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ESTIMATING A QUANTILE OF A SYMMETRIC DISTRIBUTION

By ARTHUR COHEN,! SHAW-Hwa Lo, AND KESAR SINGH?

Rutgers University

The problem is to estimate a quantile of a symmetric distribution. The
cases of known and unknown center are studied for small and large samples.
The estimators for known center are the sample quantile, the symmetrized
sample quantile, the sample quantile from flipped over data, the Rao-Black-
wellized sample quantile, and a Bayes estimator using a Dirichlet prior. For
center unknown, we study the analogues of the first four estimators listed
above. For small samples and center known, the Rao-Blackwellized sample
quantile performs very well for normal and double exponential distributions
while for the Cauchy distribution the flipped over estimator did well. In the
center known case, the latter four estimators are asymptotically equivalent,
asymptotically optimal in the sense of Hajek’s convolution, and asymptotically
minimax in the Hajek-LeCam sense. For center unknown, those properties
remain true if one uses an adaptive estimator of the center for the symmetrized
sample quantile, the flipped over estimator, and the Rao-Blackwell estimator.

1. Introduction and summary. We study the problem of estimating quan-
tiles of a symmetric distribution. Sometimes we assume the center of symmetry
is known and sometimes we do not assume the center of symmetry is known.
Both situations seem to arise often enough in the real world. Dalal (1979) cites
the case of a properly adjusted chemical balance as a situation where observations
can be safely assumed to have a symmetric distribution with the true weight
being the known center of symmetry. Quality control data oftentimes entails
repeated measurements with instruments. Frequently these data collected regu-
larly (weekly say) over many years reflect symmetry.

The following is a further example of a case where symmetry with known
center is a reasonable assumption. The example is a prototype of situations
encountered in the pharmaceutical industry and other businesses.

A distributor of small symmetrically shaped buttons sells them in packages
containing a minimum number. The minimum number is large so he would not
want to actually count the number in every package formed. Instead he counts
out the minimum number (plus some extra) and puts them in a cannister and he
observes a marker on the cannister where the buttons reach. (This is analogous
to measuring cups of flour.) These buttons form the first package. For future
packages he simply fills the cannister to the same marked height. In examples of
this type, oftentimes the number of buttons in a package as a random variable
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has a symmetric distribution about the known counted number in the first
package. The symmetry assumption here would be even more compelling if it
were validated from past or current data derived under similar conditions.

Statistical tests for symmetry with known center and unknown center exist
in the literature. Hollander and Wolfe (1973) discuss distribution-free tests of
symmetry and cite four references. Gastwrith (1971) offers an additional test for
symmetry. Many researchers have studied inference problems under the sym-
metry model. For example, see Hannum and Hollander (1983), Schuster (1973),
and Hodges and Lehmann (1956).

In Huber (1981), page 95, it is stated that most robustness literature adopts
the assumption of symmetry. Huber points out however that such an assumption
“violates the very spirit of robustness.” Furthermore the assumption should not
be made if the model distribution is asymmetric. The model of this paper is
appropriate when one believes that it is reasonable to assume a symmetric
distribution based on empirical evidence of the past, based on the physical
considerations under which the data is collected, or for both of the above reasons.
Intuitively the assumption of symmetry leads to substantially improved esti-
mators.

Let X;, X,, - -+, X, be a random sample of size n from a distribution with
c.d.f. F. Let &) denote the Ath quantile, with .5 < A < 1, which is uniquely defined
under the conditions imposed on F later.

We assume F is symmetric with 6 as the center of symmetry. In the case

of known center, 8 = 6,. The order statistics are X;) < X < -+ = X(», and
Yoy = --- = Y, represent the ordered values of Y, = |X; — 6o,
j=1,2, .-, n. When the center of symmetry is assumed known, we study the

following five estimators (in the known center case, without loss of generality
6o = 0): Ty ()\) the sample Ath quantile which we define as

(1.1) Ti(N\) = aXqun+n + (1 — a)Xgnnp,

for o« = n\ — [n\] + Y2 and [a] is the largest integer less than or equal to a; the
quantity T = (T, — 6, V 0).

(1.2) To2(\) = (TT(A) — Tr(1 = N)/2,

where T7 = (T, — 6o A\ 0). T5()\) is the (2\ — 1)th sample quantile using the Y
sample. We call T5(\) the flipped-over estimator. T (\) is the Rao-Blackwellized
version of T'{ and it depends on the Y sample. (In Section 2 we give T4(X\)
explicitly.) Ts(\) is a nonparametric Bayes estimator using a Dirichlet prior and
a symmetric linear loss function.

