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GOODNESS-OF-FIT TESTS FOR CENSORED SURVIVAL DATA'

By ROBERT J. GRAY AND DONALD A. PIERCE

Dana-Farber Cancer Institute and Oregon State University

The problem of testing the underlying distribution in a general regression
model is considered when the data are right censored. It is proposed that tests
be based on efficient scores from a certain class of parametric alternatives.
The connection between tests based on the scores and more traditional
approaches using empirical distribution functions is explored. Neyman’s
smooth test is extended to allow for censored data.

1. Introduction. The problem considered here is that of testing the as-
sumed form of the underlying probability distribution in generalized regression
models for censored data. The goal is to provide a method which is applicable in
a wide variety of particular models, and which avoids the difficult distributional
problems usually encountered. This is accomplished, following Neyman (1937),
by embedding the model in a larger parametric family and using score tests.

We assume the hypothesized model is of the following form. T4, ---, T, are
independent continuous failure times, with the distribution function of T} given
by F(t; \;, 8), where \; = x/8, the x; are vectors of known covariates, and v =
(8, &) is a vector of unknown parameters. We write F;(¢; v) for F(t; \;, 8), F;
for the survivor function 1 — F;, and f; for the density. We will also assume
that the censoring times V; have distribution functions C;. Generally only
Y; = min(T}, V;) and the indicator Z; = I(T; < V;) are observed.

Although it is difficult in practice to separate the issues, our interest is in
testing the adequacy of the form of F, rather than in aspects relating to the
adequacy of the covariables. For example, one may want to test the exponential
model F;(¢; 8) = 1 — exp{—exp(x/3)t} under the assumption that scale factors of
the form exp(x/3) represent adequately the systematic part of the regression. In
the general setting, this problem can be specified as follows: the hypothesis to be
tested is that the U; = F;(T;; v) are independent and identically distributed with
uniform distributions on (0, 1), with the alternative of interest being that the U;
are independent and identically distributed with some other distribution.

We consider alternative densities for the U; of the form

exp{ X/ 0.4, (u) — K(0)},

where the ¢, are known functions and K(9) isa normalizing constant. This gives
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a family of densities for T; of the form

(1.1) fit; v)exp{E 71 0.4 (Filt; v)) — K(0)}.

We emphasize that the family arising from (1.1), by taking different functions
for the ., is very general. The approach adopted here is to test the null hypothesis
6 = 0 using score tests. A primary point here is that applying the standard score
test to (1.1) leads to a principle for handling censoring which is somewhat
independent of the choice of ¢,. As discussed in the next section, this principle
leads to methods which are substantially different from commonly used ap-
proaches.

For an omnibus goodness-of-fit test the idea is to focus on a general purpose
choice of the ¢, selected independently of the null hypothesis family, which
would be suitable for a fairly rich class of alternatives. One such possibility is to
take ¢, (u) = u’, # =1, -+, m. In the uncensored case with no unknown
parameters v, the resulting score test is identical to the test introduced by
Neyman (1937), which was designed to have good power against “smooth”
alternatives. Thomas and Pierce (1979) used the score test approach to extend
Neyman’s test to allow for estimation of v. In Section 3, we consider extending
this test to the censored data case.

As another possibility, Thomas and Pierce noted that if the ¥, functions are
taken to be indicator functions of specified intervals forming a partition of
(0, 1), then the resulting score test is identical with the generalization of the
classical Pearson chi-square test given by Rao and Robson (1974). Of course,
more specialized possibilities for the y, functions could also be considered. For
example, the score for the Weibull (F(t; a, o) = exp{—(t/a)°}) alternative to the
exponential (¢ = 1) can be found from (1.1) with m =1 and

Yi(u) = 1 + log{—log(1 — u)}{l + log(1 — u)}.

The major problem with applying more traditional approaches for testing the
fit of the underlying distribution in the censored regression case is that the
asymptotic distributions of test statistics will depend on the true values of the
parameters, the covariates, and the generally unknown censoring distributions,
even when the regression models are of the location-scale type. There seem to be
virtually no general results on goodness-of-fit tests for this case available in the
literature. It is possible, of course, to fit a more general parametric model
containing the hypothesized model and use a likelihood ratio test; the generalized
gamma model employed by Farewell and Prentice (1977) is notably flexible for
this purpose. Even for the identically distributed case with censored data, there
are only a few results available, mostly for specialized censoring models. See
Smith and Bain (1976), Pettit (1976, 1977), Turnbull and Weiss (1978), Bargal
(1981), Chen (1981), Habib (1981) and Mihalko and Moore (1980). Generally
these results again reflect the dependence of the distributions on the true values
of the parameters and the censoring distribution.

