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SOBOLEV TESTS FOR INDEPENDENCE OF DIRECTIONS

By P. E. Jupp AND B. D. SPURR
University of St. Andrews

Two families of invariant tests for independence of random variables on
compact Riemannian manifolds are proposed and studied. The tests are based
on Giné’s Sobolev norms which are obtained by mapping the manifolds into
Hilbert spaces. For general compact manifolds, randomization tests are sug-
gested. For the bivariate circular case, distribution-free tests based on uniform
scores are considered.

1. Introduction. A problem of some interest in directional statistics is that
of constructing useful tests for independence of two circular or spherical random
variables. This problem extends naturally to that of producing tests for indepen-
dence of random variables on general manifolds. Machinery based on Sobolev
norms for comparing distributions on a compact Riemannian manifold was
established by Giné (1975) and was used by him to introduce a large class of
invariant tests of uniformity. This approach was employed by Wellner (1979) to
construct two-sample tests and by Jupp and Spurr (1983) to provide tests of
symmetry. In this paper, we employ a simple Hilbert space approach to Giné’s
Sobolev norms and use this machinery to produce two classes of invariant tests
for independence of random variables on compact Riemannian manifolds.

The tests of independence of circular or spherical random variables which
have been proposed so far fall into three types. Two of these regard points on
the circle or sphere as unit vectors in the plane or 3-space. Tests of the first type
measure correlation between the appropriate random unit vectors U and V by
suitable functions of 2% = E(UV’). Such correlation coefficients have been
considered in the bivariate spherical case by Mackenzie (1957), Watson and
Beran (1967), and Epp, Tukey and Watson (1971) and in a general setting by
Stephens (1979). In the bivariate circular case, signed correlation coefficients of
this type have been introduced by Rivest (1982) and Fisher and Lee (1983).

Tests of the second type consider functions of Z,,, the covariance matrix of
(U, V). Correlation coefficients of this kind were introduced by Downs (1974)
and Johnson and Wehrly (1977) for circular variables, by Mardia and Puri (1978)
for the circular and spherical cases, and by Jupp and Mardia (1980) for general
manifolds. Tests of the third type are for the bivariate circular case only and use
the empirical distribution function to derive rank tests which are distribution-
free under the null hypothesis of independence. The appropriate correlation
coefficients are due to Rothman (1971), Mardia (1975), and Fisher and Lee (1982,
1983).

In Section 2 of this paper, we introduce a class of randomization tests of
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independence on compact Riemannian manifolds. They are based on the Sobolev
machinery and are in the tradition of the tests of the second type mentioned
above. In Section 3, we apply this approach to uniform scores to obtain a class
of distribution-free tests in the bivariate circular case. These tests are in the
spirit of the third type above and include Rothman’s (1971) test as well as a
variant of the test of Mardia (1975). Proofs of the results are given in the
Appendix.

2. Randomization tests of independence. An important tool in direc-
tional statistics is provided by the Sobolev seminorms introduced by Giné (1975).
We now give a simple construction of these seminorms.

Let X be a compact Riemannian manifold. Then the Riemannian metric
determines the uniform measure u on X. Denote by L?(X) the Hilbert space of
real-valued functions on X which are square-integrable with respect to u. On
L*(xX) we shall use exclusively the corresponding L? norm || - || 2. The basic idea
underlying Giné’s approach is to map X into the vector space L*(X), thus
transforming problems in directional statistics into multivariate problems (usu-
ally of infinite dimension). The norm | - ||» then gives rise to a Euclidean-type
distance between probability measures on X. The details are as follows.

Denote by .#(X) the bounded Borel measures on X and by 2(X) the Borel
probability measures on X. Let the Laplacian A of X have kth eigenspace E;
with eigenvalue o, for k=0, 1, - - -, and let the functions {f;} be an orthonormal
basis of L%(X) consisting of eigenfunctions of A. It is useful to describe a sequence
{ar}izy of real numbers as satisfying condition C on X if

supy | axof/?| < o for some s> (dim X)/2.

If A = {ap)se1 is a sequence satisfying condition C, then the function
t: X — L*(X) defined by

t(x) = Xim1 or Yrek, fi(x) fi

is continuous. A proof is given in the Appendix.
The function t gives rise to a function 7: .Z(X) — L*(X) defined by

7(v) = f t dv.

