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ON THE LEAST SQUARES CROSS-VALIDATION
BANDWIDTH IN HAZARD RATE ESTIMATION

By P. N. PaTiL

University of Missouri

It is known that the least squares cross-validation bandwidth is asymp-
totically optimal in the case of kernel-based density and hazard rate
estimation in the settings of both complete and randomly right-censored
samples. From a practical point of view, it is important to know at what
rate the cross-validation bandwidth converges to the optimal. In this paper
we answer this question in a general setup which unifies all four possible
cases.

1. Introduction. Since Watson and Leadbetter (1964a, 1964b) intro-
duced the kernel-based estimators of the hazard rate in an uncensored setting,
it has been a topic of interest to researchers and applied statisticians. A good
deal of discussion on the topic can be found in Prakasa Rao (1983). Recent
work includes Tanner and Wong (1983), who prove the asymptotic normality
of the kernel-based estimator of the hazard rate for censored data using Hajék
projection, while Lo, Mack and Wang (1989) achieve the same result via strong
representation of the Kaplan—Meier estimator. Two of the three kernel-based
estimators of the hazard rate considered by the preceding authors, in either an
uncensored or a censored setting, are essentially variants of the same estima-
tor and share similar optimal properties. However, they are not comparable in
the sense of mean integrated squared error (MISE). Patil, Wells and Marron
(1992) give a different viewpoint for choosing between them. Although the
various properties proved by the preceding researchers made the kernel esti-
mators of the hazard rate more appealing to use, practical utility of these
estimators heavily depends on the choice of the smoothing parameter.

In the context of hazard rate estimation, least squares cross-validation is
employed by Sarda and Vieu (1991) to choose the smoothing parameter, which
is the bandwidth in the kernel estimator of the hazard rate, and it is shown
that such a choice is asymptotically optimal. For generalization of it to the
censored setting and for a detailed discussion of optimality of the cross-valida-
tion bandwidth, see Patil (1993). Wells (1989) has shown the asymptotic
normality of the estimator which uses the bandwidth of optimal order. Also
Marron and Padgett (1987) prove that the bandwidth obtained by employing
least squares cross-validation is asymptotically optimal in the case of kernel-
based density estimation from the randomly right-censored samples. From the
previously mentioned work [Marron and Padgett (1987), Sarda and Vieu

Received August 1990; revised May 1992.

AMS 1991 subject classifications. G2G05, G2P10.

Key words and phrases. Nonparametric hazard rate estimation, kernel-based estimator, cen-
sored data, bandwidth, cross-validation.

1792

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Statistics. IIEORS ®

Www.jstor.org



HAZARD RATE ESTIMATION 1793

(1991) and Patil (1993)], it is known that the least squares cross-validation
bandwidth is optimal (cross-validation works) in the case of kernel-based
density estimation and hazard rate estimation in either setting, that is,
complete or randomly right-censored samples. From a practical point of view,
it is important to know at what rate the cross-validation bandwidth converges
to the optimal bandwidth. In this paper our main interest is answering this
question. The work of Hall and Marron (1987) is generalized through a unified
approach to treat all the cases discussed previously. The bandwidth that
minimizes MISE depends on an unknown functional of the parent distribu-
tion. For this choice of bandwidth to be of any practical use, one needs to
estimate and study the estimate of this functional of the parent distribution.
This method of bandwidth selection, generally called the plug-in method, is yet
to be investigated. One of the by-products of this paper is the comparison
between this bandwidth and the cross-validation bandwidth.

In Section 2 we introduce the kernel estimators and necessary notation to
unify the previously discussed cases by an appropriate mathematical structure.
The main theorems are given in Section 3, and Section 4 contains the proofs of
the lemmas which are used in the theorems of Section 3.

2. Notation and estimator. Let X X2,..., X? denote the indepen-
dent identically distributed (i.i.d.) survival times of n items or individuals that
are censored on the right by i.i.d. random variables U;, U,, ..., U, which are
independent of the X,’s. Denote the common distribution function of the X?’s
by F° and that of the U’s by H. It is assumed that F° is absolutely
continuous with density f° and that H is continuous. The observed randomly
right-censored data are denoted by the pairs (X;, A;), i = 1,2,...,n, where

X, =min{X?,U;} and A= Iixo <,y

The X;’s form an iid. sample from a distribution ¥, where 1 — F =
(1 — F%(1 — H). Define the empirical distribution function

Fy(x) =(n+1)7" ¥y
i=1

Let F2(x) be the maximum likelihood estimator of F° as defined by Kaplan
and Meier (1958), and let H, be such that (1 — F(x)) = (1 — F2(x)X1 —
H,(x)). A general formulation of the target function in all of the cases
discussed in Section 1 is n(x), where

_(1-H(®) 1)
Q)

and Q(x) is a nonincreasing function such that 0 < @(x) < 1, x € #.