It is seen below that the distribution of the scores from (1.1) do not avoid this
dependence. However, the asymptotic distribution of the scores is provided by
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standard results, and instead of the complex distributional problems associated
with other methods, we are only faced with the problem of carrying out the
information calculations, which is complicated by their dependence on the
generally unknown censoring distributions. In Section 3 this problem is consid-
ered in detail for the Neyman smooth test.

2. Score tests and their relationship to approaches based on empirical
distribution functions. For independent and roninformative censoring the
log-likelihood of the data under the alternative (1.1) is

(v, 0) = Xia ‘{Zi(log filyss v) + 201 0 AFi(yi; ¥)})
(2.1)

1 ~
+ (1 = z)log J;_(y'_ ) exp(X 71 0.4, (u)) du — K(")}’

(see Kalbfleisch and Prentice, 1980, Section 5.2). An additional term involving
the censoring distributions, which does not depend on the parameters, has been
omitted from (2.1). We emphasize that this is an ordinary likelihood from a fully
parametric model, unlike the partial likelihoods arising from the partially non-
parametric models currently popular for survival analysis, so that classical
likelihood results apply here. The scores from (2.1) are given by

97 (Yo, 0)/06,
(2.2) =2k {zi'///(fti) +(1-2) f Yo (u) du/(1 — &) — GK(O)/M/}

=Xk fa (@) + 1 - 2)EQ(U)| U > &) — EW())},

where U has a uniform distribution on (0, 1), 4, is the maximum likelihood
estimate for v when 8 = 0, and &; = F;(y;; vo).

Uncensored observations contribute a term of ¥, (F;(¢; o)) to (2.2). For
censored observations, this term is replaced by its conditional expectation

Eg {0 (Fi(Ti; ¥)) | Ti > ¥i} | 4=,
Thus (2.2) is the expectation of the score for uncensored data conditional on the
observed data. This is similar to the idea underlying the EM algorithm of
Dempster, Laird and Rubin (1977). This feature of (2.2), that the contribution
of the censored observations is a conditional expectation, holds quite generally
for score tests with censored data; it is not a special property of the family (1.1),
but rather is a general property of the parametric likelihood approach adopted

here.

Applying standard asymptotic results (see, e.g., Cox and Hinkley, 1974, pages
323-324) to the scores (2.2) gives that under the null hypothesis, subject to mild
regularity conditions,

(2-3) n—l/26/(,§,0, 0)/00 —>z N(O’ I09|'y)9

where — & denotes convergence in a distribution and Iy, is the adjusted average
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expected Fisher information. That is, Ips;, = Iy — Iy, 151 1,4, where for example
Iy, = lim, .l 4(1:-‘)1,, and If,’/'}k = n"'Covy, (87 (v, 0)/6,, 3/ (v, 0)/36%).

Although sufficient conditions are complex to state, (2.3) is just the standard
asymptotic result for scores with independent but not identically distributed
data, and so will hold quite generally for common distributions provided the ¢,
functions are reasonably smooth. See also the conditions given by Borgan (1983),
who uses a martingale approach to derive asymptotic likelihood results for
censored data. The expected information terms under the null hypothesis can be
expressed

(2.4) nl = i f 8 (5 ¥)sw(y; ¥)Ci(9) dFi(y; v),
(2.5) nlf) =Xk fsy(y,v)qu(y, v)Ci(y) dFi(y; v),
and

(2.6) nly), = L=1fqt,(y, v)qzk(y,v)C(y) dFi(y; v),
where

si(y; v) = v (Fi(y; v) — EQ.(U)|U > Fi(y; v)),
aij(y; v) = 0 log(f:(y; v)/F:(y; v))/dv;,

and as before U has a uniform distribution on (0, 1). This form for the expected
information components is particularly convenient for survival models, since
they are often formulated in terms of the hazard function f;/F;, which appears
in g;;.