Estimators T, and T are intuitive and obvious choices as competitors to T}
under the symmetry assumption. The choice of T is based on the fact that the
Rao-Blackwellized version of T'{ must be superior in mean square error to T7
for any possible symmetric distribution and for all sample sizes. T} is studied out
of interest as a nonparametric Bayes estimator for a prior that should not be too
informative. Typically such nonparametric estimators have been shown to be
reasonable. See, for example, Ferguson (1973), Section 5.
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We verify that estimators T, Ts, T and T differ by O(n~%* log n) a.s., and
hence all have the same asymptotic variance. The proof of the first-order
asymptotic equivalence of T and T does not require the symmetry model of the
rest of the paper and so this gives a result of independent interest. That is, the
Bayes estimator for a Dirichlet prior for the symmetric absolute error loss
function is asymptotically equivalent to the sample quantile.

For all sample sizes, it is clear that the mean square error for T, is smaller
than the mean square error for T{ and T,. Computer work for finite samples
indicates superiority of T in the normal and exponential cases. For the Cauchy
distributions, however, T, appears best.

For the case where the center of symmetry is unknown, analogues of T,, Ts,
Ts and T, are suitably defined and represented asymptotically as a sum of a
location component and a shape component. These representations help one
visualize the asymptotic nature of these estimators. The problem of asymptotic
optimality and asymptotic minimaxity is studied in both cases of center of
symmetry known and unknown.

In the next section we give the estimators and their asymptotic variances for
the cases where the center of symmetry is known and unknown. In Section 3 we
show that Ts, Ts, Ty and Ts are asymptotically equivalent. Section 4 is devoted
to asymptotic representations of the estimators when the center of symmetry is
unknown. Asymptotic optimality is discussed in Section 5.

2. Estimators and their asymptotic distributions. Throughout all sec-
tions we will assume that F is twice differentiable in a neighborhood of £,; that
F’(x) = f(x) is bounded away from 0 in the neighborhood and that | F” | is
bounded in the neighborhood.

Estimators Ty, TT and T, were given explicitly in Section 1. The estimator
T3(\) may be expressed as

(2.1) Ts(\) = aY([n(2)\—1)]+1) + (1 - a)Y([n(zx—l)]),

where o = n(2\ — 1) — [n(2\ — 1)] + Y. In order to express T,;(\) explicitly,
note that for any integer r, 1 < r < n,

(2.2) EX» VO|Yw, Yo, -+, YY) = (A)" Xja 2,~-1<frl :]]'>Y(j)-

If the « in expression (1.1) is 0 or 1, (2.2) suffices to define T (\) explicitly. Also
in studying T,(\) asymptotically, it suffices to look at (2.2) with r = [nA] and
[nA] + 1. See Lemma 3.1. If the « in expression (2.2) is not 0 or 1 then, although
we cannot write one explicit expression for T4()\) in all cases, the idea used in
deriving (2.2) can be used in particular cases to derive

E{laXqm+n + (1 — &)Xl VO| Yq), Yo, -+, Yl

The Bayes estimator T5(\) is derived for the loss function L(a, &) = | a — & |
and for a Dirichlet prior whose support is the class of distributions symmetric
about 0. For details on such priors, see Dalal (1979). The Bayes estimator is any
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median of the posterior distribution of £,. It follows from Ferguson (1973), page
225, and Dalal (1979) t}}at the Bayes estimator is the u(%, 2\ — 1, a(R) + n)th
quantile of F., where F,(t) = (M/(M + n))F*(t) + (1 — M/(M + n))F,,(t),
where F,(t) is the empirical c.d.f. symmetrized around 0, F*(t) = a(—x, t)/M,
M = a(R), a is the parameter of the Dirichlet prior, and u is the solution of the
equation:

1
(2.3) »L\ T(M)/[TuM)T((1 — u)M)]z“MY(1 — 2) M1 gz = é
-1

It follows from the central limit theorem for quantiles that 7' (\) is asymptot-
ically normal with mean £, and variance A(1 — \)/nf?(£). (See, for example,
Serfling, 1980, page 80.) The multivariate central limit theorem for quantiles can
be used to prove that T:>(\) is asymptotically normal with mean £, and variance
(2N — 1)(1 — N\)/2nf*(£)). (Again see Serfling, 1980, page 80.) Asymptotically T%,
Ts, Ty and T’ are equivalent (see Section 3) and so the variances of the asymptotic
distributions of T3, T, and T are also (2X — 1)(1 — X)/2nf%(£,). The ratio of
asymptotic variances for T; and T is e = 2\/(2\ — 1) which is a measure of the
improvement in estimating a quantile under the symmetry assumption. Clearly
2<e=<owsince’a<A=<1.

