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A MINIMAX-BIAS PROPERTY OF THE LEAST
a-QUANTILE ESTIMATES

By Victor J. YoHar! anp RuBeN H. Zamar?

University of San Andrés, University of Buenos Aires and CONICET
and University of British Columbia

A natural measure of the degree of robustness of an estimate T is the
maximum asymptotic bias B(e) over an e-contamination neighborhood.
Martin, Yohai and Zamar have shown that the class of least a-quantile
regression estimates is minimax bias in the class of M-estimates, that is,
they minimize By(e), with a depending on &. In this paper we generalize
this result, proving that the least a-quantile estimates are minimax bias in
a much broader class of estimates which we call residual admissible and
which includes most of the known robust estimates defined as a function of
the regression residuals (e.g., least median of squares, least trimmed of
squares, S-estimates, r-estimates, M-estimates, signed R-estimates, etc.).
The minimax results obtained here, likewise the results obtained by
Martin, Yohai and Zamar, require that the carriers have elllptlca.l distribu-
tion under the central model.

1. Introduction. It is well known that the least squares estimates of the
regression coefficients are very sensitive to the presence of outliers in the
sample. In fact, the outliers can severely bias these estimates, especially when
they are grouped and associated with high leverage points. This fact motivated
the development of robust methods which are not so sensitive to outliers.

Several robust regression estimates have been proposed in recent years;
therefore, there is a need for quantitative measures to assess the degree of
robustness of these estimates. One such measure is the maximum bias B.(¢)
caused by a fraction & of outliers. The function B(e) was first introduced by
Huber (1964) for the location model; a precise definition of B.(¢) for the
regression model is given in Section 2. Other robustness measures closely
related to the maximum bias By(e) are the gross-error sensitivity, GES
[Hampel (1974)] and the breakdown point, BP [Hampel (1971)]. It turns out
that, under some regularity conditions, GES = B7(0) and, therefore, the GES
gives a linear approximation for By(¢) near zero. The BP is the smallest ¢ for
which Bq(e) = ». Although the GES and the BP carry much information
about Bq(e), especially for ¢ near zero and the BP, the curve B (s) consti-
tutes a more complete description of the robustness properties of the estimate.

Given the class 9 of estimates and the fixed fraction & of contamination,
the most robust estimate in & is naturally defined by the property of
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minimizing By(e) over 7 such an estimate is called minimax bias. Huber
(1964) showed that the median is minimax-bias for all 0 < & < 0.5 among
translation equivariant location estimates. He considered neighborhoods of a
symmetric and unimodal central distribution. Location models with unimodal
central distributions were also studied by Rychlik and Zielinski (1987), Rychlik
(1987) and Zielinski (1985, 1987, 1988). These authors derived minimax-bias
estimates using a modified definition of maximum bias for both gross-error
and Lévy-Kolmogorov-type neighborhoods. Riedel [(1987), (1989a, b)] derived
the minimax-bias estimate among all equivariant location estimates, for sev-
eral types of contamination neighborhoods and arbitrary central distributions.

Martin, Yohai and Zamar (1989) found the minimax-bias M- and GM-esti-
mates of regression, using gross-error neighborhoods of a central model with
elliptically distributed carriers. The minimax-bias M-estimate minimizes a
certain a(e)-quantile of the absolute value of the error’s distribution. Since
lim, 5 a(¢e) = 3, the minimax-bias M-estimate tends to Rousseeuw’s (1984)
least median of squares, LMS. The minimax-bias GM-estimate is a weighted
L,-estimate, with weights inversely proportional to the leverage of the carriers.
In the case of only one carrier, this estimate (which reduces to the median of
the ratios y,/x;) is also minimax bias among all equivariant estimates.

The interesting work by Riedel (1991) was brought to our attention by a
referee. This paper studies the minimax-bias problem for general models when
the parameter space is endowed with a group and metric structure. Riedel
considers arbitrary families of contamination neighborhoods and proves the
existence of the minimax-bias estimate among all equivariant and Fisher-con-
sistent estimates. He also finds an expression for the minimax-bias function
which, in the particular case of the regression model with only one random
carrier, no intercept and gross-error contamination neighborhoods, agrees
with the maximum bias of the minimax-bias GM-estimate described previously
[see Theorem 5.3 of Riedel (1991)]. This expression only gives a lower bound
for the maximum bias when p > 1.

Unfortunately, it does not seem possible to use the general results of Riedel
(1991) to derive a computable version of the minimax-bias estimate and the
minimax-bias function in the case of multiple regression.

Other related results can be found in Donoho and Liu (1988), He, Simpson
and Portnoy (1990) and Maronna and Yohai (1989). Donoho and Liu (1988)
study the minimax-bias properties of minimum distance estimates. He,
Simpson and Portnoy (1990) introduce the concept of breakdown point of a
test using an approach closely connected to the maximum bias curve. Finally,
Maronna and Yohai (1989) define the class of projection estimates of regres-
sion and show that these estimates have bounded influence and good maxi-
mum bias performance.

