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We suggest bootstrap methods for constructing confidence bands (and
intervals) for an unknown linear functional relationship in an errors-in-
variables model. It is assumed that the ratio of error variances is known to
lie within an interval A = [A;, A;]. A confidence band is constructed for the
range of possible linear relationships when A € A. Meaningful results are
obtained even in the extreme case A = [0,«], which corresponds to no
assumption being made about A. The bootstrap bands have several inter-
esting features, which include the following: (i) the bands do not shrink to a
line as n — «, unless A is a singleton (i.e., A; = Ay); (ii) percentile-t
versions of the bands enjoy only first-order coverage accuracy, not the
second-order accuracy normally found in simpler statistical problems.

1. Introduction. Linear regression models describe linear functional re-
lationships when there is observation error in only one variable, the regressor
Y. The regressand X is assumed to be measured precisely. On the other hand,
errors-in-variables models apply to situations where both regressor and regres-
sand are subject to error. For example, the observed value of X may represent
the outcome of a sample survey or some other sampling experiment and
therefore may be a somewhat imprecise measure of the true variable, say, U,
in the linear relationship.

More concisely, we assume that the true linear relationship is given by
V = a + bU, where a and b are fixed and U and V are only observed subject to
error. The actual observed values are X =U + £ and Y =V + 5, where U, ¢
and 7 are independent random variables with means u, 0 and 0 and variances
o}, of and o?2. From a set of random data {(X,, Y;),...,(X,, Y,)} generated by
this model, we wish to estimate the functional relationship v = a + bu.

It is well known [see, e.g., Kendall and Stuart (1979), Chapter 29] that a
and b are often not identifiable. For example, they are not identifiable in the
case where U, ¢ and 7 have a joint normal distribution. However, if the
variance ratio A = 02/a§ is known, then both a and b may be estimated
consistently, assuming only that the variances o, 052 and 0,,2 are ﬁnlte In
practice it is often possible to determine bounds for A, for example, + < A < 2
or even 0 <A < . The ﬁrst of these bounds expresses a belief that the
unknown variables o-g and a- differ by no more than a factor of 2; the second
bound amounts to no constralnt at all on either a-§ or o
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If one assumes that A € A = [A, A,], then it is possible to estimate a range
of functional relationships, given by {4, + 3Au, A € A}, say, within which the
true relationship a + bu might lie. Here, ¢, and b, represent estimates of a
and b, respectively, under the hypothesis that the true variance ratio equals A.
Our purpose in this paper is to suggest more concise ways in which sample
information about the formula a + bu might be represented over a range of
values u, say, u € %, under the assumption that A € A.

Quite apart from the considerable practical importance of errors-in-varia-
bles models, for example, in statistics [Fuller (1987)], economics [Zellner
(1970), Goldberger (1972), Griliches (1974) and Maddala (1988), Chapter 11]
and the sciences generally [e.g., Jones (1979)], this problem has a number of
intrinsically interesting features which set it aside from related work on
confidence regions and motivate its study. First of all, confidence bands in this
problem do not shrink to a line as n — «, but instead converge to another
band #°, say, of nonzero width. This property reflects uncertainty as to the
true value of the variance ratio. Second, the confidence bands, and their limit
#°, are well defined and readily interpretable even in the extreme case where

= [0, 0] and % = (—», »). Third, there is no preeminent classical competitor
to the bootstrap in this context, since it is not practically feasible to construct a
band based on the normal approximation. Fourth, the percentile-f bootstrap
method produces a confidence band that is only first-order correct, not
second-order correct. This is a consequence of the fact that although Studen-
tizing standardizes the variances of statistics used to construct the confidence
band, it does not adequately standardize the covariances. A second level of
bootstrap simulation is suggested for calibrating the basic bootstrap confidence
band and improving coverage accuracy, much as suggested by Loh (1987) in
simpler problems.

To describe our proposal, write a, and b, for values taken by a and 6 when
the variance ratio equals A. (That is, @, and b, are the hmits of &, and b, as
n — «. If A, denotes the true value of A, then a,,=a and b, =b)We shall
suggest ways of constructing a conﬁdence band &, with the property that, for
a given probability a (such as a = 0.95), the pair (u, a, + b,u) lies inside &
for all A € A and all u € %. In particular, if our claim that A € A is correct,
then the band & will contain the linear relationship, over the range u € %,
with probability at least a.