We next determine the analogue of T%, Ts and Ty when the center of symmetry
is unknown. Let 6 denote the center of symmetry and let § be an estimator of it.
The analogue of T is Ty (0, \) = T¥(\) + ﬁ, where T ()\) is the analogue of T2(\)
but now 6, is replaced by 6. The analogue of T’ is

(2.4) Ts(0, ) = aZ gaer-n1+n (@) + (1 — @) Z (ner-1y (0),

where Z;(6) = X; if X; > 6 and Z:(0) = 26 — X; otherwise; and Z(,-)(é) are the
ordered Z’s. Similarly the analogue of Ts(\) namely T, (6, \) is obtained as Ty(\)
except that the Y{; are replaced by Z; (6). The asymptotic variances of these
analogues are discussed in Sections 4 and 5.

REMARK 2.1. Suppose we define the Ath population quantiles &)\(F) =
inf{x: F(x) = \}, where F lies in the class of all distributions symmetric about
0. Then the nonparametric maximum likelihood estimator (m.l.e.) of &, is
inf{x: Fno(x) = \} where F,o(-) is the symmetrized empirical c.d.f. around 0. It
is clear that the m.l.e. is virtually the same as T5(X).

3. Asymptotic equivalence of Ty, T3, Ts and Ts. In this section we will
repeatedly use Bahadur’s asymptotic representation of quantiles. See Bahadur
(1966) or Serfling (1980), page 91.

THEOREM 3.1. With probability one, | Ty — Ts| = O(n~34(log n)%*), n — .

PROOF. A standard argument shows that P({T, = T1} U {T1 = T1}) decays
exponentially fast. In view of this, use Bahadur’s representation of T; and note
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that with probability one
To— & =[(T1(\) = £)/2] = [(T1(1 = X\) = &-2)/2] + R,
(3.1) ={A = Fo(&)1/2f (&)} + {[Fa(£1-0) — (1= N)]/2f(&12-0)} + R
={(2N = 1) = [Fa(&) = Fa(&120)1/2f(6) + Ry,

where F, is the empirical c.d.f. of X/s and R, = O(n~¥*(log n)¥*), a.s. as n — oo.
Let fo, Fo, denote the density and the c.d.f. for the distribution of Y = | X|, and
let F, o be the empirical c.d.f. of Y;s (Y; = | X;|). Let £} denote the tth quantile
of Fy. Then by Bahadur representation with probability one

B2) Ts—&6=(2N—1) — Foo(E5-1))/f(E5-1) + R, as n — .
The theorem follows now from (3.1) and (3.2) recognizing that f(£5-1) = 2 (&)
and F,,o(£3\-1) = Fo (&) — Fn(£-2) + O(1/n).0

In Theorem 3.5 below we show the asymptotic equivalence of T; and
EXgp| Yy, Yo, -+, Yiy) = 2kt ¢ Yy (see (2.2)). The same proof yields the
asymptotic equivalence of T and E (Xu+1y| Yy, - - -5 Yimy)- Then the equivalence
of Ts and T, will follow from

LEMMA 3.2. LetY =(Yq), Yo, -+, Yw). Then

Ef(aXqm+y + (1 — &) Xmrp) V 0] Y}

= aE(X@n+y VO|Y) + (1 - a)EXuypy VO|Y) + v,
where | v,| = (1 — a)p, Yna-a+1n and p, = (fhy) 277

PRrROOF. Note that (1- Ol)X([,,)\]) + aX([n)\].H)) V 0 differs from [(1 - a)X([,,A])

V 0] + [a@ Xy V 0] only when X, < 0 and Xu+1) > 0. The conditional

probability for this is ({,y) 27". When this does happen the difference between
the two cannot exceed (1 — ) Y(na-ny+n- O

Note that p, in Lemma 3.2 goes to zero exponentially fast. To prove Theorem
3.5 we need

LEMMA 3.3. Let k be such that | k — (2r — n) | = c(n(log n)) ', for a constant
¢ to be determined. Then c; = O(n™%). -

PRrROOF. Use the version of Stirling’s formula as given in Feller (1968), page
54, formula (9.15) to find that
< (k/m)z—(n—kﬂ)(n —k) (n—k+1/2)(r _ k)—(r—k+1/2)(n _ r)—(n—r+1/2)
(3.3)
< Kn'?2=""Pexp[(n—k)log(n — k) — (r—k)log(r— k) — (n—r)log(n—r)]
where K is a constant. Let s = k/n, A = r/n, rewrite the right-hand side of (3.3)
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in terms of s and ¢t and it becomes
Kn'?exp[-n(1 — s)log 2 + n(1 — s)log n(1 — s)
—n(A —s)logn(A —s) — n(l — Nlog n(1 — \)].

(3.4)

The derivative of the exponent in (3.4) with respect to s is n log 2(1 —
(1 =X\)/(1 — s)). Hence the derivative is strictly decreasing as s varies from 0 to
A. It is positive for s < 2\ — 1, 0 for s = 2\ — 1 and negative for s > 2\ — 1. Thus
it suffices to set

(3.5) s = (2\ — 1) + c(log n)Y?/n'/?

in (3.4) and verify that (3.4) = O(n7?).
Using (3.5), (3.4) becomes

Kn /29 —2n(1-Ng:£nc(logn/n)'/?
- exp[(2n(1 — X) F nc(log n/n)»log(2n(1 — \) F nc(log n/n)?)
—(n(1 — \) F nc(log n/n)»log(n(1 — \) F nc(log n/n)"?)
—n(1 = Nlog n(1 — \)].

