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MINIMAX MULTIPLE SHRINKAGE ESTIMATION

By EDWARD 1. GEORGE
University of Chicago

For the canonical problem of estimating a multivariate normal mean
under squared-error-loss, this article addresses the problem of selecting a
minimax shrinkage estimator when vague or conflicting prior information
suggests that more than one estimator from a broad class might be effective.
For this situation a new class of alternative estimators, called multiple
shrinkage estimators, is proposed. These estimators use the data to emulate
the behavior and risk properties of the most effective estimator under consid-
eration. Unbiased estimates of risk and sufficient conditions for minimaxity
are provided. Bayesian motivations link this construction to posterior means
of mixture priors. To illustrate the theory, minimax multiple shrinkage Stein
estimators are constructed which can adaptively shrink the data towards any
number of points or subspaces.

1. Introduction. Consider the following canonical setup. From p indepen-
dent experiments, we observe Y = (Y,,...,Y,)’, which has the p-dimensional
multivariate normal distribution

(1.1) Y| ~ N,(6, I),

with unknown mean 6 = (6,,...,6,) and the identity covariance matrix I. The
problem is to find estimators 8 = 8(Y): R? — RP of 6 which yield small risk or
expected squared-error-loss

(1.2) R(6,8) = E,(6 — 8)(6 — 8) = E4ll6 — 8%,

where E, stands for averaging over the sample space with respect to the
distribution (1.1) for fixed 6.

Beginning with the seminal work of Stein (1955) and James and Stein (1960),
interest has focused on the use of minimax shrinkage estimators for this problem
[see Berger (1983)]. Each of these estimators not only dominates the maximum
likelihood estimator 8MLE(Y) = Y, but also yields substantially smaller risk in a
certain region of the parameter space. By selecting an estimator for which 6
happens to be close to its corresponding region of improvement, meaningful risk
gains can be achieved in practice. However, because # is unknown and an
estimator must be selected before looking at the data, the selection of an
estimator or equivalently the region of improvement is typically based on
available prior information. As a result of this feature, a large number of minimax
shrinkage estimators have been developed, offering a wide variety of regions of
risk improvement corresponding to different types of prior information [see
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Berger (1982) and Berger and Berliner (1984) for general discussions and refer-
ences].

In this paper, we consider the general situation where conflicting or vague
prior information suggests that more than one of a broad class of minimax
~ shrinkage estimators may be effective. For this situation we present new minimax
multiple shrinkage estimators which can incorporate this partial prior informa-
tion by using the data to emulate the behavior and risk of the most effective
estimators under consideration. These multiple shrinkage estimators enhance the
practical potential of currently employed minimax shrinkage estimators by vastly
broadening the region of the parameter space where meaningful risk reduction is
available.

For example, suppose attention was restricted to using a Stein estimator of the
form

S —Vv_ p—2 -

(1.3) B3(Y)=Y [l A = 1)”2](Y v)

[a A b = min(a, b)], which shrinks Y towards a target v € R?. (When v = 0, §°
is the original positive-part Stein estimator which shrinks Y towards 0.) As is well
known, when 6 happens to be in a small neighborhood surrounding v, 83 yields
very small risk, and when 6 is far from this neighborhood, 85 is essentially
indistinguishable from 8MLE, Typically, v would be a prior guess as to the
location of 6, perhaps the result of a previous experiment.

However, suppose prior information suggested several different choices for the
target v. Denoting the corresponding choices for §° by 87, ..., 8%, use of a single
82 would potentially forego important risk gains, especially if some of the target
choices were far from each other. To avoid this limitation, we propose a multiple
shrinkage Stein estimator for this situation. This estimator, which is described in
greater generality in Section 3, is here of the form

K
(149) 350Y) = X oi(1)8(Y),

where o3, ..., p% satisfy TX_,03(Y) = 1 and are adaptive functions of Y which
place increasing weight on the 87 which are shrinking most. Thus, 8§ is an
adaptive convex combination of the §; which provides more shrinkage when Y is
close to any of the targets. Unbiased estimates of risk and simulation results, also
provided in Section 3, suggest that 85 can offer meaningful risk reduction at each
target. Moreover, it is shown that 8% is minimax, and so possesses the same
robustness quality as each 8§ with respect to misspecification of the targets.

In Section 2 general results on the construction, risk assessment, and Bayesian
motivation of multiple shrinkage estimators are provided for the situation where
a finite number of a broad class of minimax estimators are being contemplated.
In Section 3 minimax multiple shrinkage Stein estimators are proposed and
analyzed. In Section 4 the construction and assessment of multiple shrinkage
estimators is indicated for the situation where a possibly infinite set of estimators
is under consideration. In Section 5 it is shown that the main results of this paper
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generalize easily for the more realistic situation where Y|0, 6 ~ N,(0, 0%I) with
an available independent estimate of o2.