In this paper we show that the least a-quantile estimates are minimax bias
in a very large class of estimates which we call residual admissible. Roughly
speaking, a residual admissible estimate is one for which the empirical distri-
bution of the absolute value of its regression residuals cannot be uniformly
improved by using any other set of regression coefficients. We will show that
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many robust estimates defined as a function of the regression residuals are
residual admissible.

As in Martin, Yohai and Zamar (1989), the minimax results obtained here
require that the carriers have elliptical distribution under the central model.

In Section 2 we give the basic definitions and notation. In Section 3 we
define residual admissible and least a-quantile estimates. In Section 4 we show
that the least a-quantile estimates are minimax bias for the class of residual
admissible estimates. In Section 5 we show that the class of regression
admissible estimates contains M-, S-, 7-, the LMS-, the LTS- and some
R-estimates. All the proofs are given in the Appendix.

2. Basic definitions and notation. Let (x;,y,),...,(x,,7,), X, € R?,
¥; € R be independent observations satisfying the linear regression model

(1) ¥, = 0px; + u,, l1<i<n,

where the u; have a common distribution, F;, and are independent of the x;.
We assume, for simplicity, the the carriers x; are independent random vectors
with common distribution G,. Then

2 Hy(x,y) = [ ["Fy(y — 058) dGo(s)

is the distribution function of (x;, y;) under model (1). To allow for a certain
fraction & of data points which violates the ‘“target’’ model (1), we consider the
contamination neighborhood

(3) K ={H:(1—-¢)H,+ecH*},

where 0 <& < 0.5 and H* is an arbitrary distribution on RP*1,

Let T be an RP-valued functional defined on a “large” subset of distribu-
tion functions H on R?*!, which includes -# and all the empirical distribu-
tion functions H,,.

We assume that T is regression and affine equivariant, that is,if y =y + x'b
and £ = C'b for some full rank p X p matrix C and H is the distribution of
(%, 7), then T(H) = C"Y(T(H) + b).

The asymptotic bias of T at H € 2 is defined as

(4) bu(T, H) = (T(H) — 8,) A(T(H) — 8,),

where A = A(G,) is an affine equivariant covariance functional, that is, if
x ~ G, and X = Bx for some nonsingular p X p matrix B, then A(G,) =
BA(G,)B'.

If T(H) is not uniquely defined [i.e., T(H) is set valued], the definition (4) is
modified as follows:
(5) bu(T,H) = sup (0 —0,)A(0—6,).

0 T(H)

Since we only work with regression and affine equivariant estimates and (4)

and (5) are invariant under regression and affine equivariant transformations,
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we can assume without loss of generality that A = I and 6, = 0. Therefore,
(6) b(T, H) =|T(H)|".

If the functional T is continuous at H, then T(H) is the asymptotic value of
the estimate when the underlying distribution of the sample is H. It is
assumed that T is asymptotically unbiased at the nominal model H,, that is,
T(H,) = 0. The maximum asymptotic bias of T over s# is defined by

(7) By(e) = sup b(T,H) = sup ||T(H)|
HeH, He X,

Finally, given the class 7, the regression estimate T, € J is called mini-
max bias in I if

(8) By(c) > Bp(s), VTe .

3. Residual admissible estimates. Given 0 € R? and (x,y) € RP*+!
with joint distribution H, let Fy 4(v) be the distribution functlon of ly — 0'x|.
The following definition is central to this paper.

DEeFINITION 3.1. The estimating regression functional T is residual admis-
sible on # if given two possibly substochastic distributions F; and F, which
are continuous on (0, ©) and satisfy

(9) Fi(v) <Fy(v), Vuv>0,

there are not a sequence H, € & and a vector 8* € R” such that Fy; 5 ,(v)
and Fy o(v) are continuous on (0, ) and

lim Fy oy, (v) = Fi(v) and lim Fy o(v) = Fy(v), Yv>0.
n—o n—o

The restriction to continuous distributions is needed to include M- and
S-estimates with discontinuous p-functions, in particular, the minimax-bias
estimate T, defined below. In any case, by weakening the definition of residual
admissible estimates, we enlarge the class over which the minimax result of
Section 4 holds.

Definition 3.1 seems natural, especially when H,=H for all n. If
Fy 1)) < Fyy g«(v) for all v > 0, then the absolute residuals for 6* are
stochastically smaller than those for T(H) and so 6* would appear to provide a
“better fit”’ than T(H).

It will be shown in Section 5 that most of the known estimates which only
depend on the regression residuals atre residual admissible for an appropriate
choice of #. It will also be shown in that section (see Lemma 5.3) that
bounded influence estimates which penalize high leverage observations, for
example, GM- and projection estimates [see Maronna and Yohai (1989)], are
not residual admissible. The minimax theory for GM-estimates can be found in
Martin, Yohai and Zamar (1989).

To define the least a-quantile estimates, which are minimax-bias regression
admissible estimates, let 0 <« < 1 and let t € R? be a ‘““tentative” regression



1828 V.d. YOHAI AND R. H. ZAMAR

estimate. A measure of how well t fits the distribution of (x, y) under H may
be given by the a-quantile of the distribution of |y — t'x|, Fj (), where as
usual, F~(a) = inflx: F(x) > a}.