Note that if a # 0 for all £ = 1 then the restriction of 7 to 2(X) is one-to-one.
The L? norm | - || on L%(X) can be pulled back by 7 to a seminorm | - || 4 on
#(X) corresponding to the sequence A. Indeed || - |4 = || - || is defined by

ftdu

2

=0} v € #(X).
2

(2.1) (2

An alternative expression is

2
(2.2) vl = Yhe1 ok ek, (f fi dll) v € #(X).
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Sobolev seminorms were used in Giné’s (1975) tests of uniformity to measure
the distance between the empirical and the uniform distributions. They were
used by Wellner (1979) to assess the distance between the empirical distributions
in the two-sample case and by Jupp and Spurr (1983) to measure the distance of
the empirical distribution from its symmetrized version. In order to construct
tests for independence in an analogous manner, it is useful to consider products
of Sobolev seminorms. Let X and Y be compact Riemannian manifolds and let
Il - |4 and || - | s be Sobolev seminorms on .#(X) and .#(Y) given by sequences
A = {ap}p-1 and B = {B,}7-; satisfying condition C on X and Y, respectively.
Define u: Y — L%(Y) by

u(y) = X221 B, Yger, &(¥)g

where F, is the /th eigenspace of A on Y and {g;} is an orthonormal basis of
L*(Y) consisting of eigenfunctions of A. Then the product seminorm || - || aep =
I-11a® | -l on.#(X X Y) is defined by

ft@udu

where t ® u: X X Y — L3(X) ® L%(Y) C LAX X Y) and || - || 2 is the L? norm on
L%(3X X Y). An alternative expression is

2

vE H(X XY)
2

(2.3) vl ies = ‘

2
Il vllGes = im1 Xo=1 @iB% Tser, SgerF, {va fi(x)gi(y) dv(x, y)}

(2.4)
vE (X XY).

For distributions » of random variables (X, Y) on X X Y, the hypothesis of
independence is Hy: v = v; ® v,, where v; ® v, is the product of the marginal
distributions »; and v,. This suggests that we should test Hy by measuring the
distance from e, the empirical distribution of a sample of size n, to & ® e, the
product of its marginals. For any product seminorm || - || ses, we define

(2.5) T,=n|e— e ® el ies-

Our tests compare the observed value of T, with its null distribution conditional
on the marginals (e;, ¢2) and the null hypothesis of independence is rejected for
large values of T',. The statistic T, is analogous to that used in the nonparametric
test of independence introduced by Hoeffding (1948) and by Blum, Kiefer and
Rosenblatt (1961) based on the multivariate empirical distribution function. The
null distribution of T, conditional on (e;, ¢3) can be calculated in O(n!) operations.
Enumeration is feasible for small values of n. For larger values we recommend
sampling from this permutation distribution. The tests depend on the sequences
{or}iey and {B,}2-1. If only a few oy, and B, are nonzero, then T, is easily computed.
However, if many of these coefficients are nonzero then the test is consistent
against a wide class of alternatives. (See Theorem 2.1.)

An alternative derivation of T), is the following. Given a sample (x,, y1), - - -,
(x,., ¥,) of points in X X Y, consider its image (t(x;), u(yi)), - - -, (t(x,), u(y,)) in
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L*(x%) X L%(Y). A natural measure of dependence between X and Y based on this
sample is the sample covariance S;; of T = t(X) and U = u(Y) defined by

Sie = n7" T t(x) ® u(y) — (n7' Ty t(x) @ (n7! Ty u(y)).

Then it is reasonable to regard X and Y as independent if || Si || 3 is small, where
Il - 1% is the L% norm on L3(X X Y). In fact, we have

(2.6) T. = n| S:|3.
A more useful formula for computing T}, is
T, =n"' 3k Y halxi, x)hs(yi, ¥)
(2.7) = 2n7% Ty ¥ia Tk halxi, x)hs(yi, ye)
+ n7 Bk T halx, HEE Zia hae(yi, )}

where
hA(xr, xs) = (t(xr)y t(xs)> = 2;:=1 a% ZfiEEk fi(xr)fi(xs)

and

he(yr, ¥5) = (u(yy), w(ys)) = X1 B2 Tger, &(y)8(ys)

with (-, .) denoting L? inner products. Note that (2.7) is analogous to formula
(4.2) of Wellner (1979) with h4 and hg identical to his h.