(2.1) n(x) for @(x) >0

ReMaRk 2.1. () If Q(x) = 1 — F(x), then we have the case of hazard rate
estimation in the censored setting. (i) If @(x) = 1 — H(x), then we have the
case of density estimation in the censored setting.
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ReEMARK 2.2. If the censoring random variable has all its mass at «, then
H(x) =0 for x € # and F°x) = F(x). (i) If Q(x) = 1 — F(x), we have the
case of hazard rate estimation in the uncensored setting. (ii) If we take
Q(x) = 1, we get the usual probability density and its kernel-based estimator.

Define the estimators n,(x) and n%(x) of n(x),
1 2 Ku(x - X))

(2.2a) Na(x) = ;E,l oux) M
% _ }_ 2 Ky(x - X))
= TR Tem v

where @, is an estimator of @ such that @, converges to @ at the rate of 2~
in sup norm where a > 2/5. Following the recommendations of Patil, Wells
and Marron (1992), we will use the estimator n,(x). Also define

1 K-X)
(2.2b) @) = Lo

and note that under conditions B.1 and B.2 of the next section

n

1
[1,(%) = (%) < — T [Kp(x = X)A;| sup |Q71(2) — Q7'(1)]
i=1 t€l0,T]

= 0,(n™®).

To assess the performance of the estimator, we consider the error criterion
integrated square error (ISE),

I(n,(x)) = [[na(x) = n(x)]*w(x) dx,

where w(x) is a weight function and will be defined later. We also denote
I'(n,(x)) by T'(h) whenever we want to emphasize this as a function of 4. For
the nonrandom assessment of the estimator, we will consider the MISE,
M(h) = E[T'(h)].

The practical problem associated with applying the estimator n,(x) is the
choice of h. A common goal is minimization of M(A). The minimizer of M(h),
h, say, depends on an unknown functional of f%(x). If the value of this
functional is known, then this choice is best in an average sense over all
possible data sets. But, in general, the value of the functional is not known in
advance and one has to estimate it using the sample. So thinking only of the
data set at hand, we propose taking the ‘“‘optimal choice” to be the minimizer
of T(h), h, say, as T(hy) > I'(h,) and E[I'(hy)] > E[T'(h,)]. Again as A, is
not available to the experimenter, we consider 4, a data-driven bandwidth
obtained by any rational methodology, and compare it with fzo. That is to say,
examine the relative distance between A and %, and examine relatively how
much greater T'(4) is than T'(A,).
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Here we consider A = %, the cross-validation bandwidth which minimizes
the cross-validation score function,

n (X
CV(h) = fni(x)w(x) dx — 2n7! Z [—————ZLL((Xl))

-1
where 7,; is “leave one out” version of 7, and A = hy, the best but
unachievable classical bandwidth, and show that the relative distance between
h, and A, is of the same order of magnitude as the relative distance between
ho and A,. We also find that the relative distance between I'(h,) and I'(h,) is
of the same order of magnitude as the relative distance between I'(%,) and
I'(h,). Furthermore, we find that neither h, nor h, consistently ooutperforms
the other, since both probabilities, P[I'(h,) > I'(hy)] and P[T'(h,) < T(h,)],
converge to strictly positive limits. All these results extend the findings of Hall
and Marron (1987) to treat all four cases, density and hazard rate estimation
in complete and censored samples, simultaneously.

]w(Xi)I[Ai=1]’

3. Main results. We impose the following conditions on K, f° and 7.
B.1. K is a compactly supported, symmetric function on %, with Holder
continuous derivative K’, and satisfies

fK(u) du=1 and fuZK(u)du =2k # 0.

B.2. f° and 7 are bounded and twice differentiable, f®, 7/, f* and n" are
bounded and integrable, and f® and %" are uniformly continuous on
[0, T'], where

T = sup{x|Q(x) >¢},e >0 and w(x) =1Iq (%)
B.3. K has a second derivative on % and K” is Hélder continuous.

Following is the first main result which quantifies the relative distance
between A and the “optimal choice”, h,. The variances and other constants
appearing in the theorem are defined after stating the other main result of the

paper.

