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THE RATE OF CONVERGENCE FOR MULTIVARIATE
SAMPLING STATISTICS

By ErwiN BOLTHAUSEN AND FRIEDRICH GOTZE

Universitdt Ziirich and Universitdt Bielefeld

A Berry-Esseen theorem for the rate of convergence of general nonlin-
ear multivariate sampling statistics with normal limit distribution is de-
rived via a multivariate extension of Stein’s method. The result generalizes
in particular previous results of Bolthausen for one-dimensional linear
rank statistics, one-dimensional results of van Zwet and Friedrich for
general functions of independent random elements and provides conver-
gence bounds for general multivariate sampling statistics without restric-
tions on the sampling proportions.

1. Introduction. Let &/ be a class of bounded measurable functions
R* > R. For f€ & and 8 > 0 define f;(x)=sup({f(x +y): lyl <8}, f5=
—(=f)5 and w(f,8) = [(f5— f;)d®P where P is the standard normal distri-
bution. Furthermore, let | f|. = inf, sup,|f(a) — f(b)|. Assume that (a) &7 is
closed under supremum and affine transformations, that is, f € & implies
fi/~e &/ and f° M € & when M: R* - R* is affine and 8 > 0. Furthermore
there exists ¥y > 0 such that for every ¢ > 0

sup{w( f,e): f€ &} < ye.

An example where (a) is satisfied is the class of indicator functions of measur-
able convex sets in R* (with y < 2V%). See Corollary 3.2, page 24 of Bhat-
tacharya and Rao (1986) and use Stirling’s formula.

Let n, N € N satisfying n < N and 7 denote a random permutation on the
integers Ay = {1,..., N} which is uniformly distributed. For a function ¢:
A% > R*, we define

T(m) £ ¢(m(1),...,7(n)).

We always assume ET = 0.
Such a statistic is called linear if it is of the form
n
T(m)= Y a(i,m(i)) wherea: A, X Ay - R*
i=1
satisfies
N

(1.1) Y a(i,j)=0 icA,.

Jj=1
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MULTIVARIATE SAMPLING STATISTICS 1693

The covariance matrix of such a linear statistic is easy to calculate
N

Y (/)7 e(j),

Jj=1

n N
Y Ya(i, ) a, ) -

i=1j=1

COV(T) = m

N-1
where c(j) £ X7_,a(i, j).

If N > n, then a linear statistic determines the matrix a(Z, j) if (1.1) is
required. In the case N = n, this is not true. However, one may then assume
that ¢(j) = 0 for all j [by subtracting ¢(j) from a(i, j) which does not alter
the statistics]. If in the case N = n, ¢(j) = 0 holds for all j, then the a(i, j)
are uniquely determined by the linear statistics. We will always assume that
the matrix a(i, j) is given in this canonical form.

If T is a (possibly nonlinear) statistic and T° = i=1a(j, 7(j)) is a linear
one, then we define

BT & % = T la(i )
= xT t, )
2 i=1Nj=1 s
1 n
(T, T° & — glEl(T —T%(mor;) = (T - T°)(m)|,

where 7;, 1 <j <n, are random transpositions independently of 7 which
transpose j with a uniformly chosen element of A, and |a(i, j)| denotes the
Euclidean norm of the vector a(i, j).

THEOREM 1. There exists a constant C, which depends only on k such that

for any T and any linear statistic T° for which cov(T°) = k X k-identity and
any f € &,

< CUFIL (1 + 7)(BAT) +Vo(T, T

+E|T = T° + 5,(log n5(T, T°))"”|

|Br(r) - [fao

where 6, = 0 and 6, =1 for k > 2.

REMARK. The presence of the last summand in the bound for & > 1 is a bit
annoying and this is certainly not optimal. Remark, however, that if V5 is
small compared with (log n)~2, its contribution is negligible. In typical applica-
tion, one has .