2. Multiple shrinkage estimators. The following definitions are required.
A function m: R? — R is said to be almost differentiable (a.d.) if there exists a
function vm: RP — RP such that for all z € R?,

m(y+z)—m(y)=/(;lz’vm(y+tz)dt

for almost all y € RP. This definition implicitly defines v be the vector differen-
tial operator

v =(vy,...,V,), wherev,=3/dy,.

(Essentially an a.d. function is continuous and a.e. differentiable.) The function
vm is said to be a.d. if each coordinate function v;m is a.d. When both m and
vm are a.d., m is superharmonic if for almost all y € R?,

vim(y) = ¥ vim() < 0.

i=1

See Helms (1975) for an introduction to more general superharmonic functions.

2.1. Constructing multiple shrinkage estimators. Throughout this section, we
consider the general situation where vague or conflicting prior information
suggests that small risk may be obtainable by any one of K shrinkage estimators
of the form

(2.1) 0, (Y)=Y+ viogmyY), k=1,...,K,

where m,: R? - R*N {0} is such that m, and vm, are a.d. For each estimator
8, the function m, determines the shrinkage component, v log m,(Y). The class
of estimators of the form (2.1) includes all Bayes, formal Bayes, and admissible
rules [see Brown (1971)], and some reasonable inadmissible rules such as the
Stein estimator 83 in (1.3) (see Section 3).

When the regions where each of §,,..., 8, offer especially small risk are very
different, it may be preferable to consider using a multiple shrinkage estimator
8 . which we define to be

K
(2.2) 8.(Y)=Y+vigm,(Y), mu(Y)= X wmy(Y),
k=1
where m,, ..., my are the functions corresponding to §,,..., 8x in (2.1), and
« .
(2.3) wy,..., W, ( Zwk=1)
k=1

are a fixed set of prespecified positive weights (scaled as probabilities for conven-
ience), which we shall refer to as prior weights. In Section 2.3 it is shown that
when §,,..., 84 are Bayes rules, 8, is the Bayes rule for a mixture prior, and the
prior weights arise naturally as prior probabilities.
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" The following reexpressions of &8, illustrate the relationship between the
behavior of 8, and §,,..., 8, suggesting the description of §, as a multiple
shrinkage estimator,

K K
(2.4) 8.(Y)=Y+ kE p(Y)V logm,(Y) = E pr(Y)8,(Y),
where
(2.5) pu(Y) = wymy(Y)/m(Y).

Since LX_,p,(Y) = 1, the middle expression in (2.4) reveals the shrinkage compo-
nent of §, to be an adaptive convex combination of the shrinkage components of
8,,...,8g; the rightmost expression shows &, as an adaptive convex combination
of the estimators §,,..., 6. We shall refer to p,,..., px, which adaptively weight
the shrinkage contribution of the combined estimators, as relevance functions,
following the idea first introduced by Efron and Morris (1972,1973b). Each
relevance function p, adaptively updates the prior weight w, by the factor
m,/m,. Because p,(Y),..., px(Y) are proportional to the terms
wim(Y),...,wgmg(Y), the relevance functions put larger weight on those §,
for which w,my(Y) is larger. For example, when w,my(Y) > w;m(Y) for all
J+ k, pp(Y) will be close to 1, and §,(Y) will emulate §,(Y). Note that when
m,(Y) and v log m,(Y) are large simultaneously, &, will incorporate more of the
shrinkage of §,,..., 8.

2.2. Some risk results for multiple shrinkage estimators. In this section we
establish some general results which link the risk properties of 8§, with those of
the combined estimators §,,..., 8. Because §, and §,,..., 0 are of the form
8(Y) = Y + v log m(Y), we make use of the following results of Stein (1973, 1981),
which provide unbiased estimates of risk and sufficient minimaxity conditions for
such estimators.

THEOREM 1 (Stein). Suppose 8(Y)=Y + v logm(Y) where m: RP? —
R*N{0) is such that m and Ym are a.d. If

(i) Eg|vim(Y)/m(Y)|< o, i=1,...,p,

(ii) Ey||v log m(Y)|* < w,
then the risk of 8§ may be expressed as
R(6,8) =p — E,Dé(Y),

(2.6) 9
D§(Y) =|v logm(Y)|" — 2v2m(Y)/m(Y).

The expression D8(Y) above is an unbiased estimate of the amount of risk
reduction offered by 8§ over §MLE [ R(6, §M'E) = p]. D§ is used throughout to
express unbiased estimates of risk reduction. Note that when 8 is such that
D4(Y) is large with high probability, § will yield especially small risk. Further-
more, because D§(Y) > 0 when v2m(Y) < 0, the following sufficient condition
for the minimaxity of & is immediate.
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COROLLARY 1 (Stein). If 8(Y) = Y + v log m(Y) satisfies the conditions of
Theorem 1 and m is superharmonic, then 8 is minimax.

Focusing now on the relationship between the risk properties of 8, and
8,,...,0x, the following lemma shows when Theorem 1 and Corollary 1 may be
applied to 6.

LEmMA 1. If 6,,...,08 satisfy the conditions of Theorem 1, then &8, will
satisfy the conditions of Theorem 1.