THEOREM 3.1. Under conditions B.1 and B.2,

[ Ay —hy |
}AI’O 0’ -2 0'02 (P
1/10 -
Zs LN([O],(COCI) [ ])
- ﬁo -

Next is the other main result describing the relative amount by which A (&,
or ﬁc_) fails to minimize the integrated square error.
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THEOREM 3.2. Under conditions B.1, B.2 and B.3,

. s | T(Ro) = T(hy)
(l) n /5{ [‘(ﬁo)
and

1 _
} L E(C102) 10'02)(%

1 -
(iD } —1 5(CC) Mo,

To define and understand the constants, set D(h) = I'(h) — M(h), and for
simplification of the argument, decompose I'(%) as

() = [{n.(x) = Fu(%) + Tu(x) = n(2)} w(x) dx
=Ty(h) + Iy(h) + 2I5(R),
where
Ty(h) = [(Au(2) = n(x)fw(x) dz,  Ty(h) = [{n(x) ~ Au(2)) w(x) dx

and

Ty(h) = [{7(x) = n(£)H{na(%) = Hu(2)}w(x) dx.
Denote E[I;(h)] = M,(h), i =1, 2 and 3, so that
M(h) =M,(h) + My(h) + 2M3(h) and D, (h) =T(h) — M(h).

Now after some algebra the cross-validation criterion can be written in the
form

CV(h) = T(h) + 8(h) = [n*(x)w(x) dx,
where 8(h) = 8,(h) + 8,(h) and

8,(h) = 2/n(x)ﬁn(x)w(x) dx — 2n7* i§1 ﬁnz(;fi)) w(X;) Ija, =135
8y(h) = 2 [n(x)[na(x) = T(x)]w(x) dx
_gp-t i i Xi) Wi X, w(X) Ty _y

Sle (X)) QX))

Also, recall that fzo, ﬁc and h, minimize I'(h), CV and M(h), respectively.
Now the contribution from My(kh) and M4(h) in M(h) is negligible as com-
pared to M,(h). So M(h) ~ M(h) and

My(h) = a(nh)~" + bh* + o{(nh) " + h*)
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as h = 0 and nh — o, where

a= UKZ(u) du]fg—((f)—w(x) dx and b=k*[(7'(x)) w(x) dx.

Now the following are expressions for the first and second derivatives of M(k)
obtained by differentiating under the integral sign,

Mi(h) = —a(nh?®)"" + 4bh® + o{(nk?) "' + A%},
Mi(h) = 2a(nh®) ™" + 126h* + o{(nk®) " + h2}.
Therefore, by setting M{(h) = 0, we get hy ~ Con~'/%, where C, = (a/4b)'/5

and
a \2/5
- -2/5
+ 1256 (4b) n ]

a \3/5
M{(hgy) ~ 2a[n2/5(-‘ﬁ;)

= [2aC5? + 12bCE|n2/5 = C;n /5,

Also M(hy) ~ Con™*/%, where C, = a*/5b'/%[41/5 + 4%/5]. Set L(u) =
—uK'(u),

9 3 2
i (&) Plasee] =
271( x)
Q(x)

9 3
o2 = (?f;) f[g((i))w(x)} dx [LX(u) du

f[/K(z +u)(K(2) - L(2)) dz] du

+(4kCy) { J (' ()" S wi(x) dx - [ fn"(x)n(x)w(x)dx] }

217()

+(4kCo) {f( () 5y

2 3 2
oo (&) et ]

X [[K(w) - L(u)][K* K(u) - L* K(u)] du

wi(x) de - | [ ()n(x)u(z) d]}

277()

) z(x)dx—(/n"(x)n(x)w(x)dx) ”

+(4kCy) { (' (%))

where * denotes convolution.
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REMARK 3.1 (Generalizations).

(i) A faster rate of convergence of the estimator is possible if we admit
more general kernels. Suppose K is chosen so that (K(z) du = 1 and for some
integer v > 2, [u/K(u)du =0 and for 1 <j <v — 1, [u’K(u)du # 0, then
the kernel L also enjoys these properties. Furthermore, if we assume f° and
1 have uniformly continuous vth derivatives on [0,T], then a version of
Theorem 3.1 holds with rate n!/(2@*+Dl whereas Theorem 3.2 remains un-
changed.

(ii) In this paper Theorems 3.1 and 3.2 are considered for one dimension
because of its practical importance. Following remark (2.1) of Hall and Marron
(1987), both theorems can be generalized to the multidimensional setting of
Gjorfi, Héardle, Sarda and Vieu (1989) for hazard rate estimation, leaving
Theorem 3.2 unchanged and replacing n!/% by n?/%?*%! jn Theorem 3.1.

