; > 1/p will probably be satisfied
anyway.

We now state a general inadmissibility theorem for estimating the natural
parameters. The proof will be omitted because of similarity to the proof of
Theorem 2.

THEOREM 3. Consider the problem of estimating the natural parameters
(6,,0,,...,8,) of p independent gamma distributions under a loss L(8,8) =
rm c,0m(8, /0, — 1)%, where c;> 0, m,# 0 are some constants; assume a; >
m;/p, a;—2>m;(1—-p)/p, and a;— 1> m1 — p)/2p. Consider the esti-
mates §,(x) and 8(x) defined as

a; — 2
60,i(x) = )
X
(2.12) ' 0 »
8,(x) = ix_ 1 + c(sgn mi)x{"i/Z( I xi""i/z")),

i i=1

where c is a sufficiently small positive number.
Then R(8,8) < R(0,6,) for every 0 if p > 2 and hence 8,(X) is inadmissible.

As in the estimation of the scale parameters, the invariant loss cannot be
handled. Note that the ordinary squared-error loss now corresponds to m; = 2
and the restrictions on «; are automatically satisfied since a; > 2. Also, as before,
the improved estimates for the different losses are functionally similar. For the
special squared-error loss, each coordinate is shifted by the reciprocal of the
geometric mean. This fact brings out a natural similarity between estimating the
0;s and the 6 's in the sense that the shift by the improved estimate in one
problem is just the reciprocal of the shift in the other problem. In other words,
the reciprocal transformation on the parametric function is also exactly reflected
in the improved estimate. Finally note that so far inadmissibility of the usual
estimate of the natural parameters was known only for the squared-error loss (see
Berger (1980a)); Theorem 3 establishes inadmissibility for a wide class of weighted
quadratic losses.
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We now get back to estimating the scale parameters and generalize Theorem 2
in two directions for the ordinary squared-error loss. For notational simplicity,
we have taken «a;, = a but the proofs go through with arbitrary «;s.

THEOREM 4. Consider the situation in Theorem 2 with m;= —2. Let §(X)
be any estimate given as

(2.13) 8,(x) = o 1 1 [ar(t) +

where t stands for (I1°_,x;)'/? and r(-) is such that
(i) 0 <r(t)/t<2p—1)/pla+ 1),

(ii) r(t) is nondecreasing, and
(iii) r(t)/t is nonincreasing.

Then §(X) dominates X/(a + 1).
PrOOF. Define A, (x) = xfr(t). In view of Berger (1980a), it is enough to

show A, solves (2.7) there and that with this choice of 4;, the improved estimate
is as in the statement of Theorem 4.

First note
) 1
(2.14) hO(x) = ax? 'r(t) + ;x;""‘tr’(t).
Hence, the ith coordinate of the improved estimate is
" LAk ar() (o)
*) = a+1 a+1  a+1 a+1 pla+1)’

which is of the form (2.12).
Next, (2.7) in Berger (1980a) is equivalent to

A_y(x) = - iriti é x+ (77?17 (ar(t) " tr(t)) T
e+ 2O
(a f e g‘, (tr(t) r(t)) + (”;{Lf)—? (ar(t) + tri(t) )2
< % ri(t) — jif—;l)—? 121 x; r(t)(smceO < 1(7t) —;Q)
< p—((—:l—l/)i’)— (1) - ((a”+ 3 ()

< 0.0
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REMARK 1. The upper bound on r(t)/t can be increased to 2(p — 1)/
p(a + 1/p)?% However, for large p, this is likely to be immaterial.

REMARK 2. With r(¢) =ct (0 < ¢ < 2(p — 1)/p(a + 1)?), one gets the im-
proved estimates of Theorem 2. One advantage of providing an extended class of
improved estimators like in Theorem 4 is that there is more scope for incorporat-
ing prior information in choosing an alternative estimator (see Berger (1982)) and
also that in this extended class one may actually find an alternative estimator
which is admissible. In the normal problem, for example, the admissible minimax
estimators were found from such an enlarged class of improved estimators (see
Strawderman (1971) and Berger (1976)).

REMARK 3. With ¢ = (12 ,x,)"/?P, a similar extended class of improved
estimators is easy to find along the lines of Theorem 4 when m, = —1.