By(T®) = 0(n~Y2), EIT—T%=0(n"%2), &CT,T° =0(n"Y),

so one can forget about this contribution.
One choice of T is the L,-projection p(T) of T onto the space of linear
statistics. This is easy to calculate. Let

a(i,j) 2 E(Tln(i) =j).
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As ET = 0, we have X;a(i, j) = 0 for all i. A simple calculation yields

n

p(T) = X ao(J,7(J))

j=1
with
n-1
ao(i,j) = a(i,j) ifn=N,
. . - . . - 1 n . .
ao(i,j) = N a(i,j) + mlgla(l,j) if N>n.

From the form of the bound in our theorem, it is obvious that p(T') may not
be the optimal choice. However, from a computational point of view, p(T) is
the easiest approximation to handle.

The theorem implies and extends a number of results in the literature. Let
us look at some special cases.

N =n is the pure permutation case. Specializing further to 2 =1 and
T = ¥,;a(i, w(7)) the estimate is the same as that given in Bolthausen (1984).
The result, therefore, gives a multivariate and nonlinear extension of the
estimates derived there. It also extends partially error estimates in the CLT
for expectations of smooth functions of bivariate permutation statistics (using
Stein’s method) by Barbour and Eagleson (1986). (The main emphasis in this
paper is however on statistics which are not well approximated by linear
statistics.)

For n < N,T is a function of the (ordered) sample 7(1),...,w(n) out of
Ap. Our result generalizes convergence results on finite population U-statis-
tics by Zhao and Chen (1987) who required that n /N is bounded from below
and above.

The case N — x corresponds to the i.i.d. situation. In fact, a simple
approximation scheme leads to a corollary for independent random variables:

Let E denote a Polish space with Borel field &, X, ..., X, be independent
(E, &)-valued random variables and let #: E™ — R* denote a measurable
mapping such that

T=¢tX,...,X,)
is integrable.
We again assume ET =0. For f;: E — R* with Efi(X;) = 0 we shall

consider linear statistics of the form Z fi (X ). If TO is such a linear statistic,
let

Bs(T®) £ ;1 | F(XD)I
1 n
5(T,T°) 2 " Y E.(T - T Xy, Xy, X,,)

—(T-T%(X,,...,%

o

o X,)

where X is an independent copy of X.
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THEOREM 2. The same result as Theorem 1 holds true (with the same C,)
but with the modified definitions of B3 and 6.

REMARK. The easiest choice for T° again is the projection T° =

7_1E(T|X,) but as the difference between T' and T° enters via the L;-norm

and other more complicated expressions, this may not be the optimal one.
Theorem 2 is a corollary of Theorem 1. We will give a proof in Section 4.

For one-dimensional statistics T' related results have been proved by van
Zwet (1984) and Friedrich (1989) using Fourier methods under moment
conditions on second order differences of T — T°. This result has been
extended to multivariate statistics in G6tze (1991) using non-Fourier methods.

One might wonder why we did not start with Theorem 2 and used it to
prove results on rank statistics under the hypothesis. But this approach leads
to unnatural conditions on moments of derivatives of score functions in the
upper bound of Theorem 1.

The paper is organized as follows: In Section 2 we present some preliminary
lemmas. In Section 3 Theorem 1 is proved, starting with an outline of the
main strategy. Section 4 contains a proof of Theorem 2 and in the last section,
we present an application to order statistics.

2. Preliminary lemmas. We will use the multivariate extension of the
Stein method given in Goétze (1991) together with the combinatorial argu-
ments in Bolthausen (1984) and Schneller (1989).

For h € & and 0 < ¢ < 1 introduce

x(xlk) 2 [(R(y) = h(£72y + (1 = £)"%x))®(dy),

1 d
btk & = ey 1,

—xo(xlh) = h(x) — ®(h) and —yx,(x|h) is a smooth approximation of A for
small ¢ > 0.

If ¢: R* > R is smooth, we denote by ¢’ the jth derivative and by
¢ %, - x5+ ... x; the evaluation in the directions x,, ..., x; € R*. Further-
more, we denote by |¢¢’| the supremum norm of this j-linear form with
respect to the Euclidean metric on R*.

The following generalization of Stein’s differential equation Stein (1972,
1986) to R* was introduced in Gotze (1981) [see also Barbour (1988)]. It is a

diffusion equation of Ornstein—Uhlenbeck type.

