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This paper concerns the method of generalized cross validation (GCV), a
promising way of choosing between linear estimates. Based on Stein estimates
and the associated unbiased risk estimates (Stein, 1981), a new approach to
GCV is developed. Many consistency results are obtained for the cross-vali-
dated (Steinized) estimates in the contexts of nearest-neighbor nonparametric
regression, model selection, ridge regression, and smoothing splines. Moreover,
the associated Stein’s unbiased risk estimate is shown to be uniformly
consistent in assessing the true loss (not the risk). Consistency properties are
examined as well when the sampling error is unknown. Finally, we propose a
variant of GCV to handle the case that the dimension of the raw data is
known to be greater than that of their expected values.

1. Introduction. We consider the problem of choosing a good estimator
from those being tentatively proposed. In this selection process, it is desirable to
let the data speak for themselves. The generalized cross-validation (GCV) method
of Craven and Wahba (1979) is one of many promising data-driven techniques of
selection. While the extension to the choice among nonlinear estimators has been
underway (for example, Wahba, 1982), we shall nevertheless focus our study on
linear ones.

Specifically, let y,, ¥,,..., ¥, be n independent observations with unknown
means [y, g, ..., 4, Write

(1.1) yl=l.‘41+el, i=1,...,n,

and assume that e, has mean 0 and common variance o2. To estimate p, =
(My,---5 1,), a class of linear estimators ji,( /), indexed by A, is proposed. Let H,
be the index set and M, (h) be the n X n matrix associated with {,(A) such that
f,(h) = M,(h)y, where y, = (¥,..., ¥,). GCV chooses A by minimizing the
quantity

n7 'y, — (R
(1- n“trMn(h))z‘

(1.2) GCV,(h) =
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Here || - || is the Euclidean norm of R" and tr denotes trace. The h which is
chosen according to GCV is written as A.

ExXAMPLE 1. Periodic curve and moving averages. Suppose y; = f(x;) for an
unknown continuous function on [0,1] with f(0)=f(1) and 0 < x, < x, <
< x, <1. Due to the continuity of f, it is reasonable to estimate pu; by
(2h + 1)7'Zh__, ¥, for some h < (n — 1)/2. (Here we identify y _; with Y j?)
It is clear that the rows of M, (h) must be permutations of the row vector
2h+1)7'(Q,1,...,1,0,0,...,0) having 2h + 1 nonzero entries. In this case (1.2)

reduces to

GCV,(h) = (2 + 1)*(2h) *n 7'y, — f,(R)|I*.

EXAMPLE 2. Model selection. Associated with each y; there are p, explana-
tory variables x,;, X;,,..., X;, , arranged in the decreasing order of importance.
To estimate p, one may employ the first ~ variables to form a linear model
¥y = Z;-‘s 1%;;B8; + & with B; being unknown parameters, and then use the least-
squares estimator

(1.3) ba(h) = XWX/ X)) " X7y,

where X, is the n X h design matrix. Now M, (h) = X,(X;X,)”'X] is a projec-
tion matrix with rank A and (1.2) becomes

(1.4) GCV,(h) = n(n — h) *lly, = f.(R)I%
ExaMpPLE 3. Ridge regression. Consider the regression model

¥, = inlejJ"ei’ 1=1,2,...,n,
=1

with the n X p, design matrix X = (x,;). If I, is the p, X p, identity matrix,
the ridge-regression estimate of B = (,81, ,,B Y is (X'X + hl, ) 'X'y, is
estimated by

(1.5) f.(h) = X(X'X + hI, ) ' X"y,

Here the ridge parameter A is a nonnegative number to be chosen. The trace of
M,(h) = X(X'X + hl, )~ 1X’ may be obtained by the singular value decomposi-
tion (Golub and Remsch 1970). In particular, let X = UDV where U and V are
orthogonal matrices with ranks n» and p,, respectively, and D is an n X p,
matrix with the nonnegative and nonincreasing entries d;; = N/%, i=
1,2,...,min{n, p,}, and with all other entries zero. A straightforward manipula-
tion ylelds tr M (h) = EP=\; (A +X,; )" ! and

Iy, = Ba(A)II” = Z R*(h+ N, ,) "3 wherey, = (3,..., 3,) = Uy,

i=1
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(1.2) becomes
n n 2
GCVn(h) = n—l Z (h + }\i,n)42.:)7i2:|/(nk1 Z (h + )\i,n)_1
i=1 i=1

where we write A; , = 0 for i = p, + 1,..., n. We shall conveniently take H, =
{h: 0 < h < oo} without any difficulties in defining any quantities associated
with the extreme cases A = 0 and oo by continuity.

EXAMPLE 4. Smoothing splines. Suppose p; = f(x,;) with f € Wk[0,1] =

{f: f has absolutely continuous derivatives, f, f’,.. f"* Y and [}f ®(x)?dx
< o}, x; € [0,1]. The smoothing spline fh is the solutlon of
n
(1.6) min 27 'Y (3 - f(x,)) +hff<k>(x) dx.
: fe Wz"[o,ll i=1

Here the smoothing parameter h is a nonnegative number to be chosen. fAh is well
known to be linear in the ys and the matrix M,(h) such that fi,
(fu(x),.., fu(x,)y = M (h)y, has been studied extensively (Reinsch 1967
Demmler and Reinsch 1975; Wahba 1975, 1978; Craven and Wahba 1979;
Speckman 1981, 1982, 1985). To implement GCV one may either employ the fast
algorithm of Utreras (1979, 1980) or carry out a singular value decomposition
(Craven and Wahba, 1979). More recently Silverman (1984) has developed a new
algorithm.

GCV was first proposed to choose the smoothing parameter for spline smooth-
ing (Craven and Wahba, 1979); then applications were extended to the problems
of selecting the ridge parameter, choosing a model, and many others (Golub,
Heath, and Wahba, 1979) (but not including Example 1). Until now, the most
useful and persuasive arguments for GCV are two theorems in Golub, Heath, and
Wahba (1979): The first one compares the expected value of (1.2) with the
mean-squared error for the linear estimator i, (4); the second one justifies GCV
from a Bayesian viewpoint. In fact, certain types of asymptotic optimality have
been obtained for GCV spline smoothing (Craven and Wahba, 1979; Speckman,
1982). These theoretical results, together with numerical evidence from simula-
tion and real data, are very encouraging, but other issues remain. For instance, is
GCV consistent in the sense that n'||p, — i, (h)||> = 0 in probability? Note
that Craven and Wahba’s Theorem does not lead to an answer because the
asymptotic optimality result was only established for the A selected by minimiz-
ing the expected value of (1.2), not for A. The stronger result of Speckman dealt
with A, but he restricted H,, to be a bounded interval that converges to 0 in some
fashion. It is also unclear how to extend these results to other settings, although
the formal application (1.2) is always possible [e.g., Rice (1983), in the context of
kernel nonparametric regression]. In addition, maybe the most puzzling feature
about GCV is that this selection needs no information about the sampling
variance o2. Consequently for a given data set, GCV always selects the same A
(hence yielding the same degree of smoothness in smoothing spline), no matter
whether we are told that the magnitude of noise o is 100 or is just 0.01.
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Our main goal in this paper is to develop a new approach to GCV under the
general setting of selecting a linear estimate. On the heuristic level, no restriction
on the structure of the problem is necessary, although to obtain rigorous results
case-by-case treatments may be unavoidable.