In (3.6) write log(2n(1 — X\) ¥ nc(log n/n)"?) as log 2n(1 — ) + log(1 — c(log
n/n)?/2(1 — X)) and other terms similarly. Then we use the fact that log(1 +
z) =z — 2%/2 + e, with z = c(log n/n)?/2(1 — \) and e, = O(log n/n). After
some algebra (3.6) becomes

(3.7 Kn'%exp{(—c?log n/4(1 — \)) + o(1)}.
Choose ¢ = (10(1 — X)) '/? and the lemma holds. 0

(3.6)

We also need

LEMMA 3.4. Let 3* c. denote the sum of ci, over all k such that |k — (2r — n) |
< c(n log n)*?, where c is as in Lemma 3.2. Let x,, = (k — (2r — n))/nY2 Then

(3.8) S* ¢, =1+ O((log n)?/n)
(3.9) Y* xxcr = O((log n)¥%/vn).
ProOF. Use Stirling’s formula again and proceed as in the proof of Lemma
3.2 to find that, for | k — (2r — n) | < c(n log n)?,
ce = {[1 + O((log n)*/n)]/n**(4x (1 — \))"3}
- exp[—(x/4(1 = \)) + (4Vn(1 = )z = (4(1 = N)*Vn)xi]
= [1 + O((log n)*/n)][L + (4¥n(l = N)x = (4VR(1 = N)?)xi]
. expTH/4(1=N)).

Now (3.10) and some calculations reveal that * c, as a Riemann sum over

(3.10)
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subintervals of width (1/vn) approximates
(1/v2x 2(1 = \)) f e /40N + x/4¥n(1 — \) — 23/4¥n(1 — \)?] dx,

where a, = c(log n) /2, up to O((log n)*/n). With the help of integration by parts,
this latter integral is seen to be 1 + O(1/n). Similar arguments yield (3.9). O

THEOREM 3.5. With probability one, as n — o | E(Xuy V 01 Y) = Yen—tap|
=0(n"**og n)
ProoF. Consider
Y¥eYm = 2% (Yo — Yoren) + Yrn)
=X* (Yo — Yorn + Yeorn) X* ci.

Lemmas 3.3 and 3.4 imply the conclusion of the theorem provided it can be
shown that

(3.12) Y* (Yo — Yarm) = O(n™**(log n)**),
with probability 1 as n — «. We may rewrite (3.12) as the sum of
(3.13)  X* cx[Fro(k/n) — F5'(k/n) — F75((2r — n)/n) + F3'((2r — n)/n)]

and

(3.11)

(3.14) X* cx[F5'(k/n) — F5'((2r — n)/n)].
To deal with (3.14) use Taylor’s theorem for F, to find that (3.14) is
(3.15) S* cxlxa/Vnfo((2r = n)/n) + x¥/nfi (),

where » is near (2r — n)/n. Since | x| < c(log n/n)'/? for those indices k in the
Y*, it follows that (3.15) is O((log n)/n).

From the uniform version of quantile representation (see Kiefer, 1970), it
follows that (3.13) is bounded above by

K Suplalsc(logn/n)l/zl Fn,O(EZ*)\—l) - FO(E;)\—I)
- ,,,0(233\_1 + (1) + FQ(E;)\—I + a)l + O(n_3/4(10g n))
Now by Lemma 1 of Bahadur (1966) (3.16) is O(n~**log n) with probability 1.0

Next we demonstrate the asymptotic equivalence of Ts and Ts. To accomplish
this we consider the more general problem of estimating a quantile of a distri-
bution without imposing the symmetry condition. We will show that the Bayes
estimator, say Tp, for symmetric absolute error loss and Dirichlet prior with
parameter « is asymptotically equivalent to the sample quantile T, in the sense
that | T — T1| = O(log n/n), with probability one as n — . This same proof
along with the definition of T given in (2.3) of Section 2, will imply the
asymptotic equivalence of T3 and T in the symmetric case. This result is of
interest in its own right.

(3.16)
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The model and notation is as in previous sections, only now we do not require
that F is symmetric.