ProoF. It is immediate from (2.2), that m,: R? - R*N {0}, and that m,
and vm, are a.d. Condition (i) follows by observing that

|Vi2m*(Y)/m*(Y)|= Y e(Y)Vim(Y)/my(Y)| < k2=:1 |Vi2mk(Y)/mk(Y)|'

k=1

Condition (ii) follows from (2.4) and

2

k=1

K K K
L oY) logmy(Y) | < X pu(¥)]v logmy(¥)[" < L | logmy(¥)[I".

O

The next result provides an easily verifiable sufficient condition for the
minimaxity of §,; a condition that is somewhat stronger than the minimaxity of
8,,..., 0. Because of the potential complexity of the inputs for §,, the protec-
tion against misspecification provided by minimaxity is an especially appealing
property here.

COROLLARY 2. If §,,...,8x satisfy the conditions of Theorem 1 and if
m,,..., myg are superharmonic, then 8, is minimax.

PrOOF. Because m, = LX_.w,m, will be superharmonic whenever
my,..., my are superharmonic, the result is immediate from Lemma 1 and
Corollary 1. O

To offer any practical advantage over §M'F a minimax estimator must yield
meaningful risk gains somewhere in the parameter space. The following result,
which links the risk reduction estimate D&, to Dé,,..., D8y, suggests possible
regions of improvement for é ,.

CorOLLARY 3. If 8,,..., 8, satisfy the conditions of Theorem 1, then

K K
(27) DY) = T oa()| DY) =5 T aiDa(Y) - 8|
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ProorF. By Lemma 1 and Theorem 1,

D8,(Y) =]V logmu(Y) | = 29 ?my(Y)/my(Y)

K
> p(Y)V log m,(Y)
k=1

K
- - kglpk(Y)(fZV2mk(Y)/mk(Y))-

The desired result is obtained by substituting
2

K K
Y X e(Y)p(Y)(V log my(Y))' (v log m(Y))

K
Y px(Y)V logm,(Y)
k= k=11=1

=1

K
kglpmnv log my(Y) |

Y T o(Y)e(Y)]8:(Y) = 8,(V)]",

1
2p21i:

where the last equality follows from
2 2 2
18:(Y) = 8,(Y)[" = log m(Y) | +||v log m,(Y)||
—2(v logmy(Y)) (v logm,(Y)). O

Corollary 3 suggests when 8, may offer meaningful risk gains in the same
regions of the parameter space as any of §,,..., 8. In (2.7) D§, is expressed as
an adaptive convex combination of bracketed terms, each of which consists of the
risk reduction estimate D, penalized by a factor which weights the shrink-
age conflict between §, and the other estimators. Note that when p,(Y) = 1,
Dé (YY) = D§,(Y), since p,(Y) = 0 for I # k. Thus, the size of D§,(Y) will be
increased by sharply adaptive relevance functions which, for each Y, put most of
their weight on the largest D§,(Y). Such behavior would yield R(4,6,) =
min,R(6, §,). Examples where this approximation is excellent are provided in
Section 3.

2.3. Bayesian motivations. In this section multiple shrinkage estimators are
shown to arise naturally as Bayes rules under mixture priors in the Bayesian
context. More precisely, suppose 6,, ..., 8, are Bayes rules corresponding to the
prior densities =, ..., 7, respectively. Using the well-known representation, see
for example Stein (1981), each of these may be expressed as

(2.8) 8,(Y) = E,,k(0|Y) =Y+ v logm(Y|m,),
where

(2.9) m(Y|m,) = [(27) " 2e W= /2 7,(9) df

is the marginal density of Y under #,. Replacing m,(Y) by m(Y|n,) and m ,(Y)
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by m(Y|7,), 8, in (2.2) becomes

K
(2.10) 8,(Y)=Y+ vlogm(Y|r,), wherem(Y|r,)= )Y w,m(Y|m,).
k=1

Because m(Y|n,) is the marginal density of Y under the mixture prior

K
(2.11) 74(0) = E w,my(8),

it follows that §,(Y) = E, (0|Y) is the Bayes rule under =,. The assumption
that 6 has the mixture prior «,, being equivalent to the assumption that  has
the prior 7, with probability w,, nicely expresses the vague or conflicting prior
information that any of §,,..., 8, may be effective. This method of combining
prior information through mixtures can also be motivated in the multi-Bayesian
context [see Kempthorne (1985)].