Section 2 gives the motivation for our approach. Briefly, instead of working
directly on the linear estimates fi,( &), we consider the associated Stein estimates
(Stein, 1981). This replacement will be justified in terms of efficiency and model
robustness. After some simplification, we shall see that minimizing the corre-
sponding unbiased risk estimates (for Stein estimates) yields the GCV. The
surprising aspect of this is that Stein estimates and their unbiased risk estimates
depend on 2 while GCV does not. But this helps us explain the puzzling feature
about GCV mentioned before.

Section 3 studies the asymptotic behavior of a simplified version of Stein’s
unbiased risk estimate (SURE hereafter). It turns out that SURE does more
than anticipated: It consistently estimates the true squared error loss, not the
risk, for the corresponding Stein estimate. While it may be inconsistent for
estimating the risk, it will be the true loss that really concerns us. Two important
features about this consistency result are that it does not depend on how to
embed a particular SURE into a sequence and that the consistency is uniform
over p, in R™.

In Section 4, we shall establish the consistency for the Stein estimate selected
by GCV. This is carried out case-by-case for nearest-neighbor nonparametric
regression, model selection, and ridge regression including spline smoothing. The
key step that keeps us from obtaining a unified proof lies in verifying that SURE
is consistent, uniformly for ~ in H,. But it will be clear that the main idea should
easily carry over to other situations.

Stein estimates require knowledge of o2. If this is unknown, we may replace it
by a suitable estimate. Or we may return to the original linear estimate. Both
procedures will be consistent under appropriate conditions and this will be
demonstrated in Section 5.

From Sections 2-5, we implicitly assume that p, could be any vector in R”".
Section 6 discusses a natural generalization of our approach to the case that p, is
known to be in a proper linear subspace of R". This leads to a selection procedure
different from GCV. All the technical proofs will be given in Section 7.

After this work was complete, the author learned that the consistency result
for GCV in the context of ridge regression was independently obtained by Erdal
(1983) using arguments different from ours. Assumptions imposed there were: (i)
the number of parameters p, is fixed; (ii) the maximum and minimum eigenval-
ues of the information matrix must grow to infinity at the same rate O(n). Under
these conditions the problem becomes well posed and ridge regression seems
unnecessary. Erdal also obtained results for principal component analysis under
restrictions of a similar nature.

To close this section, we remark that many authors have realized one way or
another that the shrinkage phenomena of Stein estimates are relevant in choos-
ing estimates. However none of them directly employ the Stein estimates as we
do here. In particular, in ridge regression our approach is completely different
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from others [i.e., Casella (1980) and the references given there] which are aimed
at the minimax estimation.

2. Heuristics. We start with (1.1) and temporarily assume the normality of
g;s. Consider first the case where M, (4) is symmetric. Define the Stein estimate
associated with i (4),

2

o
2.1 B0(h) =y, — ————
(2.1) Fulh) =y y.B,(h)y,

A, (h)y,,

where A, (h)=1,— M, (h) and _
(2:2) B,(h) = (trA,(h) - I, - 24,(h)) " A,(h)’".

Here the largest characteristic root of A, (/) is assumed to be less than half of
the trace of A ,(h). Stein (1981) showed that {i% k) dominates y, under the usual
squared error loss. The relationship between [i%(4) and fi (k) was studied from
an asymptotic viewpoint by Li and Hwang (1984). A result there will be useful for
our development.

THEOREM 2.1. For any sequence {h,} such that i (h,) is consistent in the
mean square sense,

(2.3) En g, = fin(h )2~ 0 asn— oo,
the associated Stein estimator i°(h,) is also consistent,

(2.4) n Y% h,) —p,ll2 = 0 inprobability.

Moreover, they proved that the convergence rate of (2.4) is no slower than that
of (2.3) except for the pathological case that the latter is faster than n~!. Under
the additional condition that

(2.5) n_11;1'M,12(h,,)/(n‘l'chn(hn))2 - o0,

f%h,) and fi(h,) will be asymptotically indistinguishable in the sense that
5% A,) — B (R N?/E|f(h,) — p,lI?> = O in probability. Condition (2.5) is fre-
quently satisfied by good estimates (see Golub, Heath, and Wahba, or Li and
Hwang).

These results justify the replacement of the original linear class {fi (A):
h € H,) by the Stein class {i% k): h € H,}. Asymptotically, good estimates in
the new class remain as good as before. But for any finite sample size, Stein
estimates enjoy an additional property: They have bounded risk. Another aspect
of Stein estimates can be viewed as model robustness and is well illustrated by
Example 2. If i, (&) is good (the case that model % is appropriate), then the
shrinkage factor ¢%/y,B,(h)y, should be close to 1 and {i% ) would be about
the same as fi (k). Otherwise, {i%( ) shrinks fi (%) toward the raw data to guard
against model violation. See Huber (1975) for a careful distinction between model
robustness and distributional robustness.
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Now define
‘| A, (R)y.°

n(y,B,(h)y,)"
Stein showed that SUREY(%) is an unbiased estimate for the risk of f%(h);
E SUREY(h) = En"!||p,, — f%h)||? for any p, € R". To select a good A, it is
natural to minimize SUREY(h) over h € H,, and is equivalent to minimizing

(2.6) n (¥, B.(h)y,) /A (R)y,I*.
Suppose n is large enough so that the largest eigenvalue of A, (A) is negligible
compared to the trace. Then we may approximate B,(k) by (tr A, (h)) ! - A%(h).
By substituting this quantity into (2.6), GCV,(A) of (1.2) is obtained!

For a general M, (h), Li and Hwang (1984) replaced (2.2) by

B,(h) = (trA,(h) — 2X(A,(h))) A (h)A,(h),

where A(A,(h)) denotes the maximum eigenvalue of {(A,(h) + A,(h)). They
showed that all the desired properties we discussed above are preserved. The
corresponding Stein’s unbiased risk estimates have a complicated form but they
can be simplified. This again leads to GCV.

SURE(h) =

REMARK 1. There is another simple way to derive GCV by means of
Mallows’ C; statistics (Mallows, 1973) and the notion of nil-trace estimate.
Briefly, consider p, (k) = —ay, + (1 + a)i, (k) with a = tr M (h)/(n —
tr M,(h)). The matrix associated with p,(h), —al, + (1 + a)M,(h), has trace 0.
Now using C; procedure to select an estimate from the class {p,(h): A € H}
amounts to choosing 4 by minimizing n™ ||y, — p,(%)||> = GCV,(h)! A counter-
part of Theorem 2.1 for p, (k) was demonstrated in Li (1983), justifying the
replacement of p,(A) by p, (%) for large sample sizes. The connection between
cross validation (Stone, 1974; Geisser, 1975) and C, can also be drawn by a
similar argument.

3. Estimating the true loss, not the risk! From now on, only the following
simplified version of Stein estimates and SURE will be considered:

(3.1) i (h) =y, - A G

: Bu(R) =¥ = Ty s
~ 2_04(trA,,(h))2

(3.2) SURE,(h) = o =

It is clear that minimizing (3.2) is exactly the same as the procedure of GCV. In
this section we shall show that SURE, (4) is a consistent estimate of the true loss
n Y (h) — p,l? for each h € H,. The consistency will be uniform over p., € R"
but not over A € H,. To obtain uniformity over both, we need more information
about the cardmahty of H, or some topological properties about M, (%) as a
function of A. Case-by-case treatment is easier to pursue and will appear in
Section 4.
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For brevity we shall omit the index A and assume that M, is not an identity
matrix in this section.