REMARK 4. It is easy to show that for a broader class of linear estimates
8y(X) = AX of the scale parameters, uniform risk domination can be achieved by
shifting by the geometric mean when the loss is squared-error. We have been able
to prove that if the elements a,; of A are such that (a; + 1/p)Lf,a,, <1 (> 1)
for every j > 1, then AX is inadmissible and §(X) = AX + c¢(I1%.,X,)"/? -1 is a
better estimator for suitable constants c¢. Many of such linear estimates AX,
however, can be uniformly dominated in risk by other linear estimates and
unfortunately, we have not been able to characterize all the admissible linear
estimates in this case. Such characterizations were obtained in the normal case by

Cohen (1966) and in the Poisson case by Brown and Farrell (1985).

3. Empirical Bayes interpretation. In the results presented so far, the
emphasis has been on establishing inadmissibility. However, the story does not
end in merely knowing that a particular estimator is inadmissible; in fact, if we
may say so, the interesting problems arise exactly at this point. Perhaps the most
important and most interesting question that needs to be answered is whether
one can build up improved estimators which conform to one’s prior beliefs about
the unknown parameters. A lot of research has been done on these questions for
problems involving the normal distribution and some results are known also in
the case of Poisson distribution; in particular, in both problems, proper Bayes
improved estimators are known for large enough p; also, the James—Stein (1960)
and Clevenson-Zidek (1975) estimators have long been known to have an em-
pirical Bayesian justification. In the gamma problem, finding Bayes or gen-
eralized Bayes improved estimators seems difficult as the so-called “conditionally
conjugate” two-stage priors are analytically intractable. In what follows, we show
that the class of improved estimators obtained in Theorem 2 contains certain
natural empirical Bayes estimators. .

Assume 0; ~ 4., gamma (2, r), where r~! > 0 is an unknown scale parameter.
For squared-error loss, the Bayes estimate (given r) of 8, ! is

3.1 8 i
() i(x)_a+1'
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Marginally, the x;’s are i.i.d. with the joint p.d.f.

-1
I %7

e (x; + r)a+2 .

f(xy,...,x,) @

In particular, the density of each x; is

1 (xi/")a_l
3.2 x;) = .
(3-2) () rB(a,2) 1+ xi/r)"‘+2
Clearly, r is a scale parameter for the distribution of x,, x,,..., x,. The best

scale-invariant estimate of r in the restricted class of estimators which depends
only on the geometric mean is

“o(x) = Co( ‘”xi)l/p,

where

E,_(x)"" (T(a+1/p)/Ta)’- (T2 - 1/p)/T2)"

© T E _(Mx)””  (T(a+2/p)/Ta)’ - (T2 — 2/p)/T2)

(3.3)

_ (P(e +1/p)T(2 - 1/p))°
(T(a +2/p)T(2 - 2/p))""

The empirical Bayes estimate is what results when a(x) is substituted for r in
(3.1). It can be verified that ¢, <2(p — 1)/p - (I'(a + 1/p)/T(a + 2/p))? for
P = 2. Hence this empirical Bayes estimate dominates the usual estimate under
ordinary squared error loss. (See Remark 1 following Theorem 2.)

The “empirical Bayesian” interpretation of the improved estimate is some-
what ad hoc because of the restriction to the class of estimators for r which
depend only on the geometric mean. The restriction, however, seems necessary
because the usual Pitman estimate of r derived from the marginal distribution of
all X;s does not have an easy analytical form.

Note that for the four losses dealt with in Berger (1980a), no Bayesian
interpretation of the improved estimators obtained there is known except that
for m; = —1, an approximation to the generalized Bayes estimate against certain
flat priors looks something like Berger’s improved estimate (see Brown and
Hwang (1982)). It will clearly be interesting to obtain improved estimates which
can be actually linked with reasonable priors.

4. Risk improvement. Whereas from a theoretical standpoint uniform
domination is of interest, of utmost importance to the applied statistician is the
question: How much risk improvement can be achieved in practice? For most
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problems, computer simulation is necessary to get an idea of the actual risk
improvement because the improved estimators are almost always such that any
analytical representation of the risk difference is at least formidable, if not
impossible. Fortunately, however, our improved estimators are such that an exact
analytical expression is possible to obtain; (2.9) and (2.10) do in fact give the risk
improvements A(6). Consequently, simulation of data will be quite unnecessary.
Since ordinary risk improvement can be unbounded, it is more meaningful to deal
with the percentage risk improvement.
Assume a; = a and m; = m (# 0). Using

o Imi(p ~ V(e + 1+ m/2 - m/2p)(T(a — m/2p))"""
2pT(a+m+2—m/p)(T(a—m/p))"~"