DEeFINITION 3.2. The least a-quantile regression estimate T, is defined by
the property of minimizing Fj j(a) as t ranges over R?, that is,

T,(H) = argminFy }(a).
teR?

The following lemma shows that T, exists in the case of finite samples [i.e.,
when H is an empirical c.d.f.].

LemMmA 3.1. Let (x;,y,), 1 <i < n, be a sample with empirical c.d.f. H,.
Let 0 <a < 1 be fixed and suppose that #i:t'x, =0} <na, V[t|l= 1. Then
there exists © (not necessarily unique) such that FH o(a) < F! (@) forall t.

The next lemma shows that under mild regularity assumptions on H,,
T, (H) exists for all H € #.

LEmMMA 3.2. Suppose that H € 4 and H, satisfies: (a) F, has a posi-
tive density fo; and (b) there exists y > 0 such that sup,_; Pg(@x =0) <
(a — &) — y. Then there exists 6 (not necessarily unique) such that Fy; a, Ha) <
Fg;'\(a) for all t.

4. The minimax result. First, we find a lower bound, a(e) > 0, for the
maximum bias of all the residual admissible estimates, T, that is, we show that

(10) By(e) = a(e),
for all residual admissible estimates T. The lower bound a(e) is given by
(11) a(e) = sup{ll()ll: (1 —e)Fy, o(v) +e=(1—e)Fy o(v),Vv= 0}.

Suppose that H = (1 — e)H, + £5 yx) Where 8, ¢, is a point mass dis-
tribution at (x,0'x). Then Fy 4(v) = (1 — &)Fy o) + & and Fy o(v) =
lim gy {1 — &) Fy o(v) + 86|,,,xl(v) =1 -eFy, 0(v) Therefore, the distribu-
tion on the left-hand side of the inequality in (11) corresponds to the case
when the “outliers” are perfectly fitted; the distribution on the right-hand
side corresponds to the case when the “outliers” are completely ignored. So,
a(e) is the maximum value of |0|| for which the perfect fit of the ‘““outliers”
produces a better set of regression residuals than those obtained by completely
ignoring them.

THEOREM 4.1. Suppose that H, is given by (2) and f,(v) = Fi(v) is even
and strictly unimodal. Suppose that T is residual admissible on .. Then the
inequality (10) holds.
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TaBLE 1
Optimal quantile and maximum bias of the minimax estimate
for the Gaussian central model

€ Quantile Bq(e)
0.05 0.67 0.49
0.10 0.66 0.77
0.15 0.65 1.05
0.20 0.64 1.37

A natural question at this point is whether the lower bound for B,(¢) given
by Theorem 4.1 can be attained. In the next theorem we show that a(s) can be
attained when G,(x) is elliptical. Unfortunately, the problem becomes more
complex for general G, (x) and we were not able to find a solution. Observe
that when G (x) is nonelliptical 5,(T, H) is not necessarily a function of
IT(H)|? and thus the minimax estimate, if it exists, may depend on the
particular shape of G,.

THEOREM 4.2. Suppose that H, is given by (2) and fy(v) = Fj(v) is even
and strictly unimodal. Suppose also that PGO(G’X =0)<1, V |6l=1, and
G (x) is elliptical. Then there exists a* such that the least a*-quantile estimate
T+ is minimax bias in the class of residual admissible estimates. The value a*
is explicitly given in the proof.

Table 1, taken from Martin, Yohai and Zamar (1989), gives the values of the
optimal quantiles and the corresponding maximum asymptotic biases of the
minimax-bias estimates for several values of ¢, when H,, is Gaussian. Observe
that the value of a does not change much with &.

5. A general class of residual admissible estimates. In this section
we show that several classes of robust estimates (including LMS-, M-, S- and
r-estimates) are residual admissible. We also define a class of estimates con-
taining the LTS- and some signed R-estimates and show that these estimates
are residual admissible.

Let Fy 4 , be the distribution function of |(y — 6'x)/s| under H, that is,
Fy o, s(v) = Fy; o(sv). We consider the class of regression functionals

(12) T(H) = argmind (Fy 4 o)),
)

where J(F) is defined on a set of distribution functions on [0, ) containing
the empirical distributions, and s(H) is either an estimating functional of the
error scale or simply s(H) = 1. Notice that s(H) can be computed separately
or simultaneously with the regression coefficients. In the former case (12) is
not the operating definition of T(H) but rather a property satisfied by T(H)
after T(H) and s(H) have been simultaneously determined.
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The following ‘‘monotonicity’’ property of J(F) is used to prove the regres-
sion admissibility of an estimate T(H) satisfying (12).

DEFINITION 5.1. A functional J(F) is e-monotone if given two sequences of
distribution functions on [0, »), F, and G,, which are continuous on (0, ) and
such that F(u) » F(x) and G,(u) = G(u), where F and G are possibly
substochastic and continuous on (0, ©), with G(») > 1 — ¢ and

(13) G(u) >F(u), VYu>0,
then lim , _,,, J(F,) > lim, _,,, J(G,).