THEOREM 3.1. Assume that
(A.1) The fourth moments of ¢;s are bounded by a constant m;
(A.2) There exists a constant K such that for any a > 0, we have

supP{x —a <e<x+a} <Ka foranyi.

x€R
Then for any 8 > 0 we have
(3.3) sup P{|SURE,, —n Y, — pal? 2 8} -0 asn— oo.

m, €R"

Looking at the forms of (3.1) and (3.2), it is clear that if ||A,y,/|? takes too
small values, then fi, and SURE, will not be good estimates. (A.2) is simply
made to monitor the chance that this will happen. It can be easily satisfied, for
instance, by assuming that ¢;s have a common bounded density. On the other
hand, it seems possible to avoid this assumption by modifying (3.1) and (3.2) a
little bit; for instance, by adding a positive constant to the denominators there.
Note that no assumptions about the matrix M, are required here. Roughly
speaking, the boundedness of the risks of Stein estimates makes this theorem
plausible. The same result does not seem likely to hold for linear estimates
together with their unbiased risk estimates.

The most interesting phenomenon implied by this theorem is that SURE may
not be a consistent estimate of the risk but it always estimates the true loss
consistently. This is illustrated by the following example.

ExaMpLE 5. Take A, = diag(l,n" "%, n "% ..., n"'?), and p, =
(0,0, ...,0y. Then

o'(1+ (n - 1)n"12)?

n(ef + n~'Thpe?)

SURE,, = ¢% -

which tends to o2e’(e? + 02)"! (a random variable!)) as n — . Hence SURE,,
cannot be a consistent estimate of the risk En~'||fi, — p,||? since the risk is a
nonrandom number. On the other hand, Theorem 3.1 shows that SURE,, esti-
mates the true loss n7Y||ji,, — p,||? consistently.

4. Consistency results for Stein estimate selected by GCV. In this
section we shall show that for many cases (including Examples 1-4), the Stein
estimate selected by minimizing SURE (&) over A € H,, is consistent:

(4.1) ) n Y, (k) —p,lI? = 0 in probability.
The crucial step will be to establish the uniform consistency of SURE over both
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B, € R and h € H,: For any > 0,

(42)  sup_P{ sup SURE,(h) = n Y[, (h) = pl| > 8} 0.
p.€R* \heH,

THEOREM 4.1. Assume that there exists a deterministically chosen sequence
h, € H, such that (2.3) holds. Then (4.2) implies (4.1).

Proor. First, by an argument similar to the proof of Theorem 2.1 [given in
Li and Hwang (1984)], we may easily show that (2.3) implies n ik, — P‘n“
— 0 in probability. Then from (4.2), we have n™!||ji (h) B> = SURE (h) +

0,(1) < SURE (h,) + 0,(1) = n Y| () = B,All* + 0,(1) = 0,(1), yielding (4. 131

Condition (2.3) simply says that the given class of linear estimates contains at
least one good estimate and should be satisfied in most cases. (4.2) is an extension
of (3.3), to be established case by case in the following subsections.

REMARK 2. (4.2) implies that SUREn(iz) is a uniformly consistent estimate
of n™Y|fi,(h) — p,l|% in the sense that
sup P{|SURE (k) — n'lii,(k) — p,lI’| > 8} =0,
mn, € R"
for any § > 0. This leads to a valid conservative confidence set for p., whose size,

as measured by n~! times the squared radius, will tend to 0 whenever (2.3) holds.
For details, see Li (1983).

REMARK 3. The uniform consistency of SURE ( h) implies that for any
6>0,

inf P{ inf GCV,(h) = (1 - 8)o? }
p.cR” \he

To see this we simply observe that since n’lll pn(h) — 1,2 is nonnegative, the
consistency of SURE n(h) implies P{SURE,,(h) < —4&} — 0, which in turn yields
the desired result.

4.1. Bounded #H,. The following result follows immediately from
Theorem 3.1.

THEOREM 4.2. Under the assumptions of Theorem 3.1, if sup{#H,: n =
2,...} < oo. Then (4.2) holds.

4.2. Finite #H,. Consider the case that #H, is finite but may be un-
bounded. Instead of (A.1), we assume the following stronger moment condition:

¢,;s have mean 0, common second, fourth, and sixth moments,

(A1) and their eighth moments are bounded by a constant m.

The following theorem will be useful in verifying (4.2). Let A'(A,(h)) denote
the maximum singular value of A ().
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THEOREM 4.3. Under (A.l"), for any 8 > 0 there exist positive numbers C,
and C, (depending on m only) such that for any p.,, € R",

P{ sup [SURE, (k) - n” R, (k) - | > 20

heH,
(4.3) < P{|n7le |2 — 0% 2 8} + C,n"*#H,
= [N(A, ()] (tr Ar(h)AL(R)) .

4.2a. Nearest neighbor estimates in nonparametric regression. Let p be a
natural number and x be the compact closure of an open set in R”. Suppose
Y1s Yas+++» ¥, are observed at levels x,, x,, ..., x, € x with x; # x; for i # j such
that the expected value p; of y, is equal to f(x;) for an unknown continuous
function of f on x. Let x, ;) denote the jth nearest neighbor of x; in the sense
that ||x; — x,,)|| is the jth smallest number among the n values |x; — x,/|l,
i’ =1,2,...,n. Ties may be broken in any systematic manner. Take H, =
{1,2,..., n}. For any h € H,, consider {i (&), the h nearest-neighbor estimate of
1 ,, with the ith coordinate given by Zj; W, 1( 1) Yy j)- Here w, ,(+) is a nonnega-
tive weight function such that

h
(4.4) g w, p(i)=1.

Each row of M, (k) is a permutation of (w, ,(1),...,w, x(h),0,...,0) and the
diagonal elements are all equal to w, ,(1). To ensure (2.3), we assume that

there exists a sequence {4,} such that A,/n — 0 and
(4.5) w, (1) > 0asn — oo.
It can be easily verified that (4.5) implies the consistency of {i (%,) [see, e.g., Li
(1984a)]. Stone (1977) gives more general consistency results for nearest-neighbor
nonparametric regression.
In addition to (4.4) and (4.5), we need two mild restrictions:

there exists a positive number &’ such that w, ,(1) <1 — &’
(4.6) "
forany n, h > 2.

(4.7) forany n, h,and i, w, ,(i) = w, ,(i +1).

LEMMA 4.1. Under (4.6) and (4.7), there exists a constant A (depending on
the dimension p only) such that N'(M,(h)) < A for any n and h.

We may take, for instance, A = /2 for p =1 and A = /6 for p = 2. From
Lemma 4.1 it follows that A’(A,(A)) < (1 + A). From this and the observation
that tr A7(h)A,(h) = n(1 = w, ,(1))* > n(1 — &)?, it follows that the last term
in (4.3) does not exceed Cy(1 + A)*n"'(1 — §’)"*, tending to 0 as n — o0. (4.2) is
now established. Hence by Theorem 4.1, we obtain the following.