In practice, construction of & requires a substantial amount of information
about a particular stochastic process, and that information would usually not
be readily available, even under the assumption that (U, &, n) are normally
distributed. Therefore, we suggest bootstrap methods for computing an ap-
proximation & to #. The boundaries of & and & are O (.~ 1) apart, and the
coverage level of & is asymptotically correct. If A = [ A A 2] then both may be
regarded as confidence bands for the region.

#° = {(u,v):u € %, min(a,, +bu,a, +b,u)
(1.1)

<v <max(a, +byu,a, + b,\zu)}

to which they converge.
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Section 2 introduces the basic estimators and describes methods for con-
structing confidence bands. In Section 3 we summarize the results of a
simulation study and consider an application to porosity and permeability
measurements on sandstone core samples. Section 4 presents a theoretical
comparison of the “ideal” band & and its bootstrap version .

2. Methodology.

2.1. Estimators of a and b. If the true value A, of the variance ratio
A=0? 2/0? were known, then the value of b could be expressed as b,,, where

1/2
by = H, + (H? + 1)""*sgn(oyy),

H, = (0'1% - /\0)%)/(20'XY),
of=var(X), oZ=var(Y), oxy=cov(X,Y).

The maximum likelihood estimator of b, in a normal model, and also the least
squares estimator when both agz and 0-,72 are known, is

b, = H, + (H2+ 1) sgn(Sxy),

where H, = (S2 — AS2)/(2Sxy), S3=n"'3(X, - X)?, Si=n"'%(Y, - V)2
and Syy = n‘lz(X XXY; — Y). The analogous estimator of a is ¢, = ¥ —
b, X, which converges to a,=a+ (b — bu as n — . Of course, a, = a if A
is the true value of the variance ratio. See Kendall and Stuart [(1979), Chapter
29, especially page 405] for a detailed development of these results.

The differences é, —a, and b, — b, are asymptotically normally dis-
tributed with zero mean and variance of order n~!, in a very wide range of
circumstances. For example, it is sufficient that oxy # 0 and (X, Y') have finite
fourth moments.

Throughout Section 2 we shall assume that oy > 0. In that case, assuming
all moments of X and Y are finite, we have P(Syy > 0) = 1 — O(n~°) for all
C > 0. Therefore, the sign of oy, may be determined with considerable
accuracy, and so we may take

b, =H, + (H? +1)"%, 6)‘=ﬁ/\+(ﬁ,\2+)t)1/2

The case where oy < 0 may obviously be treated by changing the sign of X or
Y, and b, is not well defined if oxy = 0.

Our estimator of the functional relationship v =a + bu is v = 4, + b,u,
assuming that the variance ratio equals A. Note that 13)‘ is a decreasing
function of A.

2.2. Variance of the functional relationship estimator. For any random
variable W, with finite expectation, define the operator 6 by 6W = W — EW.
Thus, for example, 5(3W)’ = (W)’ — E(§W). Similarly, if W,,.. , W, are
random variables, define dW, = W, — W, i=1,...,n. For j,k>1, let X =

n'L8(X,)Y, Y, = n—lza(aY)J and Zy = n—lza{(ax )/(8Y;)*}. Then a little
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asymptotic analysis shows that
b, — b, = K\(3Y, — 5AX, — H\Z,,) + O,(n7),
where K, = ox+b,(H2 + A)~/2. Hence,
A(u) =8, + bu — (a, + bu)
=Y, -5X, + K,\(éi_’z - I\X, - H)‘Zu)(u —u) +0,(n7").
1/2

(2.1)

It follows that the asymptotic variance of n'/? A,(u) is given by

wy(u)® = var[8Y, — b, 5X,
+K, 8(5(8Y,)* — IM(8X,)" — H, 8X, 8Y,}(u — p)]
= Var{Qu + Qg (u — #)}’

say. A consistent estimator of w,(x)? is therefore
N A =12
y(u)’ =n"t L {Qy + @u(u - X))},
i=1

where Qu =dy, - 5A aX;,
Q. = K, d{4(dY,)* - 1A(dX,)* - H, dX, dY;)

and K, = Sx:b,(H?2 + A)~/2 1t is straightforward to prove that the estima-
tor

(2.2) T\(u) = n'/2 Ay(u)/0y(u)
is asymptotically normal N(0, 1).