THEOREM 5.1. Let T(H) be an estimating functional which satisfies (12).
Suppose that J is e-monotone and s(H) is such that supy ¢ 5 s(H) < « and
infy c 4 s(H) > 0. Then T(H) is residual admissible on ;.

Many classes of robust regression estimates are residual admissible by
virtue of satisfying (12) with an e-monotone J.

M-estimates. The class of M-estimates with general scale is defined by

. y - T(H)x
(14) T(H) = arg:nlnEH(p(—TH)—)),

where p is an appropriate loss function and s(H) is a scale estimating
functional. The following lemma and Theorem 5.1 show that M-estimates
with bounded p are residual admissible.

LEMMA 5.1. Suppose that p(v) is even, monotone on [0,»), bounded,
continuous at 0 and at © and 0 = p(0) < p(). Then J(F) = [5p(v) dF(v) is
e-monotone for all € > 0.

Although Lemma 5.1 excludes M-estimates with unbounded p (e.g., L;-
estimates), the following lemma shows that the maximum bias of such esti-
mates is infinite for all £ > 0 and so they can be excluded from the bias-robust-
ness point of view.

LEMMA 5.2. Consider M-estimates T defined by (14) with 0<a; =
infy . 5 s(H) and a, = supy c » s(H) < ». Suppose that p is as in Lemma
5.1 except that lim p(u) = ». If

(15) Eg p(alyl + Bllbxll) <, Va,B€ER,

then Bp(e) = o,V ¢ > 0.
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S-estimates. S-estimates are defined by T(H) = argmin, S(Fy o), with
S(F) defined by

ol

The function p has the same properties as in the case of M-estimates.
Rousseeuw and Yohai (1984) show that S-estimates minimize (14) with
s(H) = min, S(Fy o). Therefore, the monotonicity property for S-estimates
follows directly from Lemma 5.1.

It can be readily seen that Rousseeuw’s LMS is an S-estimate with p(¢) = 0
for [t| <1 and p(¢) =1 otherwise and b = 0.5. Therefore, the LMS also
satisfies (12) with a monotone J(F').

r-estimates. Yohai and Zamar (1988) define r-estimates as T(H) =
arg min, 7(Fy 4), where

A (F) - (F)E(p(s—(‘%—)))

and S(F) is given by (16). As in the case of M-estimates, it can be proved that
if p and p; are even, monotone on [0, ), nonconstant and bounded, then
J(F) = 7(F) is e-monotone for all ¢ > 0.

LTS-estimates and R-estimates. R-estimates can be based on unsigned or
signed ranks. It was observed by Jaeckel (1972) that R-estimates based on
unsigned ranks minimize a dispersion measure D of the residuals. Given a
distribution F, D(F) = [* a(F(u))udF(u), where the score function a(v):
[0,1] — R is nondecreasing and a(1 — v) = —a(v). Jaeckel (1972) showed that
D is a dispersion measure and proposed to define (unsigned) R-estimates as

(17 T(H) = argmin D(Fy 4),
0

where Fjj , is the distribution of (y — 6'x) under H. Since D is a dispersion
measure, T(H) does not necessarily have small residuals and consequently
these R-estimators are not residual admissible.

Hossjer (1991) defined signed R-estimates using the estimating functional

(18) T(H) = argmind (Fy ),
0
where ,
(19) J(F) =[O°°a(F(u))udF(u), a(u) > 0.

The finite sample version of this estimate is given by
n
(20) T(H,) = argmin ), a(R;(8)/n)ly; — 0'x,,
0 i=1

where R;(0) is the rank of |y, — 0'x;| among |y, — 0'x,,...,ly, — 0'x,]|.

n
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Differentiating the sum in (20) we get the estimating equation
n
Y. a(R;/n)sign(y, — 0'x,)x, = 0.
i=1

Estimates related to the solution of this equation were also studied by
van Eeden (1972) and Kraft and van Eeden (1972).

It can be shown that if a(v) is monotone, the estimates defined by (18) and
(19) are not robust, that is, By(e) = » for all ¢ > 0. The proof is similar to
Lemma 5.2. Notice that the usual score functions [e.g., Wilcoxon, a(v) = v, and
normal scores, a(v) = @~ X(v), where ® is the N(0, 1) distribution function]
are monotone.

Hossjer (1991) also observed that if a(v) vanishes outside the interval
[0,1 — al, where 0.5 < a < 1 the estimate defined by (18) and (19) has break-
down point a, that is, By(e) < » for all ¢ < a. An interesting estimate of this
type which we call the a-least trimmed absolute value (a-LTAV) estimate is
defined by taking

a(v) = 1, ifjvl <1-—aq,
0, iflv|>1-a.

The sampling version of this estimate is obtained by minimizing

[n(1-a)]
(21) L Ir®lo.
i=1
where |r(8)|;) is the ith-order statistic of |r(8)|, ..., r(0)|.

Observe that Rousseeuw’s LTS-estimates are defined as in (21) with abso-
lute value replaced by square. This suggests the definition of a larger class of
estimates which includes signed R- and LTS-estimates. This class is defined by
(18) with

(22) J(F) = [:a(F(u))uk dF(u).

The next theorem shows that estimates in this class (including LTS- and
LTAV-estimates) are residual admissible.