THEOREM 4.4. Under (4.1') and (4.4)-(4.7), the Steinized nearest-neighbor
estimate |, (h) with h chosen by GCV is consistent. Moreover, the associated
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Stein unbiased risk estimate SURE (h) is a uniformly consistent estimate of the
true loss n ™ |ik(h) — p,|1>

4.2b. Model selection. Consider Example 2 without the restriction that mod-
els to be selected are nested. In general, let H, denote a class of models.
Associated with each 2 in H, is a design matrix X, with d(h) columns
corresponding to d(h) explanatory variables. Assume that X; X, is nonsingular.
Consider the least-squares estimate fi ,(#) of (1.3) and its Steinized version {i (k).
With d(h) = n, define i, (k) =1y, and SURE (k)= 02 Here in advocating
fi,(h), we implicitly assume that none of the models with ranks less than n are
completely appropriate. Otherwise, we shall proceed differently; see Section 6 for
details. Also we do not require that p, be finite since infinitely many parameter
models can be useful sometimes (e.g., Shibata, 1981; Li, 1984b).

Since A ,(h) is a projection with rank n — d(#), the last term in (4.3) equals
Colpen(n — d(h))~ %, which may not tend to 0 asymptotically if the number of
parameters d(h) is too close to n for some model A. But when there are not too
many such models in H,,, this difficulty can be circumvented, using Theorem 4.2.
This leads to the following theorem.

THEOREM 4.5. Assume that (A.1") and (A.2) hold, #H,/n?> > 0 as n — oo,
and that

for any positive number e, there exists a natural number k such that for
(4.8) anyn, we can find a subset H) ¢ H, with cardinality no greater than k so
that ¥Lp, ¢ y(n — d(h) ?<e.

Then SURE,,(h) with h chosen by GCV is uniformly consistent. Furthermore
(h) is consistent whenever given p,, there exists a sequence of models
{h € H,}, such that the least-squares estimate {i,(h,) is consistent.

EXAMPLE 2 (cont.). In this case, #H, = p, < n. Put H, = {n n—-1,...,n
—k—-1}NH, Thenk,;y(n —d(h))” 2 < X ,i"2 Since Ef" 172 converges, it
is easy to see that (4.8) can be satisfied for a suitably chosen k. Hence Theorem
4.5 applies here.

4.3. Continuous H,. 'Two cases for H, = {h: h > 0} will be considered: ridge
regression and smoothing splines. In fact, the results for smoothing splines follow
immediately from those for ridge regression.

4.3a. Ridge regression. Consider the Steinized ridge-regression estimate
p.(h) associated with i (h) of (1.5). Here i ,(0) is defined by limh_mﬁn(h) (#+y,
unless all A, ,, i =1,..., n are equal) and similarly for SURE,(0), (), and
SURE (). Agam in advocatlng fi,(k), we implicitly assume that our regression
model is imperfect if its rank is less than n. The true model may be p; =
Y2n x,B8; + 8; with §;s being nuisance parameters. This is the approximate linear
model of Sacks and Ylvisaker (1978) although we do not specify a bound for §;s.
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We shall assume that
(A1) ¢;s arei.i.d. N(0,0?).

Under this assumption, the transformed data ¥, i = 1,..., n (defined in Exam-
ple 3), are again independent normal random variables. It is not difficult to see
that for ¥;s, our problem takes a simpler form:

(4.9) M, (h) is a diagonal matrix with A;(A; + 2) ' as the ith diagonal element.

LEMMA 4.2. For M,(h) defined in (4.9), h € H, = [0, ], (A.1) and (A.2)
imply (4.2).

THEOREM 4.6. Under (A.1"), for the ridge- regresszon problem with ridge
estimate (1.5), SUREn(h) with h chosen by GCV is uniformly consistent. In
addmon if given {p,} there exists a sequence of positive numbers {h,} such that

fi,(h,) is consistent, then {., () is consistent.

4.3b. Smoothing splines. Consider Example 4. It is well known that fAh isa

natural polynomial spline of degree 2k — 1 with knots at x;s. Specifically, let

= {f: fe C?%-2[0,1], f is a polynomial of degree 2k — 1 on (x;, X;,,),

s 1,. —1,and f% =0 on [0, x,] and [x,,1]}. Consider the basis for S*

introduced by Demmler and Reinsch (1975) (see also, Speckman, 1981a, b, 1982)
consisting of eigenfunctions {¢;,}7_, along with eigenvalues {p;,};_, satisfying

(410) = % anlx)aya(x) = 0y, [ #0088 (x) dx = 08,

::I»—'

for 1 <j, j/ < n, with
0=0py,= - =Prn < Pr+1,n = """ = Ppp-

Here §,; is the Kronecker delta. Using this basis, (1.6) is equivalent to

n n 2 n
(4.11) min ), (yi - Y en Vix)| +h X co,.
CER" ;g j=1 j=k+1
Here ¢ = (¢, ¢y,...,¢,). Let U, denote the n X n matrix with the ijth element

n~'2¢(x;). From (4.10) it follows that U,U, = I,,. Put §, = U,'y,. Then (4.11)
reduces to

min ||y, — e||* + h Z o)
J=k+1
The solution c¢* of this minimization problem can be obtained easily by standard
calculus. It turns out that
- — —1- ~1- ),
= (7 T T (LH hpgy ) T (L+ o, ) 715,

Put Ay, =A,= - =X, =o0and A\;=p,, for i=%k + 1,..., n. We see that
c¢* = M,(h)y,, with M, (h) satisfying (4.9). Hence in terms of y yn, our problem is
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exactly the same as that of the ridge regression. Therefore applying Lemma 4.2,
we obtain the following

THEOREM 4.7. Under (A.1”), for the smoothing splines, the SURE (h) with
h chosen by GCV is uniformly consistent in estimating the true loss. In addition,
if given the true p.,, there exists a sequence of nonnegative numbers {h,} such
that the corresponding smoothing-spline solution of (1.6) is consistent, then
ii (k) is consistent.

Speckman (1982) derived an interesting variant of smoothing splines. It is
conceivable that similar results may hold for his procedure.

5. Unknown variance of sampling error. Two procedures will be dis-
cussed in Sections 5.1 and 5.2 to cover the case that ¢? is unknown.

2 2

5.1. Estimating o°. As mentloned before, GCV does not require o2, so we
may still use it to select h. After h is chosen, we may estimate p, by the Steln
estimate p.,,(h) with the unknown o? substituted by a good estimate 62 We
denote such an estimate by p,n(h, 6,). To assess the performance of p.,,(h é6,) we
use SURE (h ) defined to be the SURE,,(h) with 6, substituted for o.

THEOREM 5.1. Assume that 32 is a consistent estimate of o*. Then fi (h, §,)
and SURE, (h, é,) are consistent whenever given o2, i (h) and SURE,(h) are
consistent, respectively. Moreover, if the distribution of 62 does not depend on
W, then SUREn(iz, é,) is uniformly consistent, whenever given o, SURE,(h) is
uniformly consistent.