2.3. The cases A = 0,. The cases A = 0, « correspond to the models
X, =—-ab '+0b7Y, +¢, Y.=a+bX +n,,

13

respectively; that is, they correspond to regression of X on Y and of Y on X,
respectively. The corresponding estimators of b are b, = S2/Sxy and b, =
Sxy/S%. Clearly, w2(u) is well defined and consistently estimates n'/? Ao(u).
Furthermore, ,(x) - W (u) as A = », where

m ~ " — 12
Li)(,o(u)2 =n1Y) {in - b,dX; — boc,d(S,}Z(dXi)2 — Sy dX; in)(u — X)}
i=1

and consistently estimates the asymptotic variance of n!/2 A (u).

Thus, the estimators &,, b, and i, are as valid when A = 0 or = as they are
for 0 < A < «. Note that the classical regression estimator b, is a lower bound
to the set {5,, A > 0}.

2.4. The concept of confidence bands. Let A = [A, A;] and Z = [u,, u,] be
closed subintervals of [0,%] and (—,®), respectively. We shall construct a
confidence band for the functional relationship v = a + bu, over values u in
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the interval %, under the hypothesis that A € A. Either of A or % may be
degenerate or unbounded; in the case where % = {u}, a singleton, we obtain a
confidence interval rather than a confidence band. There is no particular
reason to insist that % be an interval. Indeed, our methodology applies equally
to any finite union of intervals, although practical considerations usually
demand that % be contiguous.

Let T(u) be as at (2.2), and let « be the coverage level desired of a
confidence band. We wish to determine random functions g, < g, such that

(2.3) Pl{g(u) <a, +bu<gy(u) forallu € Zandall A € A} =a.
The confidence band would then be

(2.4) B={(u,v): g(u) <v<gyu),uec 2}

Let ¢ be the solution of the equation

(2.5) P{ sup |TA(u)|st>=a,
ue%,AeA

and define

2. = inf {4, + byu — n" V20

(2.62) gi(u) = inf {a, +bu — n" Vb, (u)},

(2.6b) gx(u) = sup{a, + byu + n~V 2, (u)}.
AEA

Then (2.3) holds.

2.5. Bootstrap confidence bands. In practice, the value of ¢ defined by
(2.5) would usually be unobtainable. However, ¢ may be estimated by boot-
strap methods, as follows. Let 2°* = {(XF, Y{), ..., (X, Y,*)} denote a resam-

n’> n

ple drawn randomly, with replacement, from 2'= (X, Y),...,(X,,Y,)} De-

fine &%, b*, w¥,... as for &,,b,,W,,..., except that 2°* should replace 2"
A A A AY A A

throughout. Put either '

(2.7) Ty (u) = nt/2{@% + Bfu — (6, + b)) /iy (w)

or

(2.8) Ty (u) = nt/2{af + bfu — (8, + I;Au)}/wj\"(u).

For either of these definitions, let the bootstrap estimate  of ¢ be the solution
of the equation

(2.9) P{ sup | Ty (u)] sz?lgz"} - e,
ue%,AeA

and let &, and 2, denote the versions of g; and g, in which ¢ is replaced by .
Then the bootstrap version of & is

(2.10) #={(u,v): 8,(n) <v <gy(u),uc 2.
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TaBLE 1
Parameter configurations used in simulations

Population (pg 041, 0¢2) (P 0,1,0,2) Ao 0p/ T Po
1 (0.50, 0.20, 0.50) (0.50, 0.50, 0.75) 2.80 0.391 0.788
2 (0.50, 0.10, 0.20) (0.25,0.20, 0.50) 7.90 0.460 0.903
3 (1.0,0.10,—) (1.0,0.50, —) 25.0 0.487 0.890
4 (0.25, 0.50, 0.75) (0.50,0.75,0.95) 1.51 0.314 0.624