The Bayesian motivation also provides a natural interpretation of each rele-
vance function in (2.5) which here is,

(2.12) pu(Y) = wym(Y|my)/m(Y|my) = P(m|Y),

the updated posterior probability that 6 has the prior density ,. The alternative
representation of 8, in (2.4),

K K
(2.13) 84(Y) = kg pr(Y)8,(Y) = E P(m|Y)E,(6]Y)

shows how the relevance functions here put increasing weight on the posterior
mean §,(Y) = E,(0|Y) which is supported by the data through m(Y|w,). The
use of finite mixture distributions to obtain robustness properties in the Bayesian
context has been used by Box and Tiao (1968), Abraham and Box (1978), and

Zellner (1985).
Although these manipulations are carried through formally in Section 2.1,
treating m,, ..., my in (2.1) as arbitrary functions, the Bayesian character of §,

suggests that desirable properties may be obtained when these functions are at
least approximations to marginal densities. However, one drawback is that when
m,,...,my are not marginal densities corresponding to bonafide priors, the
weights w,, ..., wy lose their interpretation as prior probabilities in the mixture
prior 7,. Nonetheless, it may be useful even in non-Bayes examples of §,, to
consider calibrations of these weights which roughly reflect the statistician’s prior
probability or degree of belief in the potential effectiveness of the estimators
8,,...,0g. Although the choice of prior weights ultimately corresponds to the
choice of a risk function, such an interpretation may facilitate their specification
in practice. !

3. A multiple shrinkage Stein estimator. In this section, we consider the
special case of 8, in (2.1) obtained when 8, . .., 8, in (2.2) are general positive-part
Stein estimators. Other examples of multiple shrinkage estimators have been
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considered by the author in George (1986a, 1986b, 1986¢). The following notation
will be used throughout. Let

V..., Vi

denote a set of (possibly affine) subspaces of R? such that V, has dimension
p — q, where g, > 3. For any Y € R?, let P,Y denote the projection of Y onto
V}, defined by ||Y — P,Y|| = min, ¢y, ||Y — v||. For convenience, let

si(Y) =Y — PY)?
denote the squared distance from Y to V.

3.1. Construction of a multiple shrinkage Stein estimator. As a more general
version of the example described in Section 1, suppose vague or conflicting prior
information suggested that small risk might be obtainable by using one of the
following K positive-part Stein estimators, 87, ..., 8%, which shrink Y towards
the subspaces V, ..., Vi, respectively,

si(Y)
where a A b = min{a, b}, see Sclove, Morris, and Radhakrishnan (1972). For
example, the estimator 8 in (1.3) is a special case of 8§ when V, = v € R?,
q,=p, P,Y =0, and s,(Y) =||Y — v||% Another common choice [see Lindley
(1962) and Efron and Morris (1975)], is V,, = [1,], the subspace spanned by the
vector 1, =(1,...,1), in which case ¢, =p—-1, PY= Y1 and su(Y) =
Y - Y1 ||2 where Y = Y Y./n.

Typlcally, the targets Vl, .., Vx would correspond here to several guesses for
the approximate location of . As distinct from the example in Section 1, this
more general situation allows for overlapping targets; V,,..., V, might even be a
sequence of nested subspaces. As is well known [and is illustrated by (3.9)], each
85 yields meaningful risk reduction over §ME only when 8 is close to V,, and this
reduction is larger when V, has smaller dimension; indeed, when 8 € V,, R(9, §3)
is slightly less than p — g, + 2. Thus, when the prior information was correct
that 6 was close to one or more of V,,..., Vi, some of the estimators 8,..., 8%
could offer substantially smaller risk than others. Failure to choose a more
effective 87 would then result in foregoing large potential risk reduction.

To avoid the limitation of choosing a single Stein estimator for this situation,
we construct a multiple shrinkage alternative. Generalizing the expression in
Stein (1973) for the case V, = 0, each of the estimators in (3.1) is of the form
8%(Y) = Y + v logm$(Y) as in (2.1), where

(3.1) 8(Y)=Y- ll L ](Y PY), k=1,...,K,

(3.2) v log m(Y) = [ q(y) ](Y PY)

when

(3.3) m3(Y) = {((qk - 2)/esk(Y))<‘h—2)/2 if s,(Y) > (g, — 2),

oK Y)/2 if 5,(Y) < (g, — 2).
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Applying the construction in Section 2.1 to 87,..., 8%, thus yields the multiple
shrinkage Stein estimator

K
(34) 85(Y) =Y+ viogmi(Y), wherem3(Y)= Y w,mi(Y),
k=1

a special case of 8, in (2.2) where m, = m§, m, = m3, and w,, ..., wy are prior
weights as in (2.3). Note that although each m? is determined by (3.2) only up to
a proportionality constant, to facilitate comparisons we have scaled m?,..., m3
in (3.3) to be equal when s, = -+ =sg = 0. It should be emphasized that
m$,..., m% are not real marginal densities so that w,...,w, will not be real
prior probabilities here. Nonetheless, it may be useful to regard each mj as an
estimate of an unknown marginal (see Section 3.4). When V,,..., V are equidi-
mensional, so that q, = --- = g, it may be reasonable to treat w,, ..., wy as
prior probabilities; by symmetry considerations, the normalizing constants which
would relate the m3 to real marginals would then be the same. However, when
q,, ..., g are unequal, the absence of an appropriate normalization of m$, ..., m%
makes any such interpretation more tenuous.