The natural case in which the distribution of 42 does not depend on p, is
when there are replicated observations. Another possibility comes up in ridge
regression or model selection, where one may assume a true model and use the
residual sum of squares for the least-squares estimates to construct 62 (in this
case, a modification of GCV is needed; see Section 6). Sometimes 6, can depend
on p,. For instance, in Example 1, we may take 62 = n” 'L/ 3(yy,_, — Yo,;)? for n
even. Supposing that as n increases, the x; values get dense in [0, 1] it is easy to
see that 62 — o2 This method of estimating 6?2 extends naturally to higher-
dimensional cases. Rice (1984) has considered such variance estimates in a study
of utilizing Mallows’ C, procedure to select the bandwidth of a kernel nonpara-
metric regression in R!. He even suggested the use of higher-order differences in
place of the first-order difference y,;,_, — ¥,; to reduce the bias.

5.2. Returning to the original estimates. After h is selected by GCV, the
common practice has been to return to the original linear estimate, i, (h). The
results of Section 4 will be used to establish the consistency of i, (h).

First we have seen in many cases that pn(h) is consistent. Since

n 1||un(it)—u,,u =n"Ye, — o*tr A, (h) A (R)y, 1% - ARy,
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and n”'||e,||? = o2 it follows that
(5.1) nll ARy, |12/ (tr A, ()" > o”.
On the other hand,
RN (R) = Ba(B)I2 = (1= o2tr A,(R) - 1A (R)y,)72)" - n ARy, )1
Hence n~ || (k) — p,||> will tend to 0 if
(5.2) n~'trA,(h) > 1 in probability.

In fact, it is easy to obtain the following stronger result.

LEMMA 5.1.  Assume that ji,(h) is consistent. Then {i (h) is consistent if and
only if (5.2) holds.

It remains to verify (5.2). A technical step to be established case by case is to
derive

LEMMA 5.2. Under the assumptions of Theorem 4.4, 4.5, or 4.6
{ I4.(R)y.l1”

(5.3) lim P

n— oo

= =~ <1—-8)=0 §> 0.
14, (R)u,II? + o?tr A2(R) } for any

Note that the denominator in (5.3) is just the expected value of the numerator
when h is considered as deterministic. From (5.1) and (5.3), it follows that
(tr A, (h))* = ntr A%(h) - (1 = 0,(1)), and then

(5.4) (trA(R))/ntr A2(h) - 1 in probability,

because of the inequality (tr A (h))? < ntr Ai(iz). From (5.4) we may obtain
(5.2) in many cases.

5.2a. Model selection. This is the simplest case. Because A (h) is a projec-
tion, A2(h) = A,(h) and (5.4) is identical to (5.2).

THEOREM 5.2. For the model-selection problem, under the same assumptions
as those in Theorem 4.5, fi,(h) is consistent whenever given p,,, there exists a
sequence of models {h, € H,} such that the least-squares estimate fi, (h,) is
consistent.

REMARK 4. Hocking’s criterion S, (Hocklng, 1976; Thompson, 1978) selects i
by minimizing (n — 1)(n — A) {(n — h = 1) |ly, — i,(R)||% In view of (1.4),
there is little difference between GCV and S,. Recently Breiman and Freedman
(1983) established an asymptotic optimality for S, in the setting of Example 2
with p, = o0 and H, = {1,2,..., n/2}, under the assumptions that all explana-
tory variables and random errors are jointly normal and that there are infinitely
many nonzero B;s. Shibata (1981) considered a different criterion: select A by
minimizing n l(n + 2h)|ly, — f.(h)||% Because for A, small compared with n,
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(1 — h/n) 2 = 1 + 2hn" !, this criterion was claimed to be asymptotically equiv-
alent to the GCV. However, the two criteria could be quite different without the
crucial assumption A = o(n)! Shibata obtained an asymptotic optimality for his
criterion but the underlying assumption about H, (i.e., max,.y d(h) = o(n))
makes it not completely data-driven.

5. 2b Nearest neighbor regression. Here n™'tr A%(h) = (1 w, (1) +
Z 2(1) and trA S(h)=n@a - w, (1)), (5.4) implies T Lw ;,(z)/(l -
w,, h(l))2 — 0, which in turn implies (A — 1)"! > 0 by the Cauchy Schwartz
inequality and (4.4). Hence we have & — o0 as n — oo. This together with the

following additional regularity condition on the weight function implies (5.2):

(56.5)  for any sequence {A,} such that A, - co, we have w, , (1) — 0.

THEOREM 5.3. For the nearest—neighbor nonparametric regression problem,
under (A.1'), (4.4)-(4.7), and (5.5), i, (h) is consistent.

5.2c. Ridge regression. Assume the following condition on the eigenvalues
A. .

in°

there exist constants p and q,0 < p < q < 1, such that

(5.6) limsupAr,,1 n/Arpngn < 1,

where [x] denotes the greatest integer less than or equal to x.

From (5.4) and (5.6) we can derive (5.2) as follows. Let A be the random
variable taking value A; , with probability n~' for each i. Now (5.4) means that

(ER(h+N) ") /ER} (A +2) 2 > 1

where E denotes the expectatlon with respect to A only (4 is fixed). This implies
that h(h + N)"Y/Eh(h + )\)“ — 1 in probability, which in turn implies that
both A(h + Alpny, ) and h(h + A [qn], ») tend to Eh(h + X\)~'. Now because of
(5.6), we see that Eh(h + M7t must tend to 1, proving (5.2).

THEOREM 5.4. For the ridge-regression problem, under (A.1”) and (5.6),
f.(h,) is consistent whenever given ., there exists a sequence h, such that
f,(h,) is consistent.

Condition (5.6) is more or less necessary for ﬁn(iz) to be consistent. The
following example illustrates this point.

ExaMPLE 6. Consider the canonical case with X, = diag(2,1,...,1). Here
An.=4 Ay ,= - =X, ,=1,and GCV chooses h by minimizing

=2

nl(h+ 4) 52 +(h+ 1)‘2iy3]/[<h+ 9 -+ ]
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over h > 0. By the straightforward inspection of the derivative, we see that
h=cw ifrx> 1,

(4r-1)1-r)"" ifl<r<i,

=0 ifo<r<y,

where r = (n — 1) 71X, ?/y2. For the case that p, = 0 and ¢;s are normal, this
leads to lim P{h = 0} = P{402 < ¢?} = 0.05. Since n”'trA (O) 0, (5.2) does
not hold. However, by Theorem 4.6, (h) and SURE (h) are consistent. Using
Lemma 5.1 we see that p,,,(h) is inconsistent. Note that fi (0) = lim, _, 4, (h) #

f,(0).

This example and the condition (5.6) indicate that GCV does not perform well
if the problem is not ill-posed. This observation was implicit in Craven and
Wahba. However, it is important to note that the inconsistency occurs only
because of the insistence on returning to the original linear estimates. The
method of Section 5.1 does not have this problem.

5.2d. Spline smoothing. The result of ridge regression applies directly to
spline smoothing. (5.6) holds easily for the case that x;s are equispaced, in view of
the result on eigenvalues from Craven and Wahba. One would even conjecture
that it holds if x;s get dense in [0, 1].

THEOREM 5.5. For the spline-smoothing problem, under (A.1”), ﬁ.n(il) is
consistent if x;s are equispaced.