The tests we consider are quadratic score statistics of the form

Qm = n71(87 (40, 0)/30)" V™1(87 (%0, 0)/36)

where V is a suitable estimate of Im . From (2.3), @, —< x% when Vis consmtent
under the null hypothesis. The primary remaining difficulty is the choice of v,
which is discussed in Section 3. Generally we have found that the only reliable
method is to use the expected information in the sample, (2.4)-(2.6). Although
these formulas appear quite complex, at worst they require numerical evaluation
of univariate integrals, and in many situations (see the Appendix) closed form
expressions can be given.

We will now show that there is a connection between tests based on the scores
(2.2) and more general approaches using empirical distribution functions. In the
uncensored case, these latter approaches can be thought of as follows. Let v be
an estimator of v, define “generalized residuals” it; = F;(¢;; v), and denote by H,
the empirical distribution function of i, - - -, ﬁn. Then goodness-of-fit statistics
are functionals of the stochastic process

(2.7) au) = VnH,(u) —u), 0sus=<1

the functional chosen to measure the “distance” of H, from the uniform distri-
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bution function. Basic theory for this approach in the regression case was given
the Pierce and Kopecky (1979) and Loynes (1980).

In the censored case, the quantities &; = F;(y;; v) are poss1bly censored values
of Fi(t; 4), and the standard approach has been to replace H, by the Kaplan-
Meier (1958) estimate based on these, for use in (2.7). The scores (2.2) however,
are functionals of a different estimate of the distribution of the u;, which arises
naturally from the parametric likelihood approach used here.

For complete samples, H, assigns a mass of 1/n to each failure time. For a
censored observation, we have no information about the true failure time except
that it is greater than the observed censoring time, so the mass of 1/n for a
censored observation is only known to lie somewhere in the interval (i;, 1). The
Kaplan-Meier estimator can be thought of here as distributing this mass in a
certain nonparametric way over the uncensored values greater than i; (see Efron,
1967). The score test approach leads to distributing this mass uniformly
over (i;, 1). This is equivalent in the time scale to distributing the mass for a
censored observation y; proportionally in ¢ to the conditional survival function
Fi(t;7)/F:(y:; 7). This idea is also discussed briefly by Aitkin and Clayton (1980),
although our motivation for this came from the score test development given
here, independently of their work. The result is to use in place of H, in (2.7),

@8)  HEuw) =n Nhy I = d)fz + (1 — 20 — @)/ — &)},

Defining y* to be the process (2.7) with H? replacing H,, the scores can then
be expressed as functionals of the form vn fo ¥ (u) dy}(u). This follows since

Jn fo v (u) dyk(u)

n{ fo ¥ (u) dH%(u) - J; ¥ (u) du}

=y {zw, () + 1 - 2)EWR(U)|U>4) - E®y.(U))},

(2.9)

which is the same as (2.2). From (2.9) we see that the scores compare H* to the
uniform distribution by taking the difference of the expectations of the functions
¥, under the two distributions. It should be noted that this representation for
the scores implies that the score for any sort of distributional alternative, for
example the Weibull alternative to the exponential, will be a functional of H,
not of the Kaplan-Meier estimator. Further properties of H are discussed in
Gray and Pierce (1984).

3. Neyman’s smooth test. In this section we extend the Neyman smooth
test to allow for censored data. As mentioned in Section 1, this test comes from
taking ¢, (u) = u’, 7 =1, + - -, m, in the scores. The results of Thomas and Pierce
(1979) and Kopecky and Pierce (1979) in the identically distributed, uncensored
case indicated that m = 2 is a good choice and that the resulting test is
competitive, in terms of power, with other approaches. The difficulty in extending
this test to the censored data case is that the information matrix depends on the



GOODNESS-OF-FIT TESTS 557

censoring distributions. Below we try several methods for handling this depend-
ence, examining the methods by numerically evaluating the size of the Neyman
smooth test for exponentiality in the identically distributed case. We then apply
the test to an example of a censored regression data set, and use simulations to
examine the size and the power of the test in the context of this example.

It is simpler here to take U; = F;(T}; v) = 1 — Fi(T;; v) in defining the
alternatives (1.1). This change will not affect the ultimate test statistics, although
there will be slight changes in the development. With the functions ¢, (x) = x,
the scores for the Neyman smooth test then are

87 (%o, 0)/08,
= 2 {ziF (v 30) + (1 — 2)F! (y;; 7o)/ + 1) — (# + 1)7Y}

since E(U' |U<k)=Fk/(#/+1)and E(U") = (# + 1)~ Also formulas (2.4) and
(2.5) for the expected information will now have s;, (y; v) = /Fi(y; v)/(2 + 1).