REMAEK 3.2 (Comparison of h, and A, with reference to 4,).
(i) By Theorem 3.1,

hy—hy h,—h,
cov , ﬁo

hq

2 3 2
_ _(C"Cl)_z{('c;) [/(Z?((z))w(x)) dx]

x/[K(u) —L(w)][K*K(u) - L*K(u)j du

+(4kco)2[ o () ds = ([ (ym(ayw() s ] .

If the kernel K has nonnegative Fourier transform, then use of the Parseval
inequality and the Cauchy—Schwarz inequality, respectively, on the first and
second term of the preceding covariance gives us that asymptotically (fzo -
ho)/hy and (h, — k) /h, are negatively correlated. This means that &, and
. tend to err on the same side of hy.
(ii) The Cauchy-Schwarz inequality and the fact that [[K(x) — L(u)* du =
JL*(u) du give

f[fK(z +u)(K(u) — L(w)) durdz

< [[/K(z +u) du”fK(z +u)(K(u) — L(w)) du]dz = fL2(u)du,

which implies that o2 < 2. In this sense h, results in a marginal improve-
ment over the cross-validation bandwidth. However, the improvement is not
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available with probability 1 as one of the consequences of Theorem 3.1 is
lim, ,, P[T(hy) >T (ﬁo)] exists and is strictly positive.

Proor or THEOREM 3.1. In the following proof we have used the lemmas
which are stated and proved in the next section. Observe that
0 =T"(ho) = M'(ho) + D'(hy) = My(h,) + Di(ho) + Ry(hy),
where R () = [Ty(h,) + 2T4(A,)]. Therefore, we get
(3.1) 0 =T"(ho) = (ho — ko) M{(h*) + Dy(ho) + Ry(h,),

where h* lies between h, and /.. By Lemma 4.4, h, = h, + 0,(n=1/57¢) for
some ¢ >0, and so, by Lemma 4.2 with h;, = h,, D'l(ﬁo) = Di(hy) +
0,(n~"/1°). But, by Lemma 4.5,

n"/1D(hy) =1, N(0,0%).

So n"/°D'(h,) must have the same weak limit. Since &*/h, —p 1, M {(h*) =
Cin~%® + 0,(n~2/5). Thus (3.1) becomes

(32)  0=(ho—ho)Cin"*® + Di(h¢) + 0,(n" /1) + Ry(h,).
So by Lemmas 4.3 and 4.5, we conclude that
(3.3) n¥1(hy = hy) >, N(0,Cy%).

For the other component in the vector [A, — hg, h, — A,1, note that

CV(h) =T(h) + (k) — [n*(x)w(x) dx

= M(h) + D(h) + 8(h) — fnz(x)w(x) dx.
Therefore,
0=CV'(h,) = Mi(h.) + Dy(h,) + 8)(h,) + Ry(h,) + Ry(h.,),
where R,(h,) = 85(h,), and we get
0=CV'(h,) = (he = ko) M{(R**) + Di(h,) + 8)(h.)
+ Ry(h,) + Ry(h,),

where h** lies between h, and A, Now Lemma 4.4 gives ho=hy+
0,(n~1/%7¢) for some ¢ > 0, and Lemma 4.2 gives, with h, = h,,

Di(h,) + 8(h,) = Di(ho) + 8i(ho) + 0,(n~7/10).

Also, by Lemmas 4.5 and 4.6, D'(h,) + 8)(h,) = O,(n~"/1°). Furthermore,
since h**/ho —»p 1, M{(h**) = Cin"2/5 + 0,(n"2/%). So (3.4) can be expressed
as

(3.4)

0= (h, = ho)Cin"25[1 + 0(1)] + O,(n~7/1) + Ry(k,) + Ry(h,).
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This implies that fzc —ho =0y n~=3/19)_ Therefore,
(he = ho)My(h*) = (k. - ho)[Cin™2/% + 0,(n™%/%)]
= (he = ho)Cin~25 + (R, — ho)o,(n=%)

A

= (h, = ho)Cin ™% + 0,(n"7/1%).

c

Using the last representation, refinement of (3.4) gives
0=(h, = ho)Cin"2% + D(hg) + 81(ho) + Ry(h,)
+ Ry(h,) + 0,(n""/10). }
Now, subtracting (3.2) from (3.5), we get
(38.6)  0=(h,—ho)Cin™%% + &(ho) + Ry(h,) + 0,(n""1).
Hence, by Lemmas 4.6 and 4.3, we get
(3.7) n®(h, — hy) -, N(0,C7%02).
Note that, by (3.2), (3.6) and Lemma 4.3, for any p, q € %,
p(fzo — ho)Cin~?/% + q(fzc - ﬁo)Cln'2/5 + pD'y(hy)

+qd8i(hy) + op(n_7/1°) = 0.