THEOREM 3.6. The estimators Tg and T, are such that with probability one,
| Tg — Th| = O((log n)/n), n — oo,

PRrOOF. It follows from Ferguson (1973), page 225, that T is a solution in ¢
of
(3.17) ' P(Z/(Z + W)] > \) = W,

where Z and W are independent gamma random variables with shape parameters
[a(—ox, t) + nF,(t)] and [a(t, ©) + n(1 — F,(t))], respectively. Represent Z as
%, v;, where v; are i.i.d. gamma variables with parameter [(a(—, t)/n) + F,(t)].
Similarly represent W as Y, v/, where »/ are i.i.d. gamma variables with
parameters [(a(t, ©)/n) + (1 — F,(t))]. Let n; = (1 — A)y; and 5/ = —Av’. Then
(3.17) may be written as

(3.18) P(X& (i + 9f) > 0) =%,
and so the left-hand side of (3.18) can be written as
(3.19) P([XE1 (i + nf) — E(XE1 (i + 0{)]/o (T (0 + 0i)))
= —E(X(n: + n{))/e(Z(n: + n!))),

where (X (n; + n/)) is the standard deviation of (}; (n; + n/)). We may apply a
Berry-Esseen Theorem to (3.19). See Feller (1971), page 544, Theorem 2. In
applying the theorem it is easily verified, using the moment properties of »; and
v{, that the remainder term is O(1/vn). Thus from the Berry-Esseen Theorem
we have that (3.19) is

(3.20) SET (0 + 1))/a(Z (i + () + O(1/n),

as n — oo, uniformly in ¢. Hence from (3.17) we seek the solution of

321) E(Z (i + n/)/o(Z (: + i) = 0(1/vn).

It is easily verified that ¢ (Y (n; + n;)) = 0(+n) and so (3.21) reduces to

(3.22) EX (n; +nf)) = 0(1).

We may rewrite (3.22) as

(3.23) (1 =M(a(==,t)/n) + F,(t)] — M(a(t, ®)/n) + (1 = F.(¢))] = O(1/n),
which yields the equation

(3.24) F.(t) =X+ 0(1/n).

From (3.24) it is not hard to show that the solution in t, namely T, is such that
| Ts — T:| = O((log n)/n) with probability one. O

REMARK 3.7. For estimating a quantile, Ferguson (1973) considers the fol-
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lowing class of loss functions:
L(t, &) = ple — &) if &H=4
=(1- p)(g;\ -&) if = EAA.

For a loss function in this class, the Bayes estimator is a solution (in t) of the
following equation:

(3.25)

P(B(a,b) > \) = p,

where §(a, b) is a Beta variable with a = a(—, t) + [number of X; < t] and b =
a(t, ©) + [number of X; > t]; « is the measure of the Dirichlet prior. The method
of proof in Theorem 3.6 yields the following representation for the Bayes
estimators:

(3.26) £ = F;'(t) + g(p, \)/vn + O(n"'(log n) a.s.,

where g(p, \) is a nonzero real except for p = % when g(%s, \) = 0. Using
(3.26) one notes that the limiting distribution of «/ﬁ(b\ — &) is N(g(p, N),
M1 — N)/f2(£))). Hence the Bayes estimator is asymptotically inferior in a bias
and mean square sense to F,*(\) except when p = Y.

4. Asymptotic representation of estimators when center is unknown.
Let  be an estimator of the center 6 such that |§ — 8] = O(n""%(log n)"?) a.s.
Define q(a, t) to be the tth population quantile when the population is flipped to
the right around a. That is, the tth quantile of the distribution whose c.d.f. is

F(2a—x) for x>a
otherwise.

(4.1) Fu(x) {: b =

Also define §(a, t) to be the tth sample quantile corresponding to the data flipped
to the right around a. So G(a, t) is the tth quantile of F,.(x), which is the
empirical c.d.f. of the data flipped to the right of a. We need the following two
lemmas:

LEMMA 4.1. The function q(a, 2\ — 1) is partially differentiable with respect
to a in a neighborhood of 6 and
dq(a, 2\ — 1)/dala=¢ = 1,
(4.2) ‘
d%q(a, 2\ — 1)/d%a| is bounded in the neighborhood.
ProoOF. From (4.1), g = q(a, 2\ — 1) is the solution of the equation
(4.3) F(qg) — F(2a — q) = (2x — 1).
Differentiating both sides of (4.3) with respect to a yields

(4.4) F’(q)(6q/da) — F'(2a — q)(2 — (dq/da)) = 0.



ESTIMATING QUANTILES 1123

In (4.4) substitute 6 for a, use the fact that F’(q) = F’(20 — q) and solve for
(8g/da) | 2 = ¢ to establish (4.2). The second part of the lemma follows by differ-
entiating the left-hand side of (4.4) and using the fact that F’(-) is bounded away
from zero in a neighborhood of &,. 0

LEMMA 4.2. There exists a neighborhood I of 6 and a neighborhood J of
(2N — 1) such that
SupaEI,tEJI Q(a, t) - Q(a, t) + (Fn,a(q(a’ t)) - t)/Fé (Q(a’ t))l

(4.5) = 0(n"¥*(log n)** a.s.