We will use the expected information in the sample, (2.4)-(2.6), to estimate
the variance of the scores. We considered using several other approaches, and
although we did not exhaust all possibilities, the methods we did try performed
poorly here. One possibility we considered was to use the observed information
in place of the expected information. This approach fails without some modifi-
cation for the surprising reason that, even when sampling under the null hypoth-
esis, the observed information matrix often fails to be positive definite at (yo, 0).
This presumably is because the likelihood as a function of (v, 6) is not concave
everywhere, and (7o, 0) is not the global maximum of the likelihood, even if the
model is true. We also tried using jackknife and bootstrap methods to get a
nonparametric estimate of the variance of the scores for use in place of the
expected information. The size of the test based on the normal approximation
tended to be much larger than the nominal level in moderate sized samples when
these estimates were used. For more details on these points see Gray and Pierce
(1984). ,

We consider three general approaches for handling the dependence of the
expected information on the censoring: (a) assuming a parametric model for the
censoring, with parameters possibly estimated from the data, (b) assuming the
censoring is homogeneous, at least within specified groups, and using a nonpara-
metric estimate of its distribution, and (c) in the special case where the potential
censoring times v; are known for all observations, evaluate the expected infor-
mation conditional on the v; by taking C;(v) = I(v = v;) in (2.4) to (2.6). This
last approach avoids distributional assumptions about the censoring, and the
conditional reference set it provides may be appropriate even if the censoring is
known to be homogeneous.

Table 1 contains the results of simulations to examine the performance, in
terms of size of the test, of these three methods for evaluating the expected
information in the Neyman smooth test for exponentiality. Throughout this
section, the quadratic score statistics for the Neyman smooth test of exponen-
tiality with m = 1 and m = 2 will be denoted by W, and W, respectively. The
simulations were limited to the identically distributed, homogeneous censorship

(3.1)
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TABLE 1
Empirical sizes (in %) of the W, and W, tests with the expected information computed using three
different approaches
eps Homogeneous .
Nominal Conditional exponential Kaplan-Meier
level
W1 Wz W] Wz Wl Wz
g=1 10% (.95) 94 9.0 9.9 8.8 9.8 84
pe= .2 5% (.69) 4.2 4.1 4.1 4.3 4.3 44
g=1 10% 10.5 9.4 9.8 8.9 9.1 8.2
Pe=.5 5% 5.1 5.0 4.7 4.7 4.1 4.8
=2 10% 11.3 10.7 9.3 7.7* 11.3 9.6
Pe = .2 5% 6.5* 5.1 4.8 . 3.5% 6.1 4.7
oc=2 10% 10.8 11.0 4.5% 4.3* 10.6 9.0
pe=.5 5% 6.0 6.1 1.9* 2.2*% 5.3 4.6
g=.5 10% 7.0* 7.9% 8.2 9.7 7.1% 7.6*
p.=.2 5% 3.9 3.0* 4.6 4.1 3.7 3.3*
oc=.5 10% 9.9 7.7* ' 15.3* 18.1* 9.6 8.0*
p.=.5 5% 4.6 3.9 9.0* 11.4* 4.4 4.0

* The empirical size is more than 2 standard errors from the nominal level.

case, with failures generated from a unit exponential distribution and censoring
times from Weibull distributions with C(v) = exp{—(v/a)’}. The values of the
Weibull shape parameter used were ¢ = 1, 0.5, and 2. For each value of the shape
parameter, values of o were selected to make the probability of an observation
being censored, p., equal to 0.2 and 0.5. In each of the 6 cases (3 values of ¢ X 2
values of p.), we generated 1000 samples of size 50. In each case, the 6 statistics
(W, and W, with the expected information computed using the 3 different
approaches) were computed from the same samples. The specific approaches
used in computing the expected information were the “homogeneous exponen-
tial,” where the censoring is assumed to follow an exponential distribution with
the scale parameter estimated from the data; the “Kaplan-Meier,” where the
censoring is assumed to be homogeneous with the distribution estimated with
the Kaplan-Meier estimator; and the “conditional,” where the expected infor-
mation is computed conditional on the actual potential censoring times. Details
of the expected information calculations for the Kaplan-Meier and conditional
approaches are given in the Appendix.