(3.5)

Therefore, by Lemma 4.7, we get
¥ p(ho — ko) + q(h, — ho)| =1 N(0,C7%(p%¢ + g% + 2pqos,,)).

Hence we conclude that

_ 2
3/10 ?o ’Alo S, N [0],01_2 0o  Opc .
hc - hO 0 Toc 0'02

Now Ay —p hy ~ Con~'/% implies that

-ﬁo—ho_

2
i etz 20

which completes the proof of Theorem 3.1. O

PROOF OF THEOREM 3.2. Let & denote either &, or A, and consider
T(h) = T(h) = Ty(h) — Ty(hy) + Ty(ho) — Ta(hy)
+2[Ty(h) — Ty(h,)].
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Notice that Taylor’s expansion of I'(A) at A gives
N A2 N
T(h) = T(ho) = §(h — ko) TI(R*) + Ty(h) — Ty(ho) + 2[Ts(h) — Ty(hy)],

where h* lies between A and fzo. By Lemma 4.8, given in the next section, and
by the fact that h*/hg —p 1, T{(A*) = M{(h*) + 0,(n"?/%). But Mj(h*) =
C,n~%/% + 0,(n"2/%) and, by (3.3) and (3.6), A — h, = 0,(n=3/1%). Therefore,

I(h) - T(h,) = é(ﬁ - ﬁo)2C1n_2/5 +o0,(n"1) + Ty(h)
— Ty(ho) + 2[Ty(h) — Ty(h,)].
Hence, by (3.3), (3.7) and Lemma 4.9, given in the next section, we get
n[T(hg) = T(ho)] =1 3Ciodx?
and
n[l"(fzc) - I‘(ﬁo)] - :Crlo2y2
Furthermore, I'(h,) = C,n~%/5 + 0,(n~*®), which implies

ISE(h,) — ISE(A 1
n1/5{ IOSE(ﬁO) ( 0)} d’ ECI 102 10'02)(%

and

1/5{ ISE(k,) — ISE(h,)

1
-, =Cr'Cy o2y, O
ISE(A,) } Lg%

4. Lemmas. In this section we will state and prove the lemmas which we
have used to prove the theorems of the last section. Define S(h) =

—(h/2)D(h),
x — X ( x - X; i
<[] <[5
B Te AR IS SRl
L(x—Xi) :L(x—Xi) .
h h
BT SR e T SR
and _ _

_(x) 1 2 Ly(X-X)
) a L am

The following decomposition of S(%) [or D}(h)] is along similar lines to that of
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Hall and Marron (1987):
h
(4.1) S(h) = —EDi(h) = Sy(h) + Sa(h) + S3(h),

where
Si(h) =Su(h) _Slz(h)’ Sz(h) =S21(h) +S22(h)’
S3(h) = S31(h) — S3a(h)

where

Su(h) = (nh)* LY [Ki(x)K,(x)w(x)dx,

1<i<j<n

Sia(h) = (nh)* LY [[Ki(x)L;(x) + K,(x)Ly(x)] w(x) dx,

1<i<j<n

Su(h) = (10) " T [K () 2E[7,()] - E[7,(x10)] - no)}u(x) ds,
Su(h) = (nh) ™ T [L(){n(x) = Blaath) o) d,
Suh) = (h)* % [[K2) - B(KE ()] w(x) d,

Sa(h) = (nh)”? Zl JIE)Li(%) = B(E(x) Li(x))]w(z) dz.

A similar decomposition for §)(%) is obtained in (4.2). Define
(5

y=— "
Q(X,)Q(X;)
= By(X;, X;) + Bi(X;, X,),

X, - X,
o
Q(X,)Q(X;)
= B,y(X;, X)) + ézz(Xi’ X;),
br(Xi) = E[Br(Xi’ Xj)lxl] = brl(Xi) + br2(Xi) and K= E[br(Xz)]7
r=1,2.

By(X,, X, [w(X:) + w(X;)]| g~ 1],y

By(X;, X; [w(X) + w(X;)] Iia,=ny]ia, -1,

(42) T(h) = g%(h) = Ty(h) + Ty(h),
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where
Ty(h) = Tu(k) — Typ(h), Ty(h) = Tou(h) - Tzz(h)’
and
Ty, (k) = [n(n - 1)h] " IX [B,(X;, X;) = b,(X) = b,(X,) + u,],
<i<j<n
r=1,2,
Ty (k) = (nh)~* ,}_:l[b,xxi) — (X w(X,) + fn(x)w(x)dx],
r=1,2.