These tests based on T, are invariant under separate isometries of X and of
Y. This is a simple consequence of the isometry-invariance of the Sobolev
seminorms. Note that the randomization test for independence of spherical
variables considered by Watson and Beran (1967) and by Epp, Tukey and Watson
(1971) is invariant under a common rotation of the spheres but not invariant
under separate rotations.

In general, || v | ez = 0 does not imply that v is uniform on X X Y. However,
for A and B with a; # 0 and B # 0, for all k, it is easily shown that v = v; ® v, if
and only if | v — »; ® vy || aes = 0. This prompts the following consistency result
which is proved in the Appendix.

THEOREM 2.1. The sequence of tests based on T, conditional on (e, &) is
consistent against an alternative v if and only if || v — v; ® v, || %e8 > 0. In particular,
a sequence of tests is consistent against all alternatives if and only if oy, # 0 and
Br # 0 for all k. ‘

The asymptotic distributions of T, under local and under fixed alternatives
are given in the next two theorems which follow from the central limit theorem
in the Hilbert space L%(X X Y). We denote by Z®(f) the Gaussian process
indexed by f € L3(X X Y, v) with mean zero and covariance structure given by

Cov(Z"(f), Z¥(g)) = f (f - f f dv)(g - f g du) d.
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Also, —+ and —4 denote, respectively, convergence in the weak (star) topology
of (X X Y) and convergence in distribution.

THEOREM 2.2 (Local alternatives). Let {v,}n-1 be a sequence in P(X X Y)
satisfying v, —~ v for some v with independent marginals on X and Y. Suppose
that

lim, .., n'/2 L " fi(x)gi(y) d(vn — vp, @ v,)(x, y) = d;

for f; € Ey, g; € F, with
2:=1 Z,o:=l a%ﬂg’ ZfiEE,, ZgIEF/ df] < e,

where v, and v,, are the marginals of v, on X and Y. Then if T, is generated by
random sampling from v, we have

Th —a i1 X0o1 akB2 Yren, Yeer, (ZV(fig) + dy)™
THEOREM 2.3. (Fixed alternatives). For random samples from v € P(X X Y)
with
lv =i ®we||2>0, nVA (T, — n|lv— v ® % —a N, Var,(w))
where

w(x, y) = 2(E,[v], v(x, y))

=2 Yi1 Do Ollze,B,a Z/,EE,, ZgIEF, {va f,g, dy — 1 ® V2)}

- (filx) — E[f]D(g(y) — E.[g])
with v(x, y) = (t(x) — E,[t]) ® (u(y) — E,[u]).

The compact manifolds most frequently arising as sample spaces are the
p-dimensional spheres, S” in R?*!, When both X and Y are spheres, two of the
above tests are of particular interest. One is the quick test obtained by taking
o =By =1, 0 = B = 0 for k > 1, and so using ha(x;, X;) = hp(x;, X;) =
(p + 1)x/x; in (2.7). This corresponds to using the seminorm employed in the
Rayleigh test of uniformity (Mardia, 1972, page 133). We have

(28) Tn=n(p + 1)*tr(S12812) = n(p + V*{tr(SHSE) — 2%'Sty + R%RY)

where Sf, = n™' ¥, x;y/, Rx, Ry are the lengths of the sample means %, y of
the random unit vectors X, Y, and S;» = S} — xy’. Note that the asymptotic
distribution of T, given by Theorem 2.2 is generally complicated by the depend-
ence of the Z“(f.g;). The other test, which is consistent against all alternatives,
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uses

ha(x;, Xj) = hp(x;, Xj)

=c{l — 277} + d{1 — p27'[['(a + ¥%2)/T(a + 1)]Psin ¢, }

where ¥, ; = cos }(x/X;), X = S?, « = (p — 1)/2, and ¢ and d are arbitrary positive
constants. This test is obtained by taking
dp(2k — 1) * T(a + %)T(k — %)
8w (2k + p) Tk+a+1) °’
= By = c22P7 1T (a + 1)« + k)(2k — 2)!
A2kt T Pk w(k — D@2k +p — 2)!

agp, = Bop = {

and corresponds to using a linear combination of the seminorms employed by
Ajne’s and by Giné’s tests for uniformity. See Giné (1975, pages 1261-1262) and
Prentice (1978, page 172). Note that, as all tests in this section are conditional
on (e, €2), there is no need to evaluate the last term on the right of (2.7) or (2.8).