6. A variant of GCV. GCV does not depend on o2 But consider the
ridge-regression problem. Suppose the number of parameters D, is less than n
and the given regression model is correct. ., is known to be in a proper subspace
of R". Then for estimating p.,, it is sufficient to consider only the projection of y,
on this subspace, say y>*, if ¢;s are normal with o2 given. Any estimate that
depends on |ly, — y,*||? will be inadmissable! This is the case for GCV as can be
seen by writing (1.2) as

n =l = (B2 + 1y, — 3202) /(1 = n7 e M(h))%,

so that GCV seems inefficient here!
In the following we shall see how our approach of using Stein estimates does
not depend on ¢2 known or unknown. Only the following assumption is crucial:

(6.1) B, €S,g R",

where S, is a subspace of R” with dimension s, < n.

Under (6.1) it is clear that one should not use fi (%) since it may take value
outside S,. Instead, we may replace the raw data y, by its projection on S,, say,
yF = P,y,, with P, the projection matrix from R” to S,. Change the simplified
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Stein estimate (3.1) to

o2tr( P, — M,(h))
Iy — Ba(R)?

o%(s, — tr M,(h)
Iy — B.(R))?

Similarly, SURE (%) of (3.2) becomes

o*(s, — tr M,(h))’
Sally — BRI

which estimates the loss s, !||p, — i*(%)||>. Now we see that to choose Ak, one
should minimize

i*(h) = y* - (yx — B.(R))

=yr- (3F = B(h)).

SURE*(h) = o2 —

Sa Iy — Ba(A)I?

GOV = e ()

REMARK 5. GCV}X(h) can also be derived from the C;-nil-trace estimate
argument. But it is unclear whether or not the invariance argument in Golub,
Heath, and Wahba is still applicable here.

7. Proofs. Proofs of the results in Sections 3-5 will be sketched in the
following subsections, 7.1 to 7.3, respectively. Details may be found in Li (1983).
We shall use the following notations:

AP = A’A forany n X n matrix A;
Qu(7) = 1A, (R),))* + o*tr AD(h) (= E|A,(h)y,|*).

7.1. Proofs for Section 3. Toward proving Theorem 3.1, compute
SURE, - n” Y[, = pall> = 0> = n” Ve, ||” + 20%n 'tr A,
DALYl "2 (s Appn) + (e, Age,) — 0%tra,).

It is enough to show that for any §,, 8, > 0, there exists an integer N (indepen-
dent of p,) such that for n > N,

(711) P{n_lltrAnl : "Anyn"_2|<£n7 Anl"’n)l > 81} =< 82:
(7.1.2) P{n 'ftr A,| - 1A, ¥,/ %Ke,, Ane,) — 0*trA,| > 8,} < 8,.
The following lemma will be used.
LEMMA 7.1. Assume (A.2) holds. Then for any sequence of nonnegative

numbers {a,} converging to 0, any sequence of real numbers {b,} and any
sequence of vectors {c, € R"} with |lc,|| = 1, we have

lim P{leje, + b,| < a,} =0.
n— oo
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The proof of this lemma will be given later. We proceed with the proof of
Theorem 3.1. Since both i, and SURE, are invariant under the scale change of
A, we may, without loss of generality, assume that the maximum singular value
of A,,N(A,), equals 1. (7.1.1) and (7.1.2) will hold if there exists a positive
number a,, such that

(7.1.3) P{||A, Y.l < a,@,} < 8,/2,
(7.1.4) P{n 'trA,| - e,, Az, — o’trA,| > 8,a,Q,} < 8,/2,
(7.1.5) P(n 'trA,l - Ke,, Aupn)l = 8,0,Q,) < 8y/2,

where @, is the @,(h) defined in the beginning of this section with A omitted.
Now by the Chebyshev inequality and the observation that Var(e,, A,¢,) <
m tr A, we can show that (7.1.4) and (7.1.5) hold for

(7.1.6) a,>cn V2,

with some positive number c¢ (for instance, ¢ = max{(2mo 28, 28, ")"/?,
(2828, 1)'/%)).

To obtain (7.1.3), we set @, < 1/2 and use the Chebyshev inequality again.
The left side of (7.1.3) turns out to be no greater than (8mo~% + 32)Q,'. If @,
tends to infinity, then (7.1.3) follows immediately. Thus it suffices to take care of
the case of bounded @Q,,.

Recall that we have assumed that A’(4,) = 1. It follows that A > ¢,¢;, in
the nonnegative definite sense, where ¢, is an eigenvector for A® with eigenvalue
1 and |le,|| = 1. Therefore the left side of (7.1.3) does not exceed

P(lcre, + Chpal < @)@,
which can be made arbitrarily small if
(7.1.7) a, 0,

because of the boundedness of @, and Lemma 7.1. Finally it is clear that there
exists {a,} satisfying (7.1.6) and (7.1.7), completing the proof of Theorem 3.1.

Proor oF LEMMA 7.1. Without loss of generality, assume that the first

coordinate ¢,, of ¢, = (¢, ..., C,,) is positive and is no less than, |cy,|, .-, [C,pl
Rewrite the event {|c.e, + b,| < @,} as {|e; + 1, (Zrscing; + by)| < a,c;,'} and
consider the conditional probability that this event will hapen given e,,...,¢,.

By (A.2) this conditional probability does not exceed Ka,c;,', tending to 0
provided that ¢,, is bounded by away from 0. It remains to consider the case
that c,, = 0. By checking the Linderberg-Feller condition, c;e, is seen to be
asymptotically normal with mean 0 and variance 1. Lemma 8.1 follows obviously.
O

7.2. Proofs for Section 4.

7.2a. Proof of Theorem 4.3. Without loss of generality assume X(A (h)) =1
for each A € H,. Similar to the proof of Theorem 3.1, it suffices to show that the
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sum of the last two terms in (4.3) is no less than

L P(IlAN(M)y.l* < 27'Q,(h)}

heH,
+ ¥ P(26%n7'tr A, (R)| Ke,, A(R)e,) — o*tr A, (h)| > 47'8Q,(h)}
heH,
+ Y P{20%n 'ftr A (h)| - Ke,, A (R)p, ) = 47'8Q,(h)}.
heH,

Now using the Chebyshev inequality, the above expression is bounded by

Y 16c[o*(tr AP(R))” + A, (W)l '] Qu(R)

heH,

(7.2.1) + hZ 16%0%8 ~'n*(tr A,(h))*(tr AZ(R))Q,(h) *
€H,

+ Y 16%0'% *n4(tr A,(h) A (R)p'Q.(R) *,
heH,

for some constant c. Here we have used the following inequalities:
E((en, Ap(h)e,) — o2trA,(h))" < ctr AD(h);
E(en, Ap(h)uy)* < cllA(R)pl1%

E(IA(R)5l? = Q)" < c[o*(tr AD(R))* + 1A, (R)u, 1]

All of these can be verified using Theorem 2 of Whittle (1960).