The symbols C, C; and C, occurring in the following lemmas denote generic
positive constants. In Lemmas 4.1 through 4.7 and 4.9, we assume conditions
B.1 and B.2.

LEMMA 4.1. For each 0 < a < b < « and all positive integers m,

(4.3) sup E|n/Dy(nt/%)"" < Cy(a, b, m),
n;a<i<b
4.4 sup E|n"/1%8)(n"1/5¢ e a,b,m).
1 1
n;a<i<b

Furthermore, there exists £, > 0 such that
(4.5) E|n"/°[Dy(n=Y/%s) — Dy(n=1/5t)] " < Cy(a, b, m)ls — ¢,
(4.6) E[n"/1[8y(n" V%) — & (n~15¢)] |2m < Cy(a,b, m)ls — ¢,

whenever a <s <t <b.

ProOF. By (4.1), to prove (4.5), we shall show that for some & > 0,

(4.7) E|n8/1%[ S;,(n" V%) — Sy (n~/50)] " < Cls — ¢™,
(48)  E[n*[Sy(n V%) = Sy(n" Vo) [ < Cls - 4™,
(4.9) E|n'3/*[Sgy(n~1?s) — Sy (n=1/5¢)] |2m < Cls — t|*™.

Similar inequalities may be established for the functions S;5, Sy, and Sg,.
The verification of (4.7) through (4.9) could be done along similar lines to
that of Hall and Marron (1987). Here we propose to use the inequality (21.5) of
Burkholder (1973) for the martingale. We will illustrate this to verify (4.8)
only.
To show (4.8), note that

|2E[7,(xh)] — E[¥.(xIR)] — n(x)]

= [2(E[7,(xIR)] = (%)) = (E[¥a(x1h)] = n(x))].
Now B.1, B.2, Taylor’s theorem and the fact that L is also symmetric and
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integrates to 1 imply that for ¢ € (a, b),
|2E[T1n(x|n'1/5t)] - E[?n(xln_1/5t)] - n(x)|

=|2(E[ﬁn(x|n‘1/5t)] - n(x)) - (E[?n(xln_1/5t)] - n(x))| < Cn~?/5,
Write S,,(n~1/5¢) = n=1L?_,V/(i), where

(4.10) E[V/(i)] =0
and
(4.11) V(i) — V,(i)| < Cn=%/5|s — tI".

Define the sequence of sigma fields
Fo = {( X1, A1), (X3, 84),...,(X,,4,)) fork<n
=o{( X1, A1), (Xs,84),...,(X,,4,)} fork>n.
Now note that, by (4.10),

n n—1
E|:.§1(‘/s(i) - Vt(i))|9i_1)] = .gl (V.(3) — Vi(@)),

that is, {X?_(V,(i) — V,(i))} is a martingale with respect to the sequence of
sigma fields {,, & > 1}. Now we will apply the martingale inequality (21.5) of
Burkholder (1973) to the finitely indexed martingale {L?_,(V (i) — V,(i))} with
P(x) = x2™,

k
fr= s L[V - V@),
d, = [V.(k) — Vi(k)] for k < n and 0 otherwise, and
n 172 n 1/2
s(n - { £ planzial} | £ el -]
This gives

E|n%1 Syy(n~1/5s) — Syy(n~58)] "

= n-a/om(E[( £+)])

<n-crom{om{a(s(r)] + ¢ £ Bloga))])
i=1
< n~W/O7(Cls — t[*™pA/D™ 4 Cls — t|> " pt=@/Om

< Cls — t|*™,

which completes the proof of (4.8). The proofs of (4.7) and (4.9) are based on a
similar argument and so we omit the details. This completes the proof of (4.5).
The same type of argument gives (4.3), (4.4) and (4.6). O
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LEmMMA 4.2. For some ¢ > 0 and any 0 <a < b < »,
(412)  sup {|Dy(n o) | +[dY(n 7)) = Op(n7¥07).

a<t<b

Furthermore, for any e, > 0 and any nonrandom h, asymptotic to a constant
multiple of n=1/%,

sup /0| Di(n V5% — Dihy)|
(4.13) j6=nt/h|<n =2
+|8y(n=1%) - 5’1(h1)|} —p 0.

Proor. First we will prove (4.13). Note that (4.13) will be true if
(4.13a) sup a7\ Dy(n"V5%) — D(h,)| >p 0

[t—n'/%h | <n %2
and
(4.13b) sup  n"/1|8(n"5) = 8y(hy)| = 0.