As in (2.4) and (2.5), the following reexpressions show how 8% is an adaptive
convex combination of the estimators 87,..., 8%,

(35) 83(Y)=Y- X pk(Y)[l A

k=1

K
- B = £ sinsion,

where
(3.6) Pi(Y) = wkmk(Y)/m*(Y)

The behavior of 8% is intuitively appealing. First of all, when Y is far from all the
targets, 85 behaves essentially like 8MLE since the shrinkage provided by each 83
is trivial. To describe the behavior of 85 as Y approaches the targets, it is useful

to begin with the special case of equidimensional targets, g, = -+ = g, and
uniform prior weights, w; = -+ = wg. In this case w,m?, ..., w,m¥% are identi-
cal decreasing functions of s,,..., sy, so that pf > p} iff s, <s, Because

[1 A (g4 — 2)/s,] is also decreasing in s,, 85 puts more weight on those 8%
which are shrinking most. Effectively, 85 shrinks Y in the direction of the closer
targets, and the magnitude of shrinkage increases with the proximity of Y to
these targets. Use of nonuniform prior weights proportionately changes the
relative weighting of 8%,..., 83, changing the magnitude and direction of shrink-
age by 85 accordingly. However, because pS,..., p% are so sharply adaptive,
especially when q,,..., g, are large, 85 will essentially emulate 8§ when Y is
close to V,, and no other target, as long as the prior weights are not too disparate.

In the general case where q,,..., gx are unequal, the functions m$ for which
q,, is larger, decrease more rapidly. Unless w, is chosen larger when g, is larger,
8% may fail to exploit very much of the shrinkage potential of the 85 correspond-
ing to the lower dimensional targets. For example, when g, > q,, p3/p7 may drop
off very quickly as s, increases, especially if the targets were nested, V, C V,.
Setting w, = w, might result in p§ < p§ even when (g, — 2)/s, > (q, — 2)/s,



MINIMAX MULTIPLE SHRINKAGE 197

ahd 8% is shrinking more than &;. This behavior can be roughly avoided by using
the calibration

(3.7) w, = (ce)* 2  Rr=1,...,K,

which for ¢ > 1 forces p§ > pf when (g, — 2)/s, > (¢, — 2)/s,> 1/cand q, > q,.
In the next section this calibration is seen to be reasonable from a risk perspec-
tive. Various choices of ¢ are briefly examined in one of the simulations in Section
3.3.

3.2. The risk of a multiple shrinkage Stein estimator. The application of the
results of Section 2.2, shows that 85 inherits desirable risk properties from
85,...,8%. To begin with, 85 is minimax. This property follows from Corollary 2
and the superharmonicity of m?,..., m% which is demonstrated by

0 if 5,(Y) = (g, — 2),
—(qx —sx(Y)) if 5(Y) < (g, 2).

Note that (3.8) and Corollary 1 provide an immediate verification of the well-
known minimaxity of 83.

The following unbiased estimates of risk reduction provide some insight as to
the regions of the parameter space where 85 may potentially offer meaningful
risk reduction. Inserting (3.2) and (3.8) into (2.6) in Theorem 1, yields the risk
reduction estimate for 83,

(38)  vimi(Y)/mi(Y) = {

(3.9) D8(Y) = (gp — 2)/8,(Y) if s,(Y) = (g — 2),
k 2q;, — si(Y) if s,(Y) < (g, — 2),

a slight generalization of the result in Stein (1973) for the case V, = 0. By
Corollary 3, the risk reduction estimate for 85 may be expressed in terms of (3.9)
as

K 1 K

(3.10) Do3(Y) = % pi(Y)[Dsf(Y) -3 Leim)|8i(Y) - s
=1 =1

We should point out that although D8F and D85 are useful for making risk

comparisons, they are not always reasonable as estimates of risk. For example,

D83 > p, which occurs when ¢, = p and s, is small, leads to a negative risk

estimate, which is silly.

Comparison of (3.5) and (3.10) shows that D§5 adaptively emulates the risk
estimates D&%, ..., D85 much in the same way that §5 adaptively emulates the
estimators 8, ..., 85. Consider first the equidimensional and uniformly weighted
case where p} > o} iff s, < s,. Because D83 is decreasing in s, p} and D85 will
be large simultaneously. Since gf,..., o} "are so sharply adaptive, D§5(Y) =
max, D83(Y) whenever Y is close to some V,, suggesting that R(0,8%) =
min, R(0, §5) whenever 8 is close to V, U - - - U V. Of course, we do not believe
(although we have not been able to prove it) that 8% will dominate 8§ when
6 € V,; intuitively, when 8 € V,, 87 will always shrink in the correct direction,
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whereas 85 will not. Although 85§ may not provide quite as much risk reduction
as the most effective 87, the increased size of the region of improvement may be a
very desirable trade-off. Indeed, the simulation results in the next section suggest
that the approximation of R(f,8%) to R(6,85) when 8 is close to V, can be
excellent. Note that by increasing w,, one can improve this approximation,
although it would be at the expense of less risk improvement near some of the
other targets.