PROOF. Make a choice of the neighborhoods I and  small enough such that
foralla € Iand t € J, F,(x) is twice differentiable for x € [g(a, t) — ¢, q(a, t) +
el, ¢ > 0, and on this interval F;(-) is bounded away from zero and | F7| is
bounded. That such a choice of intervals is possible is seen by doing a two-term
Taylor expansion of g(a, t) around (4, 2\ — 1) and using the properties of F, F’,
F” assumed throughout.

Let

(4.6) Rp(a, t) = q(a, t) — q(a, t) + (F.(q(a, t)) — t))/F;(q(a, t)).

Note that §(a, t) is nondecreasing in each argument. This fact and the Lipschitz
property of (F, — F) (see Lemma 1 of Bahadur, 1966) imply

SuPaserces | Ra(a, t) |
= max{R,(a;, t;): a; = 0 + in"*(log n)**,
4.7 ti= (2N — 1) + jn"*(log n)**,
over all integers i and j such that a; € I and ¢; € J}
+ O(n™**(log n)**) as.

For any fixed (i, j) such that a; € I, t; € J, one obtains the following probability
bound by mimicking and slightly modifying the proofs in Bahadur (1966):

(4.8) P(| R.(a;, t;) | > Cin™**(log n)**) < Cen™,
where C;, C; do not depend on (i, j). Now the proof of the lemma is concluded
using Bonferroni’s inequality and the Borel-Cantelli Lemma. O
THEOREM 4.3. The difference
(4.9) Ts(6, \) — T30, \) = (6 — 0) + O(n ¥*(log n)** a.s.
The significance of the theorem is that it yields the representation T3(0 A —

&= (T3(0, \) — &) + (6 — 0) + O(n~¥*(log n)*4). Typically T5(0, \) and (6 — )
are asymptotically uncorrelated. See Remark 4.6 below.
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ProOF OF THEOREM 4.3. The following two statements yield the theorem:
SUP| g—a|=cn~2(logn)1/2
(4.10) - |q(a,2x — 1) —q(a, 2A — 1) — q6, 2x — 1) + q(4, 2x — 1) |
= 0(n~%*(log n)¥*) a.s.
qla, 2\ — 1) =q(0, 2\ — 1) + (@ — 0) + O((a — 6)?)
(4.11)
as |0—a|—0.

Clearly (4.11) follows from Lemma 4.1 and Taylor’s expansion. Lemma 4.2
implies that the left-hand side of (4.10) cannot exceed

SUD| 9—a |<cn~2(ogn)V2| (Fna(q(a, 2\ — 1)) — (2N — 1))/F;(q(a, 2\ — 1))
(4.12) — (Fra(q(6,2\—1)) — (2x—1))/F:(q(6,2x — 1)) |
+ O0(n~**(log n)**) aus.

Using Lemma 1 of Bahadur (1966), (4.12) is easily seen to be O(n~**(log n)%*);
this establishes (4.10). 0

THEOREM 4.4. The difference
(4.13) Ty(0, \) — Ts(8, \) = (6 — 6) + O(n"¥*(log n)**) a.s.

PROOF. We may write T4(8, N) = XV cxZu(8), where Z () are defined

in Section 2. We use the properties of ¢, from Lemmas 3.2 and 3.3. Since
cr=0(n"%) for | k — n(2\ — 1) | = cn'?(log n)*/?, we need only show

(4.14)  T* cuZuw (@) = T4, ) = (6 — 0) + O(n*(log n)**) as.,
where Y * runs over k such that | k — (2\ — 1)n| < cn'/?(log n) /2. Write
(4.15)  T* caZi(@) = 2* Zaer-1p(0) cx + T* (Zw(0) — Z tnar-1p(6))c.

From (3.8) of Lemma (3.4), the fact that Ts(6, \) may be taken as Z,n-1)) )
up to appropriate order, an application of Theorem 4.3 yields that (4.15) may be
written as

G, 2x—1) + @ - 9)
(4.16) + 3% [Zw(0) — Z uar-1p (@)l + O(n~4(log n)¥*)  ass.
= Ty6, \) + (6 — 0) + Q. + O(n"¥*(log n)**) as.
where

(4.17) Qn = 3* [Zw () = Z (uizr-1 ().
Now (4.17) is

S* [4(6, k/n) — G(6, 2\ — 1)]cs,
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which may be expressed as the sum of

(4.18)  B* (40, k/n) = q(@, k/n) = 4(6, 2\ = 1) + q(d, 2\ ~ D],
and

(4.19) Y* [q(6, k/n) = q(@, 2x — D)]cs.

It follows from Lemma 4.2 that (4.18) is O(n3/(log n)**) a.s. Study (4.19) by
doing a Taylor expansion in k/n about (2\ — 1) and use the fact that

¥ [(k/n) — (2N = 1)]cx

is zero + O(log n/n). Thus (4.18) is O (n"**(log n)**) which in turn implies (4.14)
and the theorem is proved. 0

) REMARK 4.5. Clearly the estimator T, (é, \) can be represented as T, (0, \) +
@ —0).