3. Uniform scores tests. If both X and Y are the circle, S?, then we can
use a probability integral transform to define uniform scores. Recall that, once
an origin and an orientation of S! have been chosen, each \ in #(S*) determines
the corresponding probability integral transform H,: S* — S* by H\(8) = 27 A([O,
0]), where S* has unit radius. Similarly, » in 2(S* X S') with marginals »,, v, in
P(S') determines H,: S' x S' — S' x S' by H,(0, ¢) = (H,,(0), H,,(¢)). In
particular, the probability integral transform H, of the empirical distribution e
on S! x S! transforms ¢ into the uniform-scores distribution n which has “discrete
uniform” marginals n; and 7,. Following the use of uniform scores in two-sample
tests by Wheeler and Watson (1964), Mardia (1967), and Beran (1969) and in
tests of symmetry by Jupp and Spurr (1983), we propose tests of independence
which reject this hypothesis for large values of

(3.1) Ti=nln—m®n|>
In the absence of ties, T'% can be computed using (2.7) with
(xi, .‘)’l) = (i27l'/n, ri(zw/n))y fOI' " = ]-7 e, N,

where the r; are the ranks of the second variable. An alternative to T’} requiring
less computation is ‘

(3.2) M =nlnl?

which is equivalent to taking only the first term in (2.7). Using condition C it
can be shown that n || 7;||2— 0 as n — o for i = 1, 2. It follows that T and TH*
are asymptotically equal. '

Both T% and T}* are quadratic forms in linear rank statistics. They are
invariant under separate continuous invertible transformations of the two angles
and so are well-defined independently of the origins and orientations of the two



1146 JUPP AND SPURR

circles. Most importantly, they are distribution-free under sampling from contin-
uous distributions with independent marginals. The asymptotic null distribution
is given in the following theorem.

THEOREM 3.1. Under random sampling from a continuous distribution on
S! x 8! with independent marginals

Th —a The1 X2o1 akB2Hy, and Tk — TH* —4 0

where {H}, /%=1 is a collection of independent chi-squared random variables with
four degrees of freedom.

Approximations to the tail areas of the asymptotic distribution of T%* can be
derived from work of Hoeffding (1964).

The population version of 5 is » © H,, which may be regarded as “»v with
marginals made uniform.” Then the population version of n™'T% is ||» © H, || %,
which measures how far v © H, is from the uniform distribution on S! X S*. Note
that » o H, is uniform if and only if » = »; ® »,. These considerations lead
naturally to the following consistency properties of our tests, analogous to those
of the corresponding two-sample tests (Beran, 1969) and tests of symmetry (Jupp
and Spurr, 1983).

THEOREM 3.2. (Consistency). Let v be a continuous distribution on S* X S*.
Then, if | v ° H,||*> > 0, the sequence of tests based on T* or on T** is consistent
against v. In particular, a sequence of tests is consistent against all alternatives
if ar # 0 and B, # 0 for all k.

Finally we consider some examples. Note that, as both X and Y are the unit
circle, the functions h, and hg used in (2.7) take the form

ha(x, ¥) = 2 Yo; alcos k(x — y)
hs(x, y) = 2 Y5, Bicos k(x — y).

(Compare formula (6.1) of Giné (1975).) Note also that a sequence A = {a}
satisfying supy | R°ax | < o for some s > % gives rise to both a Sobolev test for
uniformity on S' based on || - |4 and (taking A = B) a uniform scores test of
independence using T} based on || - || ae4.

ExXAMPLE 1. The simplest Sobolev test of uniformity on S* is Rayleigh’s test.
Giné (1975) shows that this is obtained by taking a; = 1 and a; = 0 for k = 2.
For the corresponding test of independence we have (for n = 2)

T = T¥* = 2n(R% + R?)

where R. is the mean resultant length of 27n'( ¥ r;), i = 1, - - -, n. This follows
from calculations of Mardia (1975, page 360). Mardia considered the circular
rank correlation coefficient r, = max(R%, R2) and Fisher and Lee (1982) sug-
gested II, = RZ — RZ as a circular analogue of Spearman’s rho. Under indepen-
dence T7 is distributed asymptotically as x 3.
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EXAMPLE 2. A test which is consistent against a wider class of alternatives
is obtained by taking A = B = {a;} with as, = 0, agrs1 = (2k + 1)71, so that, as
shown by Giné (1975), the test of uniformity on S! given by A is Ajne’s (1968)
Ap-test. The Fourier expansion |0| = n/2 — Yo (2k + 1)?cos(2k + 1)8 for
|6| < = shows that hs(x, y) = (x/2)(x/2 — %y) where £y denotes the angle
between x and y. It follows that

Tx* = 7*(16n)™" Ty X1 {1 — 4n71d(, )L — 4n7d(r;, 1)}

where d(i; j) = min(|i — j|, n — |{ — j|). Note that if n is even we have
ftdn=0=fudnpandso T} = TH*.

