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A NOTE ON DATA-ADAPTIVE KERNEL ESTIMATION OF THE
HAZARD AND DENSITY FUNCTION IN THE RANDOM
CENSORSHIP SITUATION

By HELMUT SCHAFER
University of Heidelberg

In a recent paper, Tanner (1983) proves pointwise consistency of a
variable bandwidth kernel estimator for the hazard function. In the present
note, a simplified proof of uniform consistency of a data-adaptive kernel
estimator with certain additional advantages is given.

1. Introduction. Let T}, i € N, be independent positive random variables
with identical distribution function F and density function f, for example lifetimes
of the patients in a medical study. Assume that the T; are censored by indepen-
dent and identically distributed positive random variables C;, i € N, C; being
independent of T; for all i. Thus, one only observes X; = min(T};, C;) and §; =
I(T: < ().

Recently, several authors (Ramlau-Hansen, 1983; Tanner and Wong, 1983;
Tanner, 1983; Yandell, 1983) have investigated asymptotic properties of kernel
estimators for the hazard function h(x) = f(x)/(1 — F(x)) and the density
function f obtained by convolution smoothing from H, and F,, the empirical
cumulative hazard function introduced by Nelson (1969) and Kaplan and Meier’s
(1958) estimator for F, respectively. Taking the example of hazard function
estimation in the remainder (replace H, by F, systematically for density esti-
mation), in a more general form the estimators may be written as

hn(x) = i1 (6/Na(X)) - Rui - K((x — Xi)/Ra)

with random variables R, ;, i < n, where N,(x) = Y%, I(X; = x) denotes the
number of individuals at risk at time x — 0 and the kernel K is a density function
on R.

Tanner (1983) proves pointwise strong consistency of a data-adaptive esti-
mator with stochastic bandwidths R, ; = R, depending on the point of interest x,
defined by R, = distance of x to its k,th nearest neighbour among the failure
points X;, §; = 1, i < n. These bandwidths have the disadvantage of being “biased”
by the censoring distribution in the sense that they adapt to the conditional
density of the random variables T; under the condition T; < C; of being uncen-
sored, rather than to the density function f or the hazard function h to be
estimated. Furthermore, in order to obtain a function integrating to 1 in the case
of density estimation, the bandwidths of data-adaptive kernel estimators should
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not depend on the point of interest x, but on the sample point X; (Breiman et

al., 1977).
We therefore define

R, ; = inf{r | H,(X; + r) — Ha(X; — 1) = pn}

with a sequence p, — 0 of positive real numbers. These bandwidths not only
have the desired properties, but also simplify the proof and yield uniform
consistency, because they allow straightfoward application of the convergence
results for H, (F, in the case of density estimation) (Aalen, 1978) to derive the
required asymptotic behaviour. We like to emphasize that the usual technique of
integral representation and integration by parts does not apply to variable kernel
estimators with bandwidths depending on the sample point. This may be one of
the reasons why no attention has been paid to asymptotic properties of these
estimators. In the following proof, we use Riemannian sums together with sharper
asymptotic expressions for the bandwidths.

2. Uniform consistency.

THEOREM. Choose p, such that p,log(n)/n'/? —  and define R,,; as above.
Let K(*) be a bounded Riemannian integrable function with compact support on
the interval [—1, 1). Let the density functions of both the C; and T; be continuous
everywhere, let 0 < a < b with P(C; < b) < 1. Then sup.eja| h.(x) — h(x)]

—a.s. 0

PrROOF. We put H,(I) = H,[u, o] = H,(0) — H,(u) for an interval I = [u, o]
for abbreviation, and R, (t) = inf{r | H,[t — r, t + r] = p,}. Throughout the proof,
we suppose to deal with a sample fulfilling the convergence result of Proposition
3i of Aalen (1978) on a compact interval [0, c] with ¢ > b.

Let ¢ > 0. We first consider the set S; = {x € [a, b]| h(x) > ¢}. Define r,(x) =
Pn/2h(x) and an interval I,(x) = [x — 4r.(x), x + 4r,(x)] for every x € S;. By a
first application of Aalen (1978), H,[x — 4r.(x), x] > pr and H,[x, x + 4r,(x)] >
Py uniformly in x € S, for large n, which implies R,; < | x — X;| for X; & I.(x)
and hence

ha(x) = 3 xer,w (8:/Nu(X))RiIK((Xi — x)/Rni)-

Now choose a partition (t;) of the interval [—4, 4] and a positive é < ¢ such that
the “enlarged” Riemannian upper sum Y | tj+1 — ¢; |SuPcey-5,4;,,+41 K () <1 +
¢, and consider the corresponding partition of I,(x) defined by the intervals
Ii(x) = [x + tjra(x), x + tj+17ra(x)]. Clearly,

1 su k(' ra(x)
R.@® P\ R.0))
where k(j, a) = SUP,efat;,at 1 K () and where sup; is taken over ¢t € I,(x).

Taking into account r,(x) < pn/2e, uniform continuity of h on [a, b] and
Proposition 3i of Aalen (1978) yield H,(I}(x)) < h(x)ra(x)| tjs1 — tl(1 + &)

ha(x) < 3; Ha(I;(x))sup;
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uniformly in x € S; and j for large n. By the same arguments,
Hu[t = ra(x)/(1 + 8), ¢t + ra(x)/(1 + 6)] <pa
and
Hy[t = ro(x)/(1 = 8), t + ra(x)/(1 = 8)] > pa

uniformly in x € S,, t € I,,(x) for large n, which, by definition of R, (t), implies
SUPser ) | (rn(x)/Rn(t)) — 1| < 6 for all x € S,. The application of these bounds
in the above sum gives h,(x) < h(x)(1 + ¢)? by construction of (¢;). The lower

bound is obtained similarly.

For x from S; = {x € [a, b]| h(x) =< ¢}, define the interval I,(x) to be the
smallest interval [a,(x), b,(x)] with H[a,.(x), x] = 2p, and H|x, b,(x)] = 2p,. Let
I, denote the union of all I,(x), x € S,. Supposing H(0y < H(a) and H(b) < H(c)
for sake of simplicity, I, C [0, c] and, by an argument making use of uniform
continuity of h, I, C {x| h(x) < 2¢} for large n.

Now, repeated application of the convergence of H, as in the first part of the
proof yields

ha(x) < H,(I,(x))supees, (1/Rn(t))sup K, H,(I.(x)) < 6p,
and
infiez, R, (t) > pn/6e

for large n, which completes the proof.
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