THEOREM 5.2.  Suppose that (i) a(u) is continuous on [0,1 — al, (i) a(u) =
0if1-a<u<land (i) a(u) > 0if 0 <u <1 — a. Then J(F) defined by
(22) is e-monotone for all ¢ < a.

Bounded influence estimates. Finally, we show that bounded influence
estimates of regression are not residual admissible. It is enough to show that
the minimax-bias regression admissible estimates T, have unbounded influ-
ence. This immediately follows from Lemma 5.3.
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LEmMa 5.3. Suppose that G, is elliptical, fo(u) = Fy(u) is even and
strictly unimodal and fi(Fy (1 + a)/2)) > 0. Then

0< 1 BT"(E) < ! <
0 Ve fo(Fa (1 +a)/2)

APPENDIX

ProoF oF LEMMA 3.1. It suffices to show that (i) Fj;'(a) is a continuous
function of t and (ii) Fy'(a) - « as [|t|| - «. To prove (), let t, be fixed, let
0<r;<rg< -+ <ry < @ be the discontinuity points of Fy ., andlet 1<
m;<n,i=1,...,k besuchthat Fy (r))=m;/n,i=1,. kPutm0 0.
Since m, = n, there exists 1 <i <k such that m,_; < na <m; and so
Fy'li(a) =inflx: Fy (x) >a} =r;. Given & > 0, there exist 0 < 81 <& and
0 <8, <& such that r, — 8, and r, + §, are continuity points of Fy ..
Clearly, Fy (r;+8;) > a and Fy ,(r; = 8;) <a. Now let 0 <A <1/n be
fixed. Since FH ¢ converges in law to FH t, a8t >ty r,—8;and r; + 3, are
continuity points of Fy . there exists y > 0 such that [[t — t,ll <y implies
|Fy o(r; — 81 — Fy t(r )l <A and |Fy (r; + 8,) — Fy_(r; + 8,) < A.
Since A < 1/n we get a < Fy ,(r, — &) = FH (i — 8y and @ > Fy (i +
8;) = Fy_(r; + 8,). Therefore, r; — §; < FH t(a) r, + 8,, and (i) follows. To
prove (i), let d,(t) = |[t'x,| and let R,.. R be deﬁned by d;(t) = [t'xg ]|,
i=1,...,n, where d(t) <d,t) < --- < d(n)(t). Let 1 <m <n be such
that (m — 1) <an <m. By assumption d,,(t) >0, V [t||= 1. Therefore,
using the continuity of d,,(t), we have that

Hltll}mld(m)(t) (m)(t ) =38,>0,

for some t§ with [[t§|l = 1. Finally, for all A > 0 and [|t|| = 1, we have
lyr, — M'xp | 2 Alt'xR | — lyg | = Ad;H)(t) — lyg)|

> A8y — max |y,|,Vi=m,...,n,
l<i<n

and so Fz',.(a) > A8, — max; _; _,ly;l > ®as A > . O

Proor oF LEMMA 3.2. This proof follows along the lines of the proof of
Lemma 3.1. The continuity of Fy {(a) follows from the strict monotonicity of
Fy (v) which in turn follows directly from (a).

To show that Fy i(a) — = as [[t]| - o, it suffices to show that for all K > 0,
FH t(K) <a-¢ for |It]l sufficiently large Let t = Aa with ||lal| = 1. Since
PF(lyI >v) - 0 as v - o, it is enough to show that inf|, _, P (|a'x| > §,) >
1 — @ — ¢ for some §, > O But this follows directly from (b) using a standard
compactness argument. O
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Lemmas A.1, A.2 and A.3 are needed to prove Theorems 4.1 and 4.2.

LemMmA A.1. Suppose that H, is given by (2), fo(v) = F{(v) is even and
strictly unimodal and PG (0'x =0) <1 for all ||6]l = 1. Then, for all 0] = 1,
A>0andv>0, Fy M,(v) is strictly decreasing in A.

Proor. Let v >0 and 0, with (8]l = 1, be fixed. If g(a) = Fy(v + a) -
Fo(=v + a), then Fy ,(v) = Py(-v <y — A0'x < v) = [~
/7 .8(A0'x) dG ((x). Notice “that

(3/01)g(A0'x) = (fo(v + A0'K) — fo(—v + A0'X))0'x <0, VI|0'x| >0,
and so if A; > A, then g(A,0'x) <g(A,0'x), V |0/x| > 0. Thus, [~
J2.8A0x)dG(x) < [Z, -+ [*,.8(1,0'%)dG(x), and the lemma follows. O

LEMMA A.2. Let y = supg_, P (X'0 = 0). Then we have the followlng (a)
Foreach 0 <v <, lim g, ., Fy 0(v) < vy; and (b) Fy_v) is continuous in 0,
uniformly on v € [O ),

ProoF. Suppose that for some 0 < v < « there exists a sequence 0, such
that 16,/ - « and
(23) lim By (v) > 7,

for some v > 0. Let t, = 0,./110,,|| and without loss of generality assume that
t, = b as n - . Clearly, for all K > v,

(24) {(x,y):ly—0,x| < v} c {(x,¥): 10x] <K} U {(x,y5): lyl > K — v}.
For & > 0 (arbitrary) choose K, > v such that
(25) P(lyl > K, — v) < 6.