Consider the antipodal action on S* X S?! which takes (6, ¢) to (6 + =, ¢ + =)
and let ¢ denote the corresponding symmetrization of the empirical distribution.
Puri and Rao (1977) introduced n | ¢ |54 as a test of circular independence
which is distribution-free for continuous distributions with antipodal symmetry.
In contrast, T** = n| 5 || 4e4 does not require symmetry in order to be distribu-
tion-free.

ExXAMPLE 3. Let m; and m, be integers with m; = 2, for i = 1, 2, and take
A = {ap}, B = {8} where ap = my(kn) 'sin(kx/m,), Br = mo(kn) 'sin(kr/my), so
that the corresponding test of uniformity is that of Rao (1972) and Rothman
(1972). For (8, ¢) € S* x S! let x%,4 denote the usual x>-statistic for testing
independence in the contingency table with cells.

0 + 2em7i(j — 1), 6 + 2am71lj) X (¢ + 27m3(q — 1), ¢ + 27wm3q),

forj=1,--.,myandq =1, ..., my, and with observations (2xn~', 2xn='r),
fori =1, ..., n, given by ». If both m; and m, divide n, then , ® 7, gives
probability (m;m;)™" to each cell. Let O;(8, ¢) denote the number of observations
in the (i, j)th cell. Then by calculations similar to those of Rao (1972) and Puri
and Rao (1977), we find that the double Fourier expansion of O;;(6, ¢) yields

{0;(6, ¢) — n(mimy)™'}?
= 16n*(mimo) ™" Yim1 Y0a1 adB2{(TE)? + (T&)” + (T)* + (T%)?
where, e.g.,
Tk = n™' T2, cos(2wn~ki)cos(2xn~'/r).

It follows that, if m; and m, divide n,

27 27
T} =T = (27)2 J; J; X .0 dO do.

Thus the uniform scores test based on T is an averaged x? test of independence
analogous to Rao’s (1972) averaged x* goodness-of-fit test.

EXAMPLE 4. Watson’s (1961) U?-test of uniformity on the circle is consistent
against all alternatives. Giné (1975) showed that the UZ?-test is a Sobolev test
using ap = k7! for k = 1. We now show that the corresponding uniform scores
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test is Rothman’s (1971) C,-test of independence. Given origins and orientations
on 8! x S, the distribution functions F,, F,,, F,, of p € #(S' x S') are defined
by F,(6, ¢) = u([0, 0] X [0, ¢]), F,.,(6) = F.(0, 27), F,,(¢) = F(2x, ¢). Then one
measure of dependence between p; and y, is the function T, defined by

T.(6, ¢) = F.(0, $) — F,,(0)F,(¢).
If the function Z, is defined by

Z,,(B, d)) = Tu(aa d)) - f Tu(ey d)) dﬂl(e)

[ 0.0 duor + [ [ 10,0 w0, ),

C.= f f {Z,(0, )} du(d, ¢)

is well-defined. Rothman’s statistic takes u to be the empirical distribution ¢ and
is

then

C.=nC,.

To calculate C, for a sample (6;, ¢1), ---, (6., ¢,), it is convenient to use the
following alternative expression given by Rothman’s equation (9):

n = n—2 2?=1 (ere;l {Tc(aj’ d’j) - Te(ak’ ¢j) - Tc(eja d’k) + Tc(ak’ d)k)’)z-

Thus it can be seen that C, is rank-invariant and so C, = C,. Note that
T,(8, ¢) and so Z,(0, ¢) are constant on each of the regions (i/n, (i + 1)/n) X
(j/n,(j+1)/n) fori,j=0, ..., n — 1. It follows that

f f [Z,(6, &))" dn(6, ¢) = f f [Z,(6, $)]*(2m)~* db dg.

Double Fourier expansion of Z,(6, ¢) together with Parseval’s formula yields
C,= 4r)?n — m ® n2lljea,
where A = {a;} with o = k7! for k = 1. Thus
T} = 167*C,.