If definition (2.7) is employed for T)¥, then we are using the percentile
method; the method is percentile-¢ if we invoke (2.8). In simpler applications of
the bootstrap; the percentile-f method usually produces confidence regions
whose boundaries are second-order correct for those of the ‘“ideal” region %;
that is, the boundaries differ only in terms of order n~3/2. However, as we
shall show in Section 4, the multivariate nature of the present problem means
that the percentile-t method produces only first-order correct regions, with the

boundaries differing by order n~1.

3. Numerical work. Tables 1-3 summarize the results of a simulation
study in which the random variable U is assumed to have a standard normal
distribution and ¢ and n are each mixtures of two zero-mean normal vari-
ables. More precisely, the distribution of (U, &, ) has the form

(3.1a) U~Z(0,1),
(3.1b) £~A,2(0,03) + (1 - 4,)Z(0,03),
(3.1¢) n~A4,Z(0,0%) + (1 - 4,)Z(0,0%),

where ~ denotes distributional equivalence, and where A,, A,, Z(0,1),
Z(0,02) and Z(0,0?), i = 1,2, are independent random variables; A, and A,
are Bernoulli variables with associated success probabilities p, and p,, respec-

TABLE 2
Empirical coverages of bootstrap confidence regions with nominal coverage level a = 0.9 (1000
simulations)
Percentile Percentile-¢
Population O/ n = 25,50 n = 25,50
1 [0.00, 0.50] ' 0.867,0.881 0.933,0.920
[0.25, 0.45] 0.865,0.873 0.912,0.907
2 [0.00, 0.50] 0.857,0.875 0.922,0.919
[0.40, 0.50] 0.858, 0.853 0.927,0.892
3 [0.00, 0.50] 0.872,0.881 0.926,0.914
[0.45,0.50] 0.861,0.857 0.908, 0.887
4 [0.00, 0.50] 0.885, 0.900 0.935,0.920

[0.25, 0.40] 0.872,0.882 0.904, 0.897




1786 J. G. BOOTH AND P. HALL

TABLE 3
Summary statistics for simulations from population 1

Percentile Percentile-¢

Mean Mean  Std. dev. Mean Mean  Std. dev.
n 0/w u &(u) 8>(u) 82— 81 &(u) 8>(w) 82— 4

25 [0.00,0.50] 0.0 -0.563 0.549 1.228 -0.663  0.649 1.419
1.0 0.285  2.327 2.649 0.160  2.484 2.867

2.0 0.829  4.391 4.705 0.624  4.658 5.076

[0.25,0.45] 0.0 -0.415 0.405 0.859 —-0.480 0.470 0.990

1.0 0.417 1.771 1.552 0.326  1.872 1.712

2.0 1.051  3.340 2.671 0.901  3.510 2.933

50 [0.00,0.50] 0.0 -0.352 0.340 0.708 —-0.384 0371 0.773
1.0 0.522  1.949 1.490 0.487  2.001 1.582

2.0 1.206  3.733 2.645 1.150  3.820 2.799

[0.25,0.45] 0.0 -0.273 0.263 0.543 —-0.294 0.284 0.586

1.0 0.598  1.542 0.976 0.569  1.575 1.040

2.0 1.341  2.953 1.673 1.294  3.009 1.782

tively, and Z(u, o®) represents a normal random variable with mean p and
variance o 2. ‘

Bivariate (X, Y)-samples (X,,Y;),...,(X,,Y,) were generated by first gen-
erating n independent random vectors (U}, ¢;,%,), i = 1,..., n, with distribu-
tion (3.1) and setting

X, =U + ¢, Y,=a +bU, + 7, i1=1,...,n.