REMARK 4.6. We remark that § and §(9, 2\ — 1) are typically uncorrelated.
Let 6 = 6(x1, x2, ---, x») be an odd location functional as defined in Hogg
(1960). That is, 0(x, + k, x5 + &, - -+, X, + k) = 0(xy, X2, « - -, %) + k, and 0(—xy,
—Xoy vy —Xn) = —0(x1, %o, -++, X,). Our scale statistic S(x;, xg, «--, x,) =
G(0, 2\ — 1) is not an even scale statistic in the sense of Hogg (1960). Nevertheless,
it is invariant under the transformation w; = 26 — x;, which amounts to rotating
the data 180 degrees around 6. If Vn[d — 6, § — q(6, \)] has a limiting bivariate
normal limit (U, V), it follows from the invariance properties of § and § that
Vn[62X, -0, ---,2X,—0) —0,5(2X, — 0, - --, 2X,, — 6) — q(6, \)] has its weak
limit (=U, V). However, in light of the symmetry of F about 6, the latter weak
limit remains (U, V). The conclusion is that (U, V) = (=U, V) in law. This
implies that cov(U, V) = 0.

REMARK 4.7. Stone (1975) studies an adaptive estimator which is location
and scale invariant.

5. Asymptotic optimalities. In this section we need to add the further
assumption that F’(x) = f(x) exists everywhere. We retain our other assumptions
given in Section 2. We start by assuming the center 6 is known and without loss
of generality § = 0 and A = .5 so that £, = 0. Note that £, can be defined implicitly
by the M-functional

(5.1) [ v - s apwr =,

where Y(x) = A/(1 — ) if x = 0, ¢(x) = —1 if x < 0. The quantile £, as a
functional whose domain is & = {F: F’ exists everywhere} is Hellinger differen-
tiable. (See Beran, 1977.) Let %5 = {F: f = F’ exists everywhere, f is symmetric
about 0, f satisfies the assumptions of Section 2}.
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LEMMA 5.1. Let F € S. A Hellinger derivative of &, at F with respect to S is

(5.2) (“2)ps(x) + ps(—x)],
where
(56.3) pr(x) = 2¢(x — £)2(x)(1 — N)/f(&),

and the derivative is a symmetric function around zero.

PrOOF. From the argument of Beran (1977), Theorem 4, (5.3) is a Hellinger
derivative of £, with respect to the class of all densities in %5. Decompose p; as
follows:

(5.4)  or= (ps(x) + ps(=x))/2 + (ps(x) — ps(—x))/2 = p} + pf (say).
If f, € %5 then
(5.5) ((or(x) — pr(—x))/2, fi® = f2) = 0.

Therefore it is clear from the definition of Hellinger differentiability (see Beran,
1977, (2.1)) that p/ is a Hellinger derivative with respect to %, which is a
symmetric function around zero. 0

THEOREM 5.2. For any regular estimator £, of &\, the asymptotic distribution
of «/ﬁ(g} — &) can be represented as the convolution of the N(0, | p}|%/4)
distribution with 2 (f), a distribution depending on f. (Note that the definition of
regular is in Beran, 1977, page 438.)

PrOOF. The result follows from the arguments in Theorem 6 of Beran (1977).
The symmetry of p/ is crucial in the argument if the domain is . 0

The quantity
(5.6) o7 12/4 = (2X — 1) = N)/2f%(&).

Recall from Section 2 that (5.6) is the variance of the asymptotic distribution of
Te, Ts, Ty and Ts. Hence by virtue of Theorem 5.2, T, Ts, T, and T are
asymptotically optimal in the sense of minimum asymptotic variance in the class
of regular estimates. See Remark 5.4 where the regular property is discussed for
T2, T3, T4 and T5.

Next we discuss asymptotic efficiency from the point of view of the Hajék-
LeCam minimax bound. We prove below that the asymptotic variance of T, Ts,
T4 and T is the asymptotic minimax bound. We need to add to our assumptions
that f’(x) exists and

(5.7 f [(=F(x) — xf"(x))/f*(x)]? dx < o0,
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THEOREM 5.3. Let F be fixed. Let £, be any estimator of £. Then
lime .. lim, . infs, supgenre/vi EalVn(éy — £)]°
= (20 — 1)1 = N)/2f%(&)
where B(F, ¢/ Vn) is the Hellinger ball, of radius c/ Vn around F.