Finally, the first term in (7.2.1) does not exceed 16co ~*L,, ¢ 5 (tr AP(h)) % the
second term does not exceed 1635 ‘cn 2#H,; the third term does not exceed
16%% ~*n~2#H,. The proof of Theorem 4. 3 is now complete by taking ¢, =
16%8%(c + o®) and ¢, =16co™ . O

7.2b. Proof of Lemma 4.1. Observe that

n h 2 n h
"Mn(h)yn”2 = E ( E wn,h(j)yi(j)) < E Z n h(])yl(j)

i=1\ /=1 i=1j =1
h

h n J n
= ; wn,h(j) »glyi%j)= E (wn,h(j) - wn,h(j+ 1))( Z Z yi%k))’

Jj=1 k=1i=1

where w, ,(h + 1) is set to 0. For 1 <l<n, 2 <j < n, let n(l, j) denote the
cardinal number of the set Uj_{i: i(k) = [}. It is clear that

J n n
Y Y vy = Eyl + Z Zyuk) Ey, + Vn(l 7yt

k=1i=1 k=2i=1 i=1 =1

Now Lemma 2.2 of Li (1984a) showed that there exists a universal constant A
(depending only on the dimension p) such that n(l, j) < Az(j— 1) for any
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n, I, j. Therefore we see that
h n n
1M, (R)y,l1* < X5 2 (w,, () = wy,n(J + 1)) ( > y;") = A5 207
Jj=1 =1 =1
This means N(M?(h)) < A,. Taking A = N¢?, the proof of Lemma 4.1 is
complete. O

7.2c. Proof of Lemma 4.2. As before, it suffices to show the following coun-
terparts for (7.1.3) to (7.1.5): There exists a, — 0 such that

(122) P ntr Y (s o)+ 0) Q) < af < /2,
2 i=1

2 n g2 _ g2
(7.2.3) P{ig% Q. () & 2 (h+1X) gl ,‘H X > a,,al} < 8,/2;
| 2 biE;
(7.2.4) P{ ili}()) 0 (h) IS > a,,SI} < 8,/2.

Here @, (h) = h?L" (h + }\i)""(uf + 02).

PROOF OF (7.2.2). Define G,(h) = h=%(h + X ,,)?Q,(h). Clearly, G,(h) is non-
decreasing in h. Let L be a large number to be chosen later. Let [ and % be the
largest integers such that 2/L < G,(0) and 2*L < G, (o), respectively. Define
h;=G,'2L)forl<i<k, h,=0,and h,,, = . Note that [, k, and h; are
all depending on n.

First, consider the case the [ > 1. The left-hand side of (7.2.2) does not exceed

k n
ZP{ G R (ko e) (B4 (1) s a,,}

j=l h<h<h i=1

(7.2.5)

k n
< ;IP{Gn(hj)_l Z (l“z + 8,’)2(hj + }\n)2(hj + Ai)_2 < 2an}.

i=1
Here we have used the fact G, (h;)/G,(h;,,)=2"". Now by the Chebyshev
inequality, the last expression does not exceed

(1—2an)_2zk:Var<G( 7Y (et )y 4 A )(hj+>\,-)_2}
J=t i-1
<(1-20,)CT G(n)"
j=1

k
=(1-2a,) CL 'Y 27 <(1-2a,) *CL".

5 J=1
Note that we have used the inequality that Var(u; + ¢;)> < C(p? + 0?) for some
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C > 0 in deriving the first inequality above. Now setting
(7.2.6) L =8Cs; Y,

we see that (7.2.2) holds for large n.

Turning to the case / < 0, we may evaluate the left-hand side of (7.2.2) by
splitting 2 > 0 into two parts: 0 < A < h, and Ak, < h. The second part can be
evaluated by (7.2.5) with / = 1, leading to the bound (1 — 2a,) 2CL~". The first
part is no greater than

P{ inf L~ Z(pl+s)(h+}\n)2(h+>\i)_2sa,,}

O0<h<h, i=1
< P{(n, +¢,)’L7" < a,| < KLV?a}?,

where the last inequality is due to (A.2). Putting these two parts together and
using (7.2.6), we see that KL'/Z%al/? + (1 — 2a,) 2CL™' < 8,/2 for large n,
proving (7.2.2). O

Before turning to the proofs of (7.2.3) and (7.2.4), we first state a useful lemma.

LEMMA 7.2. Assume that W,, i = 1,..., n are independent random variables
with mean 0 and finite fourth moments. Then for any § > 0,

n
PR
i=1

n 4
W, 28}58‘4E(ZW}).

i=1

(7.2.7) P{ sup
0<c¢ <cy <c,<1

This lemma follows immediately from Kolmogorov’s inequality [see, e.g.,
Chung (1974)], after observing that

X W

i=j

sup

0<c<cp< - <¢,<1

cW‘— sup

i=1 1<j<n

A slightly different version of (7.2.7) was first used by Speckman (1981a, 1982).
To proceed, we need only to prove (7.2.4) because by taking p;, =1 and
treating ¢; as £ — o2, we see that (7.2.3) is essentially a special case of (7.2.4).

PRrROOF OF (7.2.4). Write Ay, =oc0 and A, =0. Let I,(j)= {1,2,..., j} and
IH={+1,...,n}. Usmg the inequality X" (A + X)) ' < \/n():, (R +
)" HY2 we see that (7.2.4) will follow from

8

i __2
T4

h+A;

(7.2.8) n%— 1 P{ sup

~ =l Ajashsd;

]( nQ,(h))"’h > La,8,0
le’z(])

for =0 and 1.
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We now prove (7.2.8). Consider / = 1 first. Since A~ 2@Q () is nonincreasing in
h, the left-hand side of (7.2.8) does not exceed

'Mx‘

(A, + A e

~.
i

P{n-v2 Q.(\,) A, = ianﬁlo}

1

1

(7.2.9) + i‘,P{ sup n~ /2 ﬁ‘, [(h+>\ )7 ! (Aj+>‘i)—l].u'i£i
j=1 A, i=

+1Sh<A;

@A) A = %a,ﬁlo}.

By the Chebyshev inequality, the first term does not exceed

J=1\i=1

(210 (o) et £ £ (0,000 @007,

which clearly is no greater than (1/4a,8,0)  *mn~'. Thus the first term in (7.2.9)
will tend to O if

(7.2.11) ain - co.

The second term in (7.2.9) can be evaluated by using Lemma 7.2. Write
(R+ X)) =N+ M) =(A; —h)(h+>\) ‘A, +A;)"! and observe that
(Aj— h)(h+ A, ) lis nondecreasmg in { and is no greater than 1 for )\jﬂ <h<
}\j. We may put c—(>\—h)(h+>\)1 W=, +X) e, and 8=
1/4a,8,0n'/?Q, (), )1/ A 'in (7.2.7), yielding (7.2.10) as ‘the desired upper bound
for the second term in (7 2.9). Therefore we have seen that with [ =1, (7.2.8)
holds for large n if a, is chosen to satisfy (7.2.11).
The case [ = 0 can be treated in a similar manner. Because @, (%) is nonde-

creasing in A, the counterpart of (7.2.9) becomes

n—1 n

> P{n_l/2 > >\j+1(>‘j+1 + Ai)_lf‘iei

j=0

i=j+1

Q. A1) e %anslo}

(7.2.12) + nilP sup (nQ (A ))_1/2 Zn: m h WA
2. MY i€ -
j=0 Aishsh; A i=j+1 h + >‘i >\j+1 + >‘i

Both terms are again no greater than (1/4a,8,6) *mn~! by the Chebyshev
inequality and Lemma 7.2. Here we should put ¢; = (A — A, ) (A + A;)~ LW, =
Ni(Ajyy + X)) 'ngeg, and 8 = 1/4a,8,0n'2Q (N, )/? when applying (7. 27) In
conclusion, under (7.2.11), (7.2.8) holds for large n where ! = 0. This completes
the proof of (7.2.4). O
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7.3. Proofs for Section 5.
7.3a. Proof of Theorem 5.1. The consistency of SUREn(iz, é,) will follow

from

(7.3.1) ISURE, (%, 6,) — SURE (k)| - 0,

(7.3.2) n ik, 6,) — B, (R))% - 0.