The parameters a and b of the linear functional relationship v = @ + bu are
fixed throughout the study at 0 and 1, respectively, and % is fixed as the
interval [—3,3]. Four different configurations of the population parameter
vectors (p;, 0y, 0;5) and (p,, 0,1, 0,2) are considered. These are given in
Table 1 together with the corresponding values of A,, 6, = tan"'(A,) and
po = cor(X,Y). The empirical coverages in Table 2 are based on 1000 simu-
lated samples of sizes n = 25 and 50 from each population. Bootstrap confi-
dence bands were constructed using B = 200 resamples from each simulated
(X, Y)-sample.

Computation of the bootstrap confidence region % involves finding the
supremum of T)*(x) over all A € A and u € %. For fixed A, T;*(u) is the ratio
of a linear function in u to the square root of a positive quadratic function in
u. Using this fact it is easy to show that, for each fixed A, T*(u) either
decreases in u on each side of a unique maximum or increases on each side of
a unique minimum. Hence, for each fixed A € A, it is only necessary to
compute |T,*(x)| at three points when searching for its supremum over the
interval %, the maximum or minimum value and the endpoints of the interval.
Maximization over A for each fixed value of u is achieved in practice by
conducting a grid search. Since A can be an infinite interval, it is more
convenient to work with the parameter § = tan~! A, which takes values in the
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closed interval [0, 37]. Let ® = tan~' A. All of the results presented in this
section are based on grid searches over 11 equally spaced points over the range
of ©. This last comment also applies to the computation of 2,(z) and 2,(u),
the bootstrap versions of (2.6a) and (2.6b). In practice, the effect of grid size
can be assessed by comparing results for a fine and a course grid of 6 values.

Some summary statistics for the simulations from the first population are
presented in Table 3. The corresponding statistics for negative values of u are
omitted because of an approximate symmetry in the results about « = 0. For
example, with n = 25 and © = [0.257,0.457], the mean values of g,(—1) and
8,(—1) were —1.787 and —0.417, respectively. Notice that the percentile-t
confidence bands are wider than the percentile bands. This fact is reflected in
the empirical coverages tabulated in Table 2; the empirical coverages of the
percentile-# bands always exceed those of their percentile counterparts. The
summary statistics for simulations from the other three populations were
qualitatively similar to those for population 1, the main difference being that
the bands were narrower for populations 2 and 3 and wider for population 4,
reflecting the size of the error variances o and o, in these cases.

As in more standard bootstrap problems [see, e.g., Loh (1987)], the coverage
accuracy of the bootstrap confidence region (2.10) can be improved by itera-
tion. For 0 < @ < 1, let 7(a) = P(#° c #,) denote the true coverage of the
bootstrap confidence region for #° with target coverage level «, as defined in
(2.10), and let B(a) be the target coverage level for which 7{B8(a)} = a. Then

/5«y 18 @ confidence region for #° with exact coverage level a. Unfortunately,
since the precise form of the coverage function 7 is unknown, the exact value
of B(a) is unobtainable. However, the function 7 can be estimated by its
bootstrap version

(3.2) #(a) = P(#° ¢ ¥\,

where #° is the region between the estimated linear relationships correspond-
ing to the two endpoints of A, and @* is the version of @ computed using a
resample 2°* in place of the orlgmal sample Z". Then the value B(a) whlch
satisfies #{f(a)} = a is an estimate of B(a), and we call the region @

iterated bootstrap confidence region for %°. It is shown in Section 4 that the
coverage level of &, is in error by a term of order n ™. On the other hand, the
iterated bootstrap conﬁdence region has coverage error of only o(n~1); that is,

P{#° c By} = +0(n).

This result holds for iterated versions of both percentile and percentile-¢
bootstrap confidence regions.

Jones (1979) estimates an assumed linear functional relationship between
the porosity (%) and log permeability (md.) of a certain kind of sandstone. His
estimates are based on measurements of porosity and permeability taken from
101 core plugs. Both measurements were subject to error and so an error-in-
variables approach is required. Graphs of percentile, percentile-t and iterated
percentile confidence bands for #° corresponding to two different choices of A
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for this problem are depicted in Figures 1 and 2. The values of $(0.90)
corresponding to A = [0.0,0.1] and A = [0.0, «] are 0.84 and 0.87, respectively.
The choice of A = [0.0, 0.1] in Figure 1 is motivated by two different estimates,
A =0.049 and A = 0.065 given by Jones. In each figure the region #%°
between the two intersecting lines in the interior of the confidence bands is the
sample estimate of the target region %°.