Furthermore, by assumption

(26) lim P(x'8,| < Ky) = lim P(Ix’tnl ) P(Ix'b| = 0) <.

K,
6,
Using (24), (25) and (26), we get lim,, _, Fy,0(v) <y + 6 for all 6 > 0. The
last inequality contradicts (23), proving (a). The proof of (b) is straightforward
and not included here. O

LemMMmA A.3. Suppose that Fy(v) is continuous and let y be defined as in
Lemma A.2. Then we have the following: (a) 0 < a(e) for all 0 < & < 0.5; (b)
a(e) < forall e < (1 — y)/(2 — v); and (c) there exists 0* with ||0*|| = a(e)
and v* > 0 such that

27 (1- e)Fy o(v) +e=(1- e)Fy, o(v), Yuv>0,
and
(28) (1- &) Fy, o+ (v*) + 6= (1 - €)FH0,0(U*)~
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Proor. Since 0 belongs to the set used in the definition of a(e), this
quantity is well defined. By Lemma A.2(b), there exists 8§ > 0 such that
Fy, o) = Fy o(v) — &/2 for all ||8]l <& and v > 0. Suppose now that [|6]| < &.
Then, for all v > 0,

(1 = &) Fy, o(v) + &> (1 — &) (Fy, o(v) —2/2) +¢
=(1-¢e)Fy, o(v) +e—e(l —¢)/2=(1—¢e)Fy o).

Therefore, a(e) > 8 and (a) holds. To prove (b), notice that by assumption
(1 — &)y + € < (1 — ¢). Therefore, there exists 6 > 0 such that

(29) (1-e)y+e<(1-¢)-3.
Let now 0 < vy < « be such that
(30) (1 — &) Fy, o(v) > (1 — &) — /2.
By Lemma A.2(a) and (29),
”(}ﬁlllm(l —&)Fy o(vg) te<(l—e)y+e<(l—e) -3

Therefore, there exists 0 < K < o such that 6| > K implies
(31) (I_E)FHO,O(UO) +e<(l—¢)—8/2.

Equations (30) and (31) imply that a(¢) < K and (b) follows. Finally, to prove
(¢), notice that by the definition of a(¢) and (b), we can find a sequence 6, such
that lim 0 = 0%, ||6*|| = a(e) and

(32) (1—¢e)Fy o(v) +e=(1—e)Fy o(v), Vv=0.
Since by Lemma A.2(b) Fy_4(v) is continuous in 0, it follows
(33) (1—&)Fy, ¢«(v) + = (1 —&)Fy o(v), Vuv=0.

To prove the existence of v* satisfying (28), suppose that (33) holds with strict
inequality for all v > 0. We will show that in such case there exists § > 0 such
that

(34) (1 —&)Fy, g«(v) + &> (1—¢)Fy, o(v) +8, Vv=>0.
To show this, we begin by finding v, >,0 such that
(35) (1 —e)Fy, o«(v) +e>1—-e/2, Vuv=u,.

Since Fy g+(v) and Fy_ o(v) are uniformly continuous functions of v on [0, v,],
there exists 8 > 0 such that

(36) (L—¢e)Fy ox(v) +e>(1—e)Fy o(v) +8, VO<v<uy,,
and (34) follows now from (35) and (36) with § = min{&’, £ /2}.
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Finally, using (34) and Lemma A.2(b), we can find 6** with [|0**| > ||*||
such that
(37) (1 —e)Fy, e+(v) +te=(1 —&)Fy, o(v), VYuv=0.
But this contradicts the definition of a(e), proving (c) and the lemma. O
ProoF oF THEOREM 4.1. Let T be residual admissible, let < a(e) and let

0* be as in Lemma A.1. Take x, = n0*/a(e) and let y, be uniformly dis-
tributed on the interval [nb — (1/n),nb + (1/n)]. Let

(38) H,=(1-¢)H,+¢H,,

where H, is the point mass distribution at (x,,,). Consequently,
(39) Fy, o(v) = (1 — &) Fy o(v) +Fg_o(v).

We will show now that

(40) li’lllligf”T(Hn) | = o.

A straightforward computation shows that
(41) FH,,,G(U) = Un(v - Cn(o)) - Un(_v - cn(e))’ Vv=>0,

where U, denotes the uniform distribution function on [—(1/n),(1/n)] and
where

42 0 b oo
( ) cn( ) =n - a ( 8) .
Observe that by (39) and (41), Fy, ¢(v) is continuous in v. Suppose now that

(40) does not hold and let T, = T(H,,). Passing to a subsequence if necessary,
we can write

(43) m T, =6, [I8]=5<b.

Since lim,, _, |6 — T.,0* /a(¢)| = b — b > 0, it follows that
(44) lim |¢,(T, )| = .

Using this and (41), we obtain

(45) limFg p(v) =0, Vuvx>0,

and so, by (39), (43) and (45), we have

(46) lim Fy 1 (v) =(1-¢)Fy 5(v), VYvx>0.