In the general case where ¢q,,..., g are unequal, the form of D83 suggests
that uniform prior weights are less desirable because for larger g,, p§ may drop
off very quickly as s, increases, especially when V, was nested in a higher
dimensional subspace. Instead, it seems desirable to choose w,, ..., wy so that
p3(Y) =1 when D8§J(Y) = max,D8;(Y) and s, is small. Analogously to the
equidimensional case, such behavior would yield D§5(Y) = max, D§5(Y) and
consequently R(6, 83) = min, R(6, 8%), when Y or 6 was close to V, U -+ - UV,
respectively. The calibration suggested in (3.7) seems to roughly achieve this goal,
as is borne out by the simulations in the next section.

3.3. Simulations of the multiple shrinkage Stein estimator. To gain some
idea of the potential quality of the approximation of R(8, §%) to min,R(4, §3),
we obtained Monte Carlo estimates for the case p = 10, of the risk of 85 and the
corresponding Stein estimators for simple examples of the equidimensional target
case and the nested subspace target case. The risk of each estimator for each
choice of § was estimated by the average loss ||§ — 8||> based on 10,000 indepen-
dent samples of Y ~ N,y(0, I). (The normal random deviates were generated
from the IMSL routine GGNML.) In assessing the potential practical value of
the estimates, recall that R(6, 8ME) = 10 here.

In the equidimensional case, we simulated the risk of two Stein estimators &3
with V, = v, € R k=1,2 and two choices of the corresponding multiple
shrinkage estimator 8% with r = w,/w, = 1 and 9 (K = 2). Three choices of v,
and v, were considered, corresponding to the separations d? = ||v, — v,||% =
2.5, 10, 40, obtained by changing each coordinate 0.5, 1, 2 standard deviations. For
each separation, eight values of 8§ = (1 — A)v, + Av, obtained by varying A =
—0.5,1.5(0.25) were considered. The risk estimates, which appear in Table 1,
show that the risk reduction of 8% is impressive. When r = 1, the performance of
835 at the separation of d? = 40, is essentially indistinguishable from the best of
89 and 85. For the smaller separations d? = 2.5, 10, the performance close to the
targets deteriorates only slightly, although it improves between the targets. For
the nonuniformly weighted case with r = 9, the performance of 85 improves
slightly when 6 is close to vy, and deteriorates slightly when 6 is close to v,,
apparently the result of the strongly adaptive relevance functions.

In the case of nested subspace targets, we considered eight Stein estimators 8 4
k=1,...,8, for which V,={ve R v =0 if i >k} where v' is the ith
coordinate of v, and six choices of 85 (K = 8), using calibrations of the prior
weights given by (3.7) with ¢ = 1,2,3,5,10,50. The risk of these estimators was
compared for § = 0 and for eight choices of ||0]|2 = 62 = 40, i = 1,...,8. These
values of 6 were chosen because setting [|0]|2 = 82 = 40 effectively eliminates the
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TABLE 1
The risk of 8% when' Y ~ N,y(8, I)—the equidimensional case
=(1 - N)v, + v,
A= -050 -025 000 025 050 075 100 125 1.50
d? = 40
R(0,8;), k=1 6.2 3.2 1.3 3.2 6.1 7.8 8.6 9.1 9.4
2 9.4 9.1 8.7 7.8 6.2 3.2 1.3 3.2 6.1
R(6,8%), r=1 6.2 3.2 1.3 3.6 6.1 3.6 1.3 3.2 6.1
9 6.2 3.2 1.6 4.3 6.1 3.3 1.3 3.2 6.1
dz =10
R(0,8;), k=1 3.2 1.8 1.3 1.8 3.2 48 6.1 7.1 7.8
2 7.9 72 6.2 48 3.2 1.8 1.3 1.8 3.2
R(8,85), r=1 3.3 2.1 1.8 22 2.5 2.2 1.7 2.1 3.3
9 4.0 3.1 3.0 3.1 2.7 1.8 1.4 19 3.2
d? =25
R(0,8;), k=1 1.8 1.4 1.3 1.4 1.8 2.4 3.1 4.0 4.8
2 4.7 3.9 3.1 2.4 1.8 1.4 1.3 1.4 1.8
R(6,85), r=1 2.3 1.9 1.6 1.5 1.4 1.5 1.6 1.9 2.3
9 3.6 3.0 2.5 2.0 1.6 1.4 1.3 1.5 19
Note: 10,000 replications. The standard error of each estimate is less than 0.04.
TABLE 2
The risk of 85 when' Y ~ N,y(0, I)—the nested case
16]]* = 87 = 40; i =
0=0 1 2 3 4 5 6 7 8
R(0,87), k=1 1.3 86 86 86 86 86 86 86 8.6
2 2.3 23 89 90 89 89 89 89 8.9
3 33 33 33 92 92 92 92 92 9.2
4 43 43 43 43 94 94 94 94 9.4
5 5.4 54 54 54 54 96 96 96 9.6
6 6.4 64 64 64 64 64 98 98 9.8
7 7.5 75 75 15 75 15 75 99 9.9
8 8.6 86 86 86 86 86 86 86 100
R(0,8%), c= 1 4.8 54 59 64 70 75 81 88 9.9
2 2.3 33 43 53. 63 73 82 90 9.6
3 1.8 29 40 51 64 76 85 90 9.1
5 1.5 26 39 55 71 83 87 88 8.8
10 1.4 26 44 68 83 87 87 - 87 8.7
50 1.3 31 70 86 86 87 86 86 8.7