[¢—n'/5h|<n*2

The proofs of (4.13a) and (4.13b) basically involve two steps. In the first step
the supremum over the uncountable set will be reduced to the supremum over
a countable set, and in the second step the Markov inequality is used to get the
required result. Illustration of these steps is given in Hall and Marron (1987),
and so we omit the details here. O

LemMA 4.3. For some 0 <& <3/20 and any 0 <a <b <,
sup |Ry(n™'%)| +|Ry(n=1/5t)| = O,(n=3/4*),

a<t<b

Proor. We will give an argument for R,. The proof for R, is the same.
First note that R,(h) = I'j(h) + 2T'4(k) and

Ty(h) = [=(2/k)] [(na(xIh) =7, (xIh))*w(x) dx
— [(na(xIR) = T (xlh))(vau(2lR) = Vol 2IR))w(x) dx,
Ty(h) = (2/h) [(n.(xlh) = 7, (x1h))(2T,(xIh) = Fu(xlh) = n(x))w(x) dx

— [@xlh) = n(x))(ra(xlh) = Fo(xlh))w(x) da.
Now as

|Q.(X) — Q(X)| = 0,(n"?),

Julxlh) = 7, (xlh)) w(x) dx = Op(n")
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and by the Schwarz inequality

J(a(xlh) = 7 (2lh)) (v 21R) = Fo(xlh))w(x) dx = Op(n).
Furthermore, by Theorem 2 of Hall (1984) and Theorem 4.2.1 of Patil (1990)
and the Schwarz inequality,

J(.(x1Rh) = 7 (al0))(@T,(21R) = F,(xlh) = m(x))w(x) dx = O,(n~19/2),

and similarly

J@(xln) = n(2)) (vl xlh) = Fo(xlh))w(x) dx = O,(n~1/20).

Therefore, Ty(ho) = O,(n~*®) and Ti(h,) = 0,(n"3*); hence R(h,) =
0,(n=3/*). Now, to get the magnitude of Rl(n_l/ 5¢) uniform in ¢, consider
supa<t<b|R1(n‘1/ 5t)|. Then, reducing the supremum to a countable set as
done in Lemma 4.2, we get the required result by an argument similar to that
used in the previous lemma. O

LEmMMA 4.4. For some € > 0,
lho — ol + b, — kol = O,(n="1/5).

ProoF. First we treat |k, — h,l. Since h,/h, —p 0, by Lemmas 4.2 and
4.3,

I'(ho) = I'(hg) — F'( )
=Mi(h,) — (h ) + Diy(ho) — D/l(ﬁo) + Ry(ho) — Rl(flo)
= M;i(h,) - 1(50) + Op(n_€_3/5)‘

Also, T"(ho) = Di(ho) + Ry(ho), and, by Lemma 4.2, Di(h) = O,(n~*"%5),
and, by Lemma 4.3, R(h,) = O (n'3/4) SoI'"(hy) = O (n'e 8/5). Therefore

Op(n_e 3/5) = Mi(h,) - 1(50) + Op(n_‘€ 3/5)’
that is,
0,(n™*73%) = Mi(ho) — Mj(ho) = (ho — ho) Mi(*),

where h* lies between h, and h,. As in Section 3, M}(h*) = C;n"%/5 +
0,(n~ 2/%), Using this estimate in the preceding equation, we conclude that

Iﬁ hol = O,(n"*"/%) as required. The proof of |, — kol = 0,(n™°"1/%) is
exactly along 31m11ar lines, and for the details refer to Patil (1990) |

LEMMA 4.5. n"/°Di(h,) —, N(O, o2).

Proor. We shall start from the decomposition (4.1) and prove that
n%1S(hy) -, N(0,0%).



HAZARD RATE ESTIMATION 1807

Now the argument leading to (4.9) gives E[S2(h )] = O(n~'*/%) and so S4(h,)
= 0(n~%/19), Therefore, it suffices to show that

(4.14) (n9/198, n®/198,) > (Z, Z,),

where S; = S;(h,), i = 1,2, and Z; and Z, are independent normal variables
with zero mean and variances adding up to (C2/4)oZ. The argument leading to
(4.14) is a key step in the proof of Theorem 2 of Hall (1984) and Theorem 4.2.1
of Patil (1990), and a detailed treatment can be found there. Therefore, to
complete the proof, we need only to show that

n%%Var(S,;) — 2C0'1[f(g—((x£)7w(x)) dx}
(4.15) .
x[[[K(z +u)(K(2) - L(2)) dz] du,
n9/5 Var(S,) — Cidk {[( ' (x ))22(( )) w?(x) dx
(4.16) ,
—[fn”(x)n(x)w(x) dx] }