By Theorem 3.2, Rothman’s test is consistent against all continuous alterna-
tives. From Hoeffding’s (1964) results on the tail probabilities of weighted sums
of x2 distributions, we obtain

lim, . P(T} > x) = 2.932[P(x% > x) — 1.110P(x3 > x)]
= (—0.322 + 1.466x)e™ /2

and so approximate critical values of T’} are 9.91, 11.62, and 15.42 at significance
levels 0.1, 0.05, and 0.01, respectively.
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4. An example. As an illustration of the use of the tests of Section 2, we
consider Stephens’ (1979) data on directions of magnetization of rock before and
after heat treatment. Here X = Y = S? and n = 6. As we know of no distribution-
free tests for independence on the sphere and as the small sample size renders
the use of asymptotic results inappropriate, it seems that we must use a random-
ization test. The quick Rayleigh-type test of (2.8) yields T, = 0.007, which is
within the lower 15% of the randomization distribution. Similarly, the Ajne-
Giné-type test mentioned after (2.8) with ¢ = d = 1 yields T, = 0.162, which is
within the lower 22% of the appropriate distribution. Thus neither test detects
any evidence of dependence.

APPENDIX

The proofs of our theorems indicated here parallel the proofs given by Giné
(1975) and Wellner (1979) of their results, with the simplification that we work
entirely in the Hilbert space L*(X X Y) without passing to Banach spaces
analogous to their C(B;). Giné (1975, pages 1252-1253) remarks that there are
simple Hilbert space proofs of his results. This approach works also for the tests
of Wellner (1979) and Jupp and Spurr (1983).

The following auxiliary result is proved using a multivariate form of Hajek’s
(1961) permutational central limit theorem.

THEOREM A. Let {(xni, Yni):1<i<n,n=1,2, ...} bea triangular array in
X X Y and let v denote the probability measure giving mass n™* to (%,i, Yn.i) for
1 < i < n. Define the random element X, of L*(X X Y) by

Xn = n_1/2 27=1 (t(xn,i) - T) ® (u(yn,a(i)) - ﬁ)’
where ¢ is distributed uniformly over the permutations of {1, - - -, n},
t=n" 3k tx), W=n"3k u(y,) and LAX) ® LX(Y)

has been identified with its image in L3(3X X Y). Suppose that w*~lim »™ = p
exists and has marginal distributions v, and v, on X and Y. Then

Xn, —y W(v)

where W® has the Gaussian distribution on L?*(X X Y) with mean zero and
covariance structure specified by

Var((W?®, f ® g)) = Var, ((t(X), f))Var,,((u(Y), g))
for £ € LX), g € LX(Y).

To establish Theorem A we shall use several lemmas. ‘
First we investigate some properties of the function ¢; X — L%(X) defined by

t(x) = Yi-1 o Yser, fi(X)fi



1150 JUPP AND SPURR

LEMMA 1. If {a.} satisfies condition C then
Yk=1 ok Yer, fi(X)f;

in uniformly convergent.

PROOF. Condition C states that supy | axo¥/?| < « for some s > (dim X)/2.
Choose r € ((dim X)/2, s). Then there exists K > 0 such that

1+ 35 o7 Sper, (f(x)? = |6:)12, < K for all x in X.
(cf. Lemma 3.1 of Giné (1975).) Thus for N = 1
SNy o Srer, (fi(x)? < K for all x in X.

Also, because o, — @ as k — » (see, e.g., page 254 of Warner, 1971), ¢} tends
monotonically to zero. Then by the normed space version of Dirichlet’s test

k=1 050k Xper, fi(x)fi

is uniformly convergent.
For n > m we have

| Zi-m ar Zper, fi)fil|? = Tiem af Yser, [fi(x)P
< (supx | axo¥?|)? Them 0%° Yser, [fi(x)])?

which tends to zero uniformly in x as m, n — . Thus the Cauchy condition is
satisfied and uniform convergence follows. 00

COROLLARY. If {au} satisfies condition C then t: X — L*(X) is uniformly
continuous.

PROOF. Continuity follows from the uniform convergence above. Uniform
continuity follows from compactness of X. 0

LEMMA 2. If X, is as defined in Theorem A then {Z(X,)}n- is relatively
compact in P(L3(X X Y)).