In Table 1 binomial standard errors are given in parentheses after the nominal
levels in the first case. The same standard errors can be used in the other cases.
The results indicate that in all cases the Kaplan-Meier and conditional ap-
proaches performed well. When the censoring is not exponential (a« = 0.5 or 2)
and p. = 0.5, use of the homogeneous exponential censoring model can be quite
bad. However, when p. = 0.2 there seems to be little effect.

Next we turn to an example data set taken from Glasser (1967). The data are
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days survived after surgery for 131 lung cancer patients, with 66 of the observa-
tions censored. Two of the times are 0. These were replaced by the value 0.1 to
facilitate the analysis. The patients are in two groups: group one patients have
“low” vital capacity/predicted vital capacity ratios, and group two patients have
“high” ratios. The age of the patients is also given as a continuous covariate.
Throughout the discussion of this example, we will assume the censoring is
homogeneous and estimate its distribution with the Kaplan-Meier estimator
when calculating the expected information. Formulas for the expected informa-
tion are given in the Appendix. We first fit an exponential model of the form
Fi(t; B) = exp{—t-exp(x/B)}. In this model both age and group were significant.
The values of the Neyman smooth test for this example were W; = 4.95 and
W, = 5.06. The p-value for W, is approximately 0.03, so the Neyman smooth test
gives significant evidence of lack of fit.

In addition to the tests, we also use graphical methods to examine lack of fit,
as discussed by Aitkin and Clayton (1980). If we compute the estimate H3,
given by (2.8), then a plot of log(l — H}(1 — e™*)) against t or a plot of
log{—log(1 — H*(1 — e™*))} against log(t) should lie roughly on the straight line
through the origin with slope 1, when the model is true. Because of the censoring,
there will, in general, be little information about lack of fit in the right tail, so
we will use the second of these plots. Note that if we fit an exponential model,
and the true model is a corresponding Weibull model, then the plot should lie
roughly on a straight line through the origin with slope equal to the Weibull
shape parameter.

The plot from the fit of the exponential model is given in Figure 1. Examination
of this indicates a Weibull model may fit better. This is confirmed in Figure 2,
which contains the plot from the fit of the Weibull model, Fi(t; v) =
exp{—(t-exp(x/B))°}, with the same covariables as used in the exponential model.
The values of the Neyman smooth test for the Weibull model were 0.78 for the
1 degree of freedom test and 3.19 for the 2 degree of freedom test.

The disturbing fact about this example is that the likelihood ratio test for the

1

log {~log [1-H3 (1-e™0)]]

log (t)

F16. 1. Plot of a modified empirical distribution function from the exponential model.
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log {-log [1—{-\I,‘; (1-e M)}

log (t)
F1G. 2. Plot of a modified empirical distribution function from the Weibull model.

exponential model versus the Weibull model is 12.96 on 1 degree of freedom. In
the uncensored, identically distributed case, Kopecky and Pierce (1979) give the
local asymptotic relative efficiency of W; relative to the efficient score test for
the Weibull departure from the exponential as 0.876, so it is surprising that here
there should be such a large discrepancy between the Neyman smooth test and
this particular likelihood ratio test.

The Neyman smooth test is known to perform well with uncensored data. In
view of the above discrepancy, further numerical investigation into the perform-
ance of the test was called for. To keep as close as possible to the situation in
the above example, we chose to simulate data from the fitted exponential and
Weibull models, although neither is probably the true distribution underlying
the observed data there. Thus, to examine the size of the Neyman smooth test
for exponentiality, we generated censored samples of size 131 from the exponen-
tial regression model, using the covariates of the original data, taking the “true”
parameter values to be the maximum likelihood estimates from the fit of the
exponential model to the original data, and using the Kaplan-Meier estimate of
the censoring distribution from the original data as the censoring distribution.
For each of the 500 generated samples, we fit an exponential model and computed
the values of W, and W,. For comparison, we also fit a Weibull model and
computed the likelihood ratio test for the exponential model versus the Weibull
model. To examine the power, we repeated the procedure, only generating the
sample from the estimated Weibull model from the original data (shape parameter
= 0.693). The results are given in Table 2. Standard errors are given in paren-
theses after the entries. The results seem to indicate that the size is adequate
and that the power of the Neyman smooth test for this Weibull alternative is
fairly good.