On the other hand, if 8 = (b/a)0*, then c,(8) = 0 for all » > 1, and thus
47 lim Fg 5(v) =1, Vuv=0.
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Therefore, by this and (39), we get
(48) ’}iﬂoFng(v) =(1-¢)Fy 5(v)+e, VYv=0.

Now, by Lemmas A.1 and A.3(c), we have
‘o (1 —e)Fy, 5(v) +&> (1 —¢e)Fy o«(v) — &= (1—¢)Fy o(v)
(49) > (1—-¢e)Fy 3(v), Vv>0.

Finally, (46), (48) and (49) contradict the admissibility assumption and thus
(40) holds. Since (40) holds for all b < a(e), the theorem follows. O

Proor or THEOREM 4.2. We will show that Theorem 4.2 holds with
(50) a* = (1 — &) Fy, o(v*),

where v* is defined in Lemma A.3.

Without loss of generality we can assume that G ,(x) is spherical. Moreover,
by Theorem 4.1 it is enough to show By (¢) < a(e) and for this it suffices to
show that for all H = (1 — ¢)H, + ¢H we have

(51) I Tex (H) || < a(2).

Suppose that this does not hold, and so there exists some H such that if
0 = T, .(H), then [T, (H)Il = |l6ll > [16*|| = a(e), where [16*| is as defined in
Lemma A.3.

Let A = [10]|/]16*] and ® = A0*. Then |10/ = [|0]| > ||6*||. Since G, is spherical,
the distributions of 6'x and 'x are the same. Thus, by Lemma A.1 and (28),

Fi,o(v*) < (1 — &) Fyg, o(v*) + &= (1 = &) Fpy, 5(v*) + ¢

(52) <(1—8)FH0’0*(U*) +e=(1 —e)FHo’O(v*) = a*.
Therefore,

(53) Flo(a®) > v*.

On the other hand, Fyy ((v*) > (1 — &) Fy_,(v*) = a*, and so

(54) Flo(a*) < v*.

Finally, (53) and (54) show that T, «(H) # 6, proving the theorem. O

Proor oF THEOREM 5.1. Suppose that the admissibility condition is vio-
lated. Then there exist two possibly substochastic distribution functions F*
and F, continuous on (0, ©) and satisfying

(55) F*(v) >F(v), VYuv>0,

together with a sequence H,, in &%, and a vector 8* such that Fy; . ,(v) and
Fy_ ¢+(v) are both continuous on (0, ) and

(56) Fy rm,y(v) = F(v), Vv>0,
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and

(57) Fy ¢(v) > F*(v), Vuv>0.
Without loss of generality we can assume that

(58) 0< lims(H,) =s <.

Using the continuity of the distribution functions together with (55), (57) and
(58), it follows that

(59) FHn,T(Hn),s(Hn)(v) - Fy(v), Vv>0,
and
(60) FHme*,S(Hn)(v) - F}(v), Vuv>0,

where F,(v) = F(sv) and F;*(v) = F*(sv). Since F(x) > 1 — ¢, from (55),
(59), (60) and the e-monotonicity of J(F'), we have

im J(Fy, 1, sm,) > M0 J(Fy, o o1,

n—o o

contradicting (13). Therefore, the theorem holds. O

Proor or LEMMA 5.1. Let F, G, F, and G,, be as in Definition 5.1. Observe
that the discontinuities of p and the distribution functions cannot occur at the
same points. So, using by-part integration and the dominated convergence
theorem,

lim J(F,) = lim ["p(v) dF,(v) = lim ["(1 = F(v)) dp(v)

n— o

[ (1= F(v)) dp(v) = [ p(v) dF(v) + (1 — F())p(=).
0 0

Analogously, lim, ., J(G,) = [§p(v) dG(v) + (1 — G(«))p(x). The lemma fol-
lows then because

lim J(F,) = lim J(G,) = [ p(v) d(F = G)(v) + (G(=) — F(=))p(*)
= [((G(v) = F(v)) dp(v) > 0. O
0

Proor oF LEMMA 5.2. Suppose that
(61) By(g) =b < .

By (15), u, = EHOp((IyI + nlx,)/a,) is finite for all n > 1. Using the unbound-
edness of p, we can choose y, such that p(y,/2a;) > u,/c. Let v' =
1,0,...,0), x, = (y,/n)v and H, be given by (38) with H, equal to a
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point-mass at (kn, ¥,). By (61), IT(H,|l < b and, therefore, for large n,
~ T(H,)x =T, /n i b

(62) s(H,) ay ay n

> Ep y—n > Ww,.
2a, "

On the other hand, taking 6, = nv gives

y - 0x ' y - nx,
E”""( S(H,) )S“ _E)EH“’( a )

But this, together with (62), contradicts the definition of T(H,) given in (14).
O

The following lemma is needed to prove Theorem 5.2.

Lemma A4. (@) If F,, i = 1,2, are distribution functions (possibly sub-
stochastic) such that Fi(©) > 1 — a, F(u) =0 for u < 0 and

(63) Fy(u) 2 F(u), VYu>0,
then
(64) j0°°a(F2(u))uk dFy(u) < foma(Fl(u))udel(u).