To obtain (7.3.1), observe that the absolute value term in (7.3.1) is no greater
than

(7.3.3) 162 — 0% + |67 %6 — 1|(o2 — SURE,(h)).
The consistency of SURE ,,(h) implies that
0% = SURE (k) = 6> — n7||n, — §,(A)II* + 0,(1) < 6% + 0,(1).

We see that (7.3.3) vanishes asymptotically, implying (7.3.1). To obtain (7.3.2)
first observe that fi(A,8,) — i, (A) =1 — 0 %62)y, — E,(h)). Therefore the
right-hand side of (7.3.2) does not exceed

(7.3.4) 2(1 - 07282)(n liu(h) = pall> + 0 Yle,l?).

Since n”'[le,||* > 0 and n” Y|, (k) — p,lI> = SURE, (k) + 0,(1) < 0 + 0,(1),
we see that (7.3.4) converges to 0, proving (7.3.2).

The consistency of fi, (h, 6 ..) also follows from (7.3.2). The proof of Theorem
5.1 is now complete.

7.3b. Proof of Lemma 5.2. (I) Nearest neighbor regression. It suffices to
show that for any § > 0,

(7.3.5) P ot 14, (R, I°Q(R) ' =1~ ) -

But this can be proved easily by the Chebyshev inequality as in Section 7.2a. We
omit the details.

(IT) Model selection. (7.3.5) holds if replacing “h € H,” by “h & H..” Hence
it suffices to show that for any A, € H,, such that n — d(h,) is bounded, say
by M,

(7.3.6) Plh=nh,) - 0.

Now by Theorem 4.5, SUREn(h) and (h) are consistent, implying that
SURE ( h) = 0. This means that for any 8 >0,

lim P{||An(h)y,,||2 < (o%+8,)n"(n — d(h))")

1

IA

lim P{h+h,) + 11m P{ 14,(R,) ylI* < (02 + 8,)n"'M?}.

n— oo

The second term tends to 0 by Lemma 7.1 because [|A,(A,)y,|* = (c,y,)? for
some ¢, € R" with |le,|| = 1. (7.3.6) is obtained, completing the proof.
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(IIT) Ridge regression. It suffices to consider the canonical case (4.9). Define
D,(h)= X (h+ X)) "5 - 1*Q,(h) .
i=1

We shall show that given ¢, § > 0, the following holds for large n:
(7.3.7) P(D(h)<1-8) <e.
Let positive numbers, §,, §,, and ¢ be small and F be large. They will be

chosen appropriately later on. Define

n 2

h* = the largest & such that n6,(¢%+68) "' > ( Y (h+X,)/(h+])

i=1

’

n—1 2

h! = the largest A such that (n — 1) > c( Y (h+A)/(R+ 1)

=1

2

h’, = the smallest A such that G, (k) > F,

where G,(h) is defined in the beginning of the proof of (7.2.2). (7.3.7) will hold if
we can show that ¢ is no less than

Ply? <8} +P(y?>8,he0,ht]} +P{y:>6,he [nx, B0}

(7.3.8)
+P(y2> 8, he [nS, k) + P{ inf Dy(h)<1- s}.
hel[h,, ]
Each term in (7.3.8) will be made no greater than &/5 in the following.
It is easy to treat the first term. For the second term, we observe that it does
not exceed
)

because of the definition of A*. (7.3.9) is obviously no greater than

(7.3.9) P{ny,f(02+8)_12(Zn:(il+}\n)/(iz+>\i)

1=

P{n gj (h+ A,.)‘zy,?/( > (h+ Ai)_l)z > 02+ s} = P{GCV,(h) > o2 + 8}.

i=1
On the other hand, by Theorem 4.6, SUREn(iz) — 0, implying that
(7.3.10) GCV, (k) - o2.
Therefore we see that the second term in (7.3.8) converges to 0.
To bound the third term in (7.3.8), we first observe that it does not exceed

(7.3.11) o(1) + P{y3 >8,, inf |GCV,(h)—o? < 32}
]

he[hX, R

because of (7.3.10). On the other hand, if r; denotes (k2 + A, )(h + A;) !, then the
definition of A} implies that for any A > h%, X7 ,r, converges to oo, which in
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turn shows that X7 'r, /2" | r,. From this we see that (7.3.11) does not exceed

(7.3.12) o(1) + P{y>>8,, inf

helh}, k)]

(n—l)('gri)*

n—1
( Z ri2yi2 + ynz
i=1

—o? ssz},

which, by the definition of A9, is no greater than

0(1)+P{ inf ](n—l)(’fil(h+>\i)‘l

helh%,
n—1

X Y (h+X) %yt <o?—cb, + 82}
i=1

<o(1) + P{hei[%fw]ccv,,_l(h) <o?—ch, + 62>.

By Remark 3 of Section 4, the last term converges to 0, providing that
(7.3.13) c> 8,8, %

Turning to the fourth term in (7.3.8), we shall assume A/, > h9; otherwise this
term vanishes. As before, we may bound it by expression (7.3.11) with [A*, h%]
replaced by [ A%, h’], which in turn is no greater than

o(1) + P{cn(n -1)! Zn: (k) + }\n)2(h’n + }\i)fzyi2 > g2 — 82}

i=1

by the definition of A. Now by the Chebyshev inequality, the above expression
does not exceed

o(1) +(o% - 82)_lcn(n -1)! g": (ks + }\n)z(h’,, + Ai)_z(p.% +0?)
=0(1) + (o2 - 62)“lcn(n - 1) 'F,

where the quality is due to the definition of A/, (note that A’, # 0), Hence we see
that the fourth term in (7.3.8) does not exceed &/5 if

(7.3.14) c < F (02— 8,)e/5.

It remains to bound the fifth term. The argument will be similar to the proof
of (7.2.2). Let L be a large number to be chosen later. Let / and & be large
integers such that (1 + 8)'L < G(h’) and (1 + §)*L < G,(0). Define h; =
G, (1 +8)L)yforl<i<k, hy="h,, and h,,, = . Note that /, k, and h, are
depending on n. Now set
(7.3.15) (1+8)L <F.

By the definition of A/, we have [ > 1. Similar to (7.2.5), the fifth term of (7.3.8)
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does not exceed
fP{Dn(h,) <1-28%.
=1
As before, using the Chebyshev inequality, the last expression does not exceed

k k )
8 CY G(h) '=8CL Y (1+8) /< C8 L.

j=1 j=1
Therefore we see that the fifth term of (7.3.8) does not exceed ¢/5, if
(7.3.16) L >5C8%".

Finally, we choose F' large enough so that (7.3.15) and (7.3.16) hold for some L.
Then choose 8, small enough so that (7.3.13) and (7.3.14) hold for some c. Each
term in (7.3.8) is now no greater than ¢/5, completing the proof. O
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