Note: 10,000 replications. The standard error of each estimate is less than 0.05.
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useful risk reduction of those 87 for which k& < i. The risk estimates, which
appear in Table 2, show that from a practical point of view, the approximation
R(0,8%) = min, R(6, 8%), can be excellent when 6 is close to any of the targets.
Indeed, when ¢ = 2, R(0, 83) < min,ji’(0, 83) + 1 for each 6 considered. As c is
increased, the improvement at the smaller dimensional targets is improved,
though at the expense of some deterioration at the other targets. The calibration
of prior weights given by (3.7) seems to work quite well here, and yielded better
results than other calibrations that we tried. Finally, to end on a cautious note,
this second simulation explores a very small region of the parameter space. Before
85 can be used with confidence in a nested subspace situation like this, a much
more comprehensive simulation study would be needed.

3.4. An approximation for a family of mixture priors. Although 85 is not a
Bayes rule, it may be useful to regard it as an approximation to Bayes rules. Such
an approximation is suggested by the empirical Bayes relationship of 83 to the
Bayes rule

E (6Y)=Y- Y-u,),
o (oY) (1+ak)( )

where m,(8) = (27a,) /e 10—kl 20k
when it is assumed only that =, belongs to the family of conjugate priors
(3.12) T, ={m(0): p, € V,and a, > 0}.

85 is typically motivated as an empirical Bayes approximation to E,(8|Y) by
inserting the estimates

(3.13) fi,=PY and &,=max{0,(s,(Y)/(qr—2)) -1}
into the left-hand expression in (3.11) [see e.g., Stein (1962), Efron and Morris
(1973a), Zellner and Vandaele (1974), and Morris (1983)]. Because

(314) E,(8]Y)=Y+vlogm(Y|m) =Y -

)(Y ~ B)

1+a,

where

(3.15) m(Y|m,) = 27(1 + a,)) " 2e W -ml/20+ap

m3(Y) may then be regarded as an estimate of the marginal density m(Y|m,) (up
to a proportionality constant), implicitly determined by f, and &, (or equiv-
alently 83(Y)), through (3.14). Note that m$(Y) is not obtained by inserting the
estimates fi, and &, directly into m(Y|,) in (3.15).

By treating m§(Y) and 85(Y) as estimates of m(Y|m,) and E,(0]Y), 63 may
then be regarded as an approximation to the Bayes rules for the family of
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mixtures of conjugate priors,

K
(3.16) r,= {w*: 74(0) = Y wjm,(6), where 7, € I‘k},
k=1

since each of these Bayes rules may be expressed as

K
(3.17) E, (8]Y) =Y+ v logm(Y|r,), where m(Y|7,)= Y wim(Y|m,)
k=1

or
K
E_(6)Y) = P(m,|Y)E,(0]Y),
518) A81¥) = ¥ P(r,I¥)E(01Y)
where P(7,|Y) = wim(Y|m,)/m(Y|7,).
Because of the absence of meaningful norming constants for m$,..., m¥%, the
prior probabilities wy, ..., w) in (3.16)—(3.18) may differ from w,, ..., wg.

The family I', generalizes the family I', in (3.11), allowing for much more
flexibility in the specification of the location of the prior mean. Note that
although the empirical Bayes approach of inserting parameter estimates has been
used successfully with families of contaminated mixture priors by Berger and
Berliner (1983, 1984), insertion of the estimators fi, and &, directly into E, (0]Y)
into (3.17) or (3 18) would not yield 85. Indeed, the resulting estimators appear
not to be minimax in general [see George (1986¢)].

It is interesting to contrast 85 with the Bayes estimator E, [(Y|0). Both the
relevance function p§ and the posterior probablhty P(7,|Y) are adaptlve and put
1ncreas1ng weight on the estimator which is supported by the data. However,
each 8 shrinks less when Y is further from V,, in sharp contrast to E A(01Y)
which shrinks more. Only 85 possesses the robust property of behaving like §MLE
when Y is far from all the targets.

4. The general case. As a generalization of the situation in Section 2,
suppose vague or conflicting prior information suggested that small risk might be
obtainable by some member of a possibly infinite set of estimators,

(4.1) Ag={6,:8,(Y)=Y+viegm,(Y), e},

where for each w in the indexing set Q, m,: R? - R*N {0}¢ is such that m_, and
vm, are a.d. Let W be a probability measure on @ such that for a.e. y € R?,
m _(y) is a measurable function of w wrt W, and

(4.2) ma(Y) = [m (Y)W(do)
exists and is such that v and [ may be interchanged to yield,

Imy(Y) = [ Im (¥)W(dw)
(4.3) @
and VZm,(Y) =];Zv2mw(Y)W(dw).
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Note that any discrete finite probability measure W will always satisfy these
conditions. With this setup, a multiple shrinkage estimator may be defined as
(4.4) 8, =Y+ viogm,(Y),

and may be reexpressed as

(45)  8,(Y)= Y+fﬂv log m_(Y)p(Y, dw) =j;28w(Y)p(Y, dw),

where
(4.6) p(Y,dw) = m (Y)W(dw)/m,(Y).
The probability measure W generalizes the prior weights w,, ..., wyx in (2.3), and

the adaptive probability measure p(Y, dw) generalizes the relevance functions
p(Y),..., pg(Y)in (2.5). Indeed, when W is a discrete finite probability measure,
8, in (4.4) reduces to 8, in (2.2).