Although we have not performed a comprehensive study of the Neyman smooth
test with censored data, we believe overall the results of this section are quite
encouraging. We have demonstrated that there are methods for handling the
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TABLE 2
Empirical size and power against a Weibull (Shape = .693) alternative of the Neyman smooth test for
exponentiality and the likelihood ratio test in the setting of the example data set

Likelihood
ratio test

w1 w2

Nominal Level 10% 5% 10% 5% 10% 5%
Size 9.0 (1.3)* 4.2 (0.9) 10.2 (1.4) 6.4 (1.1) 8.8 (1.3) 5.0 (1.0)
Power 86.8 (1.5) 81.2 (1.7 87.4(15) 79.2(1.8) 96.6(0.8) 91.6(1.2)

* The value in parentheses is the binomial standard error of the entry.

dependence on the censoring distributions which are computationally feasible
and maintain the size of the test. Although we have only given closed form
expressions for the exponential and Weibull distributions, this is possible for
some other distributions as well, and at worst one would be faced with numerical
evaluation of univariate integrals. In the case where we have examined power,
the performance of the Neyman smooth test relative to the likelihood ratio test
seems consistent with the results of Kopecky and Pierce (1979) for the uncensored
case. We expect that a similar relationship will hold with other alternatives, so
that the Neyman smooth test with censored data will be a reasonably powerful
omnibus test, as it is in the uncensored case.

APPENDIX

In this Appendix, expressions are given for the components of the expected
information in the Neyman smooth tests for the exponential and Weibull
distributions (i) assuming a homogeneous censoring distribution and estimating
it with the Kaplan-Meier estimator and (ii) conditioning on potential censoring
times for all observations.

Let y5, - - -, y5, denote the values of the censored observations, where

ne= Yk (1-2)

is the number of censored observations. Let AC(y5) denote the jump in the
Kaplan-Meier estimate of the censoring distribution at y§ and o] () the value of
the Kaplan-Meier estimate of the survivor function beyond the largest censoring
time. Then from (2.4)-(2.6) and (3.1), the components of the expected informa-
tion using the Kaplan-Meier estimate of the homogeneous censoring distribution
are

nIf) =k/[(k+ 1)+ D(k+7+ 1]
2o {1 = X, AC(YR)FF 1 (v5; 7)),
nI® =77 + 1) 25, {E(@0) Py, (0) + They AC(¥5)Py(¥i)),

0,vj
and
nI® =3, ((0)Qun(®) + Tier AC(¥5)Qur(¥5)),

YiYk
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where
Py (w) = J; i (y; YIF{(y; v) dFi(y; v)
and
Qir(w) = J; 4 (y; v)qu(y; v) dFi(y; ).
If vy, - - -, v, denote the potential censoring times, then the components of the

expected information under the conditional approach are
nI(), = kZ[(R+ 1)(2 + Dk + 7 + D] i {1 = FF* (v 1)),

nI{():')yj =/ + 1)7 T Py (i),
and
nl f,';z,k = Y1 Qije(vi).
For the exponential model with F;(t; v) = exp{—t-exp(x/B)}, we have
Pijr(y) = x;[1 — exp{—y(# + 1)exp(x{B)})/(# + 1)
Qua(y) = xyxall — expl—y-exp(x{B)]].
For the Weibull model with F;(t; v) = exp{—a;(t)}, where
ai(t) = [t-exp(x{B))°, vi=Fi;, i=1+++,p, and vp1=o,
we have
P (w) = ox;[1 — exp{—(/ + Da;(w)}l/(# + 1), j=1, -+, p,
Pipi1 (w) = [o(# + D]H[1 — log(# + 1][1 ~ exp{—(# + 1)a;(w)}]
+ I1[(# + Da;(w)]},
Qijk(w) = 02xijxik[1 —exp{—a;(w)}], j,k=1,---,p, .
Qijp+1(W) = Qipr1,j(w) = x;{[1 — exp{—ai(w)}] + T'i(a:(w))},
j=1, -+, p,
and
Qip+1pn1(w) = ¢7*{1 — exp{—a;(w)} + 2T1[a;(w)] + Tafa;(w)]},

where Ty(x) = [§ [log(u)]’e™ du. The functions I', are derivatives of the
incomplete gamma function I'(w, a) = [§ t*"'e™ dt. In particular, I'1(w) =
oT'(w, 1)/da and Ty (w) = 9°T'(w, 1)/da> A general algorithm for evaluating
derivatives of the incomplete gamma function has been given by Lindstrom
(1981).
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