Again, to compute the preceding variances, one can mimic the steps of Hall
and Marron (1987). We will illustrate those steps only for the variance of S;.
Let

ay(x,y) = E[Kz(x)Kz(y)]’ ax(x,y) = E[Ly(x)Ly(y)],
as(%,y) = E[K(n) L], au(x,3) = a5(,y)
and consider
Var(S;) = Var(Sy;) + Var(Sy3) — 2Cov(8Sy;, Sis),
where S;; = Sij(ho)‘ Now

Var(Sy;) = 2(rho) "*n(n — 1) [[ad(x, y) w(x)w(y) dxdy,
Var(Syz) = (nho) *n(n - 1)
x [[ ez, y)as(x,) + au(x, y)ag(x, ) w(x)w(y) drdy,
and

Cov(Sy, S1a) = (nho) *2 LT X Cov| [K(x)K (m)u(x) ds)

l<i<j<n l<r<s<n

X JIK(9)L4(5) + Lo(3) Ky(0)|u(x) di .
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But as
r#i,s=j,
Cov{fK(x)K(x)w(x)dx JE (%) Ly(x)w(x) dx} 0 for{r#i,s#j,
r=i,s #j,
= [[as(x, nas(x, y)w(x)w(y) dedy for r =i, s =/,
= [[ea(x, y)as(x, y)w(z)w(y) dedy for r=j,s =i,
we get

Cov(S11, 813) = (nho) *n(n = 1) [[[ay(x, y)as(x, 5)
+tay(x,y)au(x,y)|w(x)w(y) dxdy.
Therefore,
Var(S,) = (nhy) *n(n — 1)[[(2a§ + aja, + aga,
—2ay03 — 2a;0,4) (%, y)w(x)w(y) dxdy.
Note that

n(x)
Q(x)

where B(u) = [K(2)K(u + 2) dz, and a similar computation gives

Jfaa;(x,y)w(x)w(y) dedy ~ b3 [ ( g(( ))w(x)) dx [B;(u) du,

j= 1’2’37

f/a%(x,y)w(x)w(y)dxdy~h%/( w(x)) dx [ Bi(u) du,

and
Jfaseu(x,y)w(x)w(y) dedy ~ b3 [ ( Q(( ))w(x>) dx [ By(u)By(u) du,

where

Bo(u) = fL(z)L(u +2)dz

and

Ba(u) = [K(2)L(u + 2) dz = JL(2)K(u + 2) dz = B,(u).
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Thus

n(x)
(%)

X [(2B% + B1B + BsBs — 28185 — 2B18,)(u) du.
Now, using the fact that Bs(u) = B(u) and [B,B,(x)du = [B3(u)du,

Var(S,) ~ n"2h; j( w(x)) dx

Var(sy ~ nhi* [ 55 ))w(x)) d [2(8, ~ Bo)’(u) du
=2n"%5Cy f(Z)(( ))w(x)) dx

x/[/K(z +u)(K(z) - L(2)) dxrdu,
and hence the proof of (4.15) is complete. O
LEmMa 4.6. n"/1%8)(h,) -, N(0,d2).
Proor. For the details refer to Patil (1990).

LeEmMmA 4.7. For any p,q € %,
7/l°(pD&(h ) +qdi(ho)) = N(0,07),
where a? = p20¢ + q%02 + 2pqoy,.

ProoF. Again we refer the reader to Patil (1990) for the proof.

LemmMA 4.8. Under conditions B.1, B.2 and B.3 and forany 0 < a < b < o,

sup |Dy(n~1/%)] = o,(n"2/%).
a<t<b

Proor. Again the proof will follow by arguments similar to those of
Lemma 4.2. But to use such an argument, we first have to prove the analog of
4.3),

(4.17) sup E[n/? Di(n"*0)["| < C(a,,1).

n;a<t<b

Since the proof of (4.17) is almost identical to (4.3), we omit the details. O

LeEmMMa 4.9. For any &€ > 0 and any nonrandom h,, asymptotic to a con-
stant multiple of n=1/5,

sup n{|F2(n‘1/5t) - 1“2(h1)| +|F3(n‘1/5t) - Fa(h1)|} -

[¢—nl/5h | <n~c2
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Proor. Since the proof is based on steps identical to those of (4.13), we
refer the reader to Patil (1990) for details. O
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