(5.8)

Proor. Note that the problem of estimating £,, a quantile of f, can be viewed
as a problem of estimating £\, a scale parameter of g where g(x) = &f(x£.). We
consider this equivalent problem of estimating the scale parameter for ¢ when X
is observed from g&,(x) = (1/£))g(x/£\). We want to apply Theorem 3.2 of Begun
et al. (1983). Therefore we compute

7(8,) = 0vg;, (x)/96

= (% 68" (x))[—gy, (x) — x84 (%)].
We also find that 8*(g;,), where 8* is defined in Begun et al. (1983), equals
(5.10) 7(8,) — pz./l 0z 1%

Now (5.9) and (5.10) enable application of the Begun et al. theorem. The
asymptotic lower bound is || p7 ||?/4 which is the right side of (5.8). 0

(5.9)

Now we treat the case of # unknown. Define
(5.11) pf(x) = pf (x) + 4f (x)/I(F)fi”*(x),

where I(f) = [ [f'(x)/f(x)]*f(x) dx. It can be shown that p} is a Hellinger
derivative in this case. Again Beran (1977), Theorem 6, implies that for any
regular estimator £ of &, the asymptotic distribution of vn(£y, — &) can be
represented as a convolution of the N(0, || pf || ?/4) distribution with a distribution
depending on f; only. Note that

(5.12) Fefl1%/4 = [(2\ — (1 = N)/2f3(E)] + (1/I(f)).

Suppose then that in estimating £, we construct T, (6, N), Ts (é, A), Ty(6, \) with
6 an adaptive estimator of 6 which is asymptotically uncorrelated with T5(6, \),
Ts(0, N\), T4(6, N\). It follows then from the asymptotic representations of
Tj(é, N, J = 2, 3, 4, given in Section 4 and from (5.12) that such
Tj(é, M) are asymptotically optimal. ‘

For 6 unknown, the asymptotic efficiency in Hajék-LeCam sense would follow
as in the case of # known by again transforming the problem. This time the
problem is to estimate £,, the scale parameter of g5;, = g((x — 6)/£,). It turns out
that the asymptotic minimax bound is || pf|| 2/4 Certainly, the estimators
Ty (8, \), T5(0, ) and T4(6, \) are all optimal in this sense if fis adaptive.

REMARK 5.4. It can be shown that the sample quantile is a regular estimator.
This in turn implies that T is regular and in light of the asymptotic equivalence
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of Ts with T, T, and T it follows, using a contiguity argument, that Ts, T3, T
and T are regular.

To show that the sample quantile is regular, we use the fact that the remainder
term times vn in the Bahadur representation of quantiles converges to zero in
probability under []; f(x;). This in turn implies the same term converges to
zero in probability under []” f.(x;), where f, is such that || f2 — fV/2 — 8/vn| =
0(1/v/n) for B orthogonal to f/2. Contiguity of []™.f.(x:) to ] f(x:) is used here.

Acknowledgement. The authors would like to thank Professor Charles
Stone for a conversation which precipitated this study.

REFERENCES

BAHADUR, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37 577-580.

BEGUN, J. M., HALL, W. J., HWANG, W. M. and WELLNER, J. A. (1983). Information and asymptotic
efficiency in parametric-nonparametric models. Ann. Statist. 11 432-452.

BERAN, R. (1977). Robust location estimates. Ann. Statist. 6 431-444.

DALAL, S. R. (1979). Dirichlet invariant processes and applications to nonparametric estimation of
symmetric distribution functions. Stochastic Process. Appl. 9 99-107.

FELLER, W. (1968). An Introduction to Probability Theory and Its Applications I, 3rd ed. Wiley, New
York.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications II, 2nd ed. Wiley, New
York.

FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1
209-280.

GASTWIRTH, J. L. (1971). On the sign test for symmetry. J. Amer. Statist. Assoc. 66 821-823.

HANNUM, R. and HOLLANDER, M. (1983). Robustness of Ferguson’s Bayes estimator of a distribution
function. Ann. Statist. 11 632-639, 1267.

Hobges, J. L., JrR. and LEHMANN, E. L. (1956). The efficiency of some nonparametric competitors
of the t-test. Ann. Math. Statist. 27 324-335.

HoGG, R. V. (1960). Certain uncorrelated statistics. J. Amer. Statist. Assoc. 55 265-267.

HOLLANDER, M. and WoOLFE, D. A. (1973). Nonparametric Statistical Methods. Wiley, New York.

HUBER, P. J. (1981). Robust Statistics. Wiley, New York.

KIEFER, J. (1970). Deviations between the sample quantile process and the sample d.f. Proc.
Conference on Nonparametric Techniques in Statistical Inference, Bloomington (M. L.
Puri, ed.) Cambridge University Press, 299-319.

SCHUSTER, E. F. (1973). On the goodness of fit problem for continuous symmetric distribution.
J. Amer. Statist. Assoc. 68 713-715.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York.

STONE, C. J. (1975). Adaptive maximum likelihood estimators of a location parameter. Ann. Statist.
3 267-284.

DEPARTMENT OF STATISTICS
RUTGERS UNIVERSITY
NEw BRUNSWICK, NEW JERSEY 08903