Proor. If {f}Z., {g}: are orthonormal bases of L%*(X), L?*(Y) then
{f: ® g}i’i=1 is an orthonormal basis of L2(X X Y).
For every i and j, we have by the usual finite-sampling calculation

E[(Xa, f: ® g)*] = Var((X,, f: ® g))
= (n/(n — 1))Var,m((¢(X), f))Varp(u(Y), g))
= (n/(n — D)Ep[(UX), fi)*IEp[(w(Y), g)?]
= 2E,p[(t(X), f)’1Ep[u(Y), £),
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where »{” and v{” are the marginals of »*” on X and Y. Thus
E(Zmaxtciior(Xn, f; ® %) = 2 Tmasior Bapl(6(X), f)Ep[(u(Y), g)7)
= 2 Tisr Ep[(U(X), £2)?] 25 Epl(u(Y), g)?]
+ 2 31 Ep[(UX), £] T Epl(u(Y), g)?)
= 2 supyey | u(y) |12 Tisr E[(H(X), f:)?]
+ 2 supeex || t(x) |2 Xjor Epl(u(Y), )2,

and by Lemma 1 this tends to zero uniformly in n as r — . Theorem 1.13 of
Prohorov (1956) now shows that {#(X,)}x-, is contained in a compact subset of
P(LA(X X Y)).0

The next lemma is a multivariate permutational central limit theorem.

LEMMA 3. Let E and [F be finite-dimensional inner product spaces and let
{(enirdni): 1 =i=<n,n=1,2, ...} be a triangular array in & X F. Define the
random element S, of E ® F by

Sn = Y Cni ® dn,o(i),
where ¢ is distributed uniformly over the permutations of {1, - - -, n}. Suppose that
(1) Yicni=0, ¥ d,i=0, n=12, ...,
(ii) n7h Yy ni ® Cni = B, Y1 dni ® dnyi — 24
for some 3, EEQ®E,Z,EFQF,
(iii) n"?max;cizn || nill = 0, MaXi<icn |l dnill — 0,

(iv) for every e >0, n7! zg,sni?c]a?,ﬁ — 0 where 8,, = || cn; |l | dnjll.
Then S, —4 N(0, Z) where the variance Z is the Kronecker product =, ® =,.

PROOF. The proof is a generalization of that of Hajek’s (1961) version of the
Wald-Wolfowitz-Noether permutational central limit theorem. For each n define
a=a, (0,1] - {1, ..., n} by

a,(t)y=j for (j—1/n<t=<j/n, j=1,..-, n.

For each n, let U, ---, U, be independent random variables uniformly
distributed on (0, 1]. Let R; be the rank of U; in {Uj, - - -, U,}. Then we may take

Sn = 2?=1 Cn,i ® dn,R;-
Define
Tn = 2:‘=l Cn,i ® da(U,-)'
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That S, and T, are asymptotically equivalent in the mean, i.e.,
lim, o E[|| S, — T, |*)/E[|l T. — E[T.]II%] = 0,

follows from a straightforward generalization of Hajek’s Theorem 3.1. The only
nontrivial part of this generalization is the following version of his Lemma 2.1:
If dim E = p, then

E[ll cnawy = cnr, 17l = 2(2p)*/n maxicicn Il €ai | (T | Cni %)

This is obtained by summing the corresponding inequalities for the compo-
nents of ¢pqw, — Cnr, given by Hajek’s inequality (2.5) and then using Jensen’s
inequality and concavity of the function t — t/2.

Assumptions (ii) and (iii) ensure that

limp,w(maxi<izn || €n,i 1 %/Zi Il caill?) = 0

and so S, and T, are asymptotically equivalent in the mean.

Every subsequence of {.#(S,)}s-: has a convergent subsequence. By asymptotic
equivalence, the same is true for {Z(T,)}-,. Using assumptions (ii), (iii) and
(iv), it can be seen (cf. Hajek’s Theorem 4.1) that for any v € E ® F any
convergent subsequence of {Z((T,, v))}n-1 converges to N(0, (Z, v ® v)). Thus
Z(T,) and .Z(S,) converge to N(0, 2).0

PROOF OF THEOREM A. For any finite subset {(h,, k.): « = 1, ---, p} of
L*(X) X L*(Y), define the triangular array {(c,;, d,):1<i<n,n=1,2, ---}in
R” X RP by

Cnija = <t(xn,i) - t_’ ha) dn,i,a = n_1/2<u(yn,i) - a, ka>9

where c,,;, and d,;. denote the ath components of c,; and dni,a=1, ..., p.
Conditions (i) and (ii) of Lemma 3 are clearly satisfied. As #(X) and u(Y) are
bounded, conditions (iii) and (iv) are also satisfied. It follows that the asymptotic
distribution of {(X,, h, ® kg): @, 8 = 1, ---, p} is multivariate Normal. In
particular, if v = ¥?_, h, ® k, then