4. Accuracy with which % approximates %. Recall that #is a
bootstrap approximation to the “ideal” confidence band %, the latter being
defined by (2.4), with g, and g, given by (2.6). Both g, and g, depend on the
value of ¢ = t(n), which converges to a finite number ¢° as n — =, given by

P{ sup |TO(u)| < to} = a,
ue%,AeEA
where {To(u), A € A, u € %} denotes a Gaussian process with zero mean and
the same covariance structure as the limit as n — « of the covariance of
{T(w), A € A, u € %}.

Since lim #(n) is finite, the boundary of the confidence band & is O,(n~/?)
away from that of the “limiting” band #°; that is, the set of values (u,v)
satisfying

min(a, +b,u,a,, +b,u) <v <max(a, +bu,a,, +bu)

for all u € %. We shall show that, under appropriate regularity conditions,
the bootstrap estimate £ of ¢ differs from ¢ only in terms of order n~'/2 It
then follows that the boundary of & is Op(n“l) away from that of & and that
it converges to that of #° as n — .

Thus, the bootstrap band % is first-order correct for &: Its boundary
agrees with that of & in terms of first order in n~'/%. When one appreciates
that even the asymptotic value ¢° could usually not be computed without a
procedure of numerical approximation, such as simulation, it becomes clear
that first-order correctness is a valuable property.

It might be thought that, if 7 is defined according to the percentile-t
prescription at (2.8) and (2.9), then the bootstrap band # should be second-
order correct for #; that is, the boundaries of & and & should differ only in
terms of order n~2/2. This is not the case. The operation of Studentizing
ensures only that asymptotic variances are constant, and asymptotic covari-
ances will usually depend on unknowns. Thus, Studentizing does not have the
effect of pivoting, unlike its role in simpler statistical problems [see, e.g., Hall
(1988)].

We now state our main result.

THEOREM. Assume that the distribution of (U, &,m) is constrained by the
property that (X,Y) is nonsingular, and that, for some C > 0 sufficiently
large, E(|1X|I€ + IY|I°) < . Then for either of the two prescriptions of the
confidence band % and its bootstrap counterpart @, the boundary of # is
distant an amount of size n~1, in probability, from that of &.
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A proof of the theorem consists of showmg that for either prescrlptlon of ¢
from Section 2, £ — ¢ is of size n~1/2 in probability. It follows that # — ¢° in
probability. That result, together with the observation that t° (= lim¢) is a
strictly increasing function of «, is sufficient to imply that

P{g(u) <a, +bu <gy(u),forallu € Z andall A € A} > «

as n — «. Therefore, the bootstrap band & has asymptotically correct cover-
age. A longer argument, based on considerations of symmetry and of the parity
of terms in Edgeworth expansions, may be used to prove that

P{g(u) <a, +bu < gy(u),forallu € Zandall A € A} =a+0(n}).

The coverage accuracy may be improved to o(n~!) by using the iterated
bootstrap, as in Section 3.

We claim that, except for a small number of values of A, which do not
usually include the true value of A, the probability that either @ or & covers a
specific line segment,

2 ={(u,v):v =a, tb u},

converges to umty as n — «, Indeed, if all moments of (X, Y) are finite, then
the convergence is at rate O(n~°) for all C > 0. The exceptional set of A’s is
the union of {A,, A,} with the set of solutions of the equation

(4.1) 2(H, + (H? +1)"*} an 1=0,

this set having at most two elements. To appreciate the argument, observe
that if sgn(oyy) > 0, then

a)‘+b,\u=a+b,u.+{ +(H2+A)1/2} u—p).

Therefore, #° represents the locus of a sequence of line segments over the
domain %, each segment being on a line that passes through (u, @ + bu) and
has gradient s(A) = H, + (H2 + D)VZ If A # A, or A; and A is an element of
[Ay, A,), but is not a turmng point of s(A), then £, is an interior point of %°.
The set of turning points of s(A) is just the set of solutions to (4.1).
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