Moreover, if the inequality (63) holds strictly for all u > 0, then the inequality
(64) also holds strictly.

(b) Let G, be a sequence of distribution functions such that G,(u) = 0 for
u < 0 and continuous in (0, x), and suppose that lim,, _,, G, (u) = G(u), with
G possibly substochastic, continuous in (0,x) and G(x) > 1 — a. Then

(65) lim J(G,) = j:a(G(u))uk dG(u).

Proor. First notice that

(66) [ a(F(u)u*dF(u) = [ “a(u)(F'(v)'dv, i-1,2.
0 0
Observe that since Fij(») > 1 — a, Fi’ I(v) is well defined for all v <1 — a.
Then (64) follows from the fact that (63) implies
(67) Fy'(v) = Fy'(v),

for all v > 0. Moreover, if (63) holds strictly for all > 0, then (67) holds
strictly for all v > 0, and then (64) holds strictly, too. To prove (b), let
A, (u) = |a(G(w)) — a(G (w)u*, C(u) = a(G(u))u* and let u, be any point
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such that G(z,) > (1 — @). Then

‘J(Gn) - f:a(G(u)) dG(u)

(68)

< j:An(u)dGn(u) +\f0°°0(u)dGn(u) - ]Ou"C(u)dG(u)

Given 8 > 0, we can find u, and u,, with u, < u, such that G(u;) <1 - «q,
G(u,) > 1 — a and G(uy) — G(u,) < 8/(4K), where K = uf max a(u). Then

[ An(u) dG, () < [ Au(w) dGy(u) + /ul A,(u) dG,(u)
(%9) + [ A w) dG, ()

=1, +1,, +1I,.

Since A,(x) — 0 uniformly in the interval [0, u,], there exists n, such that
I,, <8/2 for n>n,;. We can find n, such that if n > n,, then G, (uy) —
G,(u,) < 8/4K and, therefore, I,, < §/2. Finally, we can find n, such that if
n > ng then G(u,) >1—a, and by the definition of a(u), I, =0 for
n > ng. Now put n, = max(ny, nyny); then n > n, implies I5A,(v)dG,(u)
< §. This implies that

(70) [ A (1) dG,(u) ~ 0.
0
Moreover, by Helly’s lemma,

(71) [“cu) d@,(u) > [°C(u) dG(u),
0 0
and part (b) follows from (68), (70) and (71). O

PrOOF OF THEOREM 5.2. By Theorem 5.1 it is enough to show that J given
by (22) is e-monotone. To prove this, take two sequences G, and F, satisfying
the conditions of Definition 5.1. We shall prove that
(72) lim J(F,) > lim J(G,).

If F(o) > 1 — a, this follows from Lemma A.4. Now suppose that F(e) <
1 — «. In this case define F*(x) = max(F,(x),G,(x) — 1/x). It is immediate
that the distribution functions F* are continuous on (0,») and such that
F*(x) = 0 for x < 0. Moreover, lim,, _,, F (x) = F*(x) = max(F(x), G(x) —
1/x). We also have F*(x) < G(x) fot all x > 0 and F*(») = G*(x) > 1 - a.
Therefore, by Lemma A.4,

(73) J(F)) <J(F,)
and
(74) lim J(F;}) > li_r)n J(G,).

Clearly, (73) and (74) imply (72). O
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Proor or LEMMA 5.3. The estimate T, can be viewed as an S-estimate
with scale S(F) given by (16), where p is the jump function given by

(u) = 0, iflul <1,
X 1, iflul>1,

and b=1-a. Let g(t,s)= Eyp((y — t'x)/s) and g*(¢,s) = Ey,o((y -
tx,)/s). Observe that if G, is spherical g*(||t|], s) = g(t, s) and, therefore, (3.2)
of Martin, Yohai and Zamar (1989) implies that B (¢) satisfies

l-a l—-a-—-c¢
(75) h(BTa(S)’ 1_8)—’1,(0,1*_8—):0,
where h(¢, - ) is the inverse of g*(¢, - ). Put
3*h(t,N)
attar’
Similar notation is used with the function g.
Making a second-order Taylor expansion of (75), we get

hi (8, 4) = , 0<i,j<2

€ B3 (¢)
hl’o(o, 1 - a)BTa(S) + ho’l(o, 1 - a)l—_a + h2’0(0, 1 - a) ;
ho 50,1 e h1 10,1~ a)By (&) — (2) = 0
+ 1—a)— + 1 —a +o(e?) = 0.
0,2( ) 2(1 - 3)2 L1 TAE) T,

Using that h, ((0,1 — @) = 0 and lim, _, By (¢) = 0 and solving for By (e) in
the last equation, we get

ho 1(0,1 - “)
im B2 = -2— =
(76) Jim B (e) = ~ 2520

A straightforward computation shows that

ho 10,1 - a) 1 1

h2,0(0, 1-a) B 82,0 B 2f6(F()_1((1 + “)/2)) ‘
From (76) and (77) we get

(77) -

1
fo(Fo '((1 + @) /2))

lim B%a(s) =
proving the lemma. O
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