(Xn, V) =4 N0, (Z, v ® 1))
where 2 is the element of L%(X X Y) ® L%(X X Y) determined by
(2, (f®g) ®(f®g)) = Var, ((t(X), f))Var,,(u(Y), g))

for f € L*(X), g € L*(Y). Thus for v in L*(X) ® L(Y), we have (X, v) —
(W®, v) and so ¢,(v) — ¢w(v) where ¢, and ¢w denote the characteristic func-
tions of X, and W®. By Lemma 2, every subsequence of {#(X,)}>-; has a
convergent subsequence, say .Z(X,) — #(Y). Then, for all v in L%(X) ® L*(Y),
on,(V) — ¢y(V) = ¢w(v). As L*(X) ® LAY) is dense in its completion
L*(X X Y) and as characteristic functions are continuous, we have #(Y) =
Z(W®). Thus every subsequence of {#(X,)}% converges to Z(W®) and the
result lows. 0

PROOF OF THEOREM 2.1. Taking »” = ¢ in Theorem A, we have | X, ||2 =
T,. For random sampling from some » with independent marginals, the distri-
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bution of || X, ||? is that of T, conditional on (e, e5). Thus the asymptotic null
conditional distribution on T, exists. Now put

S12 = E[t ® u] — E,[t] ® E,[u].
Then
n'281; = n'?E[(t — E,[t]) ® (u — E,[u])]
— nV2E[n"2(¢ — E,[)] ® Eln"*(u — E,[ul)]

and the first term on the right-hand side tends to a Gaussian random vector with
mean 2, = E,[t ® u] — E, [t] ® E, [u], while the second term tends in probability
to zero. Thus, if || v — v, ® v2 || 4e8 > 0, we have

To/n=1Sel? = [ Zul®>= v —n®»n|*>0,

so the sequence of tests is consistent. If || v — »; ® »5 ||2 = 0, then T, has a limiting
distribution with support containing zero and so the sequence of tests is not
consistent. [

PROOF OF THEOREM 2.2. In the above notation, we have
n'281, = n'2(Sy; — Z) + nA2R - Z,0)
where 27 = E, o[t ® u] — E,»[t] ® E,p[u] and 21, = 0 as v = »; ® v,. Now
E,o[(n"*(S12 — 213), f; ® &)%) = Ep(HX), [ IEp[(u(Y), g)°]

and so tightness of {Z(n'?(S;; — Z{%))}%-, follows as in the proof of Lemma 2.
Then it is routine to verify that n%(S;, — Z{¥) —; W®. Finally, because » =
v; ® v, we have

(WY, f:® g) = axB,Z¥(fig)) for fEE, and g €F,. 0O

PROOF OF THEOREM 2.3. As in the proof of Theorem 2.1, n*?(S1s — Z12)
tends to a Gaussian random vector in L%(X X Y) with mean zero and with
variance that of v(X, Y). Now apply the Hilbert space version of (ii) on page 321
of Rao (1965) to the function x — || x || 2 from L2(3X X Y) to R.0

Proor oF THEOREM 3.1. Take x,; = yn; = i(2n/n) in Theorem A. If v has
independent marginals then
Z(Ty) = 21 Xal?) = 2| W»||?)

where u is the uniform distribution on S! x S*.
To show asymptotic equivalence of T and T}*, first note that by Condition
C there exists M > 0 such that sup; | axk®| < M for some s > %. Then

NELLE10* = N m 4 = Zniw 20k = 2 T2y af < 2M® T2, (in)7>.

Thus n || E,[t] | < 2n'™* ¥, i™ — 0 because 2s > 1. Similarly n || E, [u] |*
— 0.
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Now
| TH* — Tx|

[nll Bt ® ul|* — n|l E,[t ® u] - E,[t] ® E,[u]|I*|
n| (2E,[t ® u] — E, [t] ® E,[u], E,[t] ® E,[ul]) |
I 2E,[t ® u] = E,[t] ® E,[u]ll (n || E,[] | n || E,[u] 1)

IA

—0

as t(S?) and u(S?) are bounded. O

PROOF OF THEOREM 3.2. This follows from
nTr=n—m®nl®*—> |lv.H, — pl®>=||v.H,|% O
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