(i.e., the midpoint of the allowed range for ¢), by direct calculations using (2.9),

R(0,8,) — R(6,4)
R(9,8,)

(4.1) _ m?*(p — 1)2(I‘(a +1+m/2— m/2p))2(F(a _ m/2p))2p—2
. 4p(a + 1)I‘(a +m+2 - m/p)([‘(a — m/p))p—l(ra)p

O 2 Al AR L0 R
e

It may be interesting to find a measure of some kind of average percentage risk
improvement in various parts of the parameter space. In particular, of some
statistical interest is the limiting value (as p — o) of the average (with respect
to Lebesgue measure) percentage risk improvement when all 4, belong to an
interval [a, b]. Here, a could be thought of as the prior guess for min, _; _ p0; and
b as max, _; _ 0.

Specializing to the ordinary squared-error loss, from (4.1),

R(8,8,) — R(0,8)
/

)
o R(9,,) #

p—oo

_ (p — D)X(T(a + 1/p))**
(42) T 2(at D)(a + 2/p))(12)°

f (2/P DY A _’nf’=10i_1/p)nf=10i_l/p
X

- dp,
1/p - XF,0; 2

where p stands for the normalized Lebesgue measure on [a, b]?. The first term in
(4.2) monotonically increases to 1/(a + 1) as p — co; also, since 6,’s are iid
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ﬁniform, by the strong law of large numbers,
o (2/p TR0 - TIR 67 V/P)TIE 677
lim f —
P> 1/p - T\
. (2/p - Ep 67" ~ 1P 07 /P )12 0, /7 dp
lim f
p—oo

J1/p 52,672 dp

dp

(4.3)

lim [2p(a=/7 ~ b=/7) - (p/(p — 1) (17 — a1 V/p)P!

P oo

~(p/(p~2)" (87— a=7)] [[(1/a - 1/b)(b - @)""]

2ec log ce—clogc/(c—l) _ e2c(c _ l)e—2clogc/(c»1)

c—1 ’
where ¢ = b/a. In particular, along the line in which all 6,’s are equal to some 6
(i.e., ¢ = 1), by I'Hospital’s rule, the expression in (4.3) is equal to 1; hence, the
percentage risk improvement along this ray can be considerable for small «,
approaching 100% as p = o, a — 0.

Interestingly, the limiting average risk improvement depends solely on the
ratio ¢ = b/a and decreases monotonically as ¢ increases. We will later provide
actual values of this limit for various c.

Thus for m = —2, encouraging risk improvements seem to be attainable. For
other values of m it is difficult to obtain neat expressions for the iterated
supremum as above since (4.1) is no longer so simple to handle. For m = 1, an
iterated supremum was calculated by Berger (1980b) for his improved estimator
and it was found that, up to approximately 10%, risk improvement is possible (as
a — 0) along the same ray as we have considered. We do not have any corre-
sponding results for m = 1 so that a direct comparison is not possible. However,
certain numerical studies have led us to believe that for m = 1, Berger’s (1980a)
estimators will usually give better percentage risk improvement.

Since (4.3) gives an idea of attainable risk improvement only for the squared-
error loss, it is desirable to pursue this question in other situations as well. We
have provided some numerical observations in Tables 1 and 2. We repeat that no
computer simulation was done because it is not necessary to do it. Percentage

TABLE 1
Percentage risk improvements

m= -2 m= -1 m=1
Range of 0 p=5 p=10 p='5 p=10 p=25 p=10
(0,5)” 12.26 18.25 4.55 6.33 2.18 2.77
[10,15)7 24.57 35.02 5.45 7.34 2.43 3.02

(0,1517 7.81 9.96 3.69 5.12 1.80 2.45
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TABLE 2
Limiting average percentage risk
improvements (a; = 1)

Limiting

c risk improvement
1 50.00
1.5 49.33
2 48.03
3 45.16
4 42.48
5 40.10
10 31.70
15 26.60
30 18.61
50 13.74
100 8.70

risk-improvements are shown for different ranges of 6,’s and different m. The
improvements were calculated for a fixed set of random 6,’s uniformly distributed
in the indicated range. For all the losses, percentage risk improvements are shown
for corresponding to the constant ¢ which is the mid-point of the allowed range.
The values indicate that the percentage improvements are best for the squared-
error loss; also, the improvements seem to be better for m < 0. Finally, the
percentage improvements are larger for larger p. Throughout we have taken
independent simple exponential distributions (i.e., a; = 1).
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