As in the discrete case, it is of interest to apply Stein’s Theorem 1 and
Corollary 1 to this general version of §,. The following analogues of Lemma 1
and Corollaries 2 and 3, which are proved similarly, depend on both Ag and W.

LEmMA 2. If Ay and W are such that

0 Eof|vim(Y)/mY)[p(Y,do) <0, i=1,...,p,

. 2
(ii) E, || log m,(Y) [ e(Y, do) < oo,
Then 8, satisfies the conditions of Theorem 1.

COROLLARY 4. If &y and W are such that the conditions of Lemma 2 are
satisfied and each m , € Ag is superharmonic, then 8, is minimax.

CoROLLARY 5. If Ag and W are such that the conditions of Lemma 2 are
satisfied, then

(47) D8 ,(Y) =f9[D8w(Y) —fﬂ”sw(y) - 8,(Y)|*o(Y, dn) |p(Y, d).

Also, note when each §, € A is a Bayes rule with respect to a prior = (8),
then 8, = E, (6]Y) will be the Bayes rule corresponding to the mixture prior

(4.8) 72(0) = [7.(0)W(dw),
generalizing the motivation in Section 2.3.
EXAMPLE 1. Shrinkage towards an arbitrary set. Suppose interest was ini-

tially focused on using a Stein estimator of the form 85 in (1.3), but vague prior
information suggested only that # was close to some set A € R”. Instead of
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choosing an estimator from the set
(4.9) Ay ={85:85(Y) =Y+ viegm3(Y), veA},

where m3(Y) is the special case of m$(Y) in (3.3) when V}, = v, a more desirable
estimator may be a multiple shrinkage Stein estimator of the form

(410)  85(Y) =Y+ viegm$(Y), mi(Y) =/Am§(Y)W(dv),

where W is some probability measure on A such that m$(Y) exists and (4.3)
holds. For example, if available prior information suggested only that ||6|| = r > 0,
then appropriate choices for A and W would be B, = {v € R?: ||v|| = r} and the
uniform measure on B,. Alternative estimators which shrink Y towards B, have
been considered by Bock (1983) and George (1986¢).

Although the conditions of Lemma 2 must in general be verified for each
choice of A, and W, it can be shown that these will hold whenever A is bounded.
Thus, by Corollary 4, any choice of §5 in (4.10) with A = B, will be minimax.

EXAMPLE 2. Shrinkage towards a subspace measured with error. Consider
the situation where # was thought to lie close to [ X ], the subspace spanned by
the columns of a p X n matrix X (n < p — 3), and interest was initially focused
on using a Stein estimator of the form &7 in (3.1) with V, = [ X]. However,
suppose that these columns were covariates observed with error; that only
X, = X + § was available, with £ an unobservable p X n matrix of errors with
distribution ¥. Instead of choosing a Stein estimator from the set

(4.11) Ag={85:88(Y) = Y + v logm{(Y), £ € 2},

where @ = RP*", and m{(Y) is the special case of m$(Y) in (3.3) with V, = [ X,],
it may be more desirable to use a multiple shrinkage Stein estimator of the form

(412)  85(Y) =Y+ viegmi(Y), mi(Y) =fﬂm§(Y)\I'(d§)

when X and ¥ are such that m$(Y) exists and (4.3) holds. As in Example 1
above, to apply Corollaries 4 and 5, the conditions of Lemma 2 must in general be
verified for each choice of X and V.

5. The case of unknown variance. The multiple shrinkage estimator 8, in
(2.2) or (4.4) is easily extended to handle the more realistic situation where

(5.1) Y|0,06 ~ N,(0,0%I),
and an independent estimate of o2 is available, namely
(5.2) S ~ o?x3,

where x? is the chi-square distribution with d degrees of freedom. Simply replace
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8,(Y) =Y + v log m,(Y) by the multiple shrinkage estimator

(5.3) W(Y)=Y+ v log m,(Y).

d+2

When §, satisfies the conditions of Theorem 1, it is easy to see from the main
results of Stein (1981) (Section 8) that 8% has risk

(54) R(6,0,8%) = E; |16 - 85|® = o*| p - ———E, , Db,(Y/0)],

d+2

where D§,(Y/0) is given by (2.6). The generalization of the other results is
straightforward. As Stein points out, the reduction in risk due to not knowing o2
is only reduced by a factor of d/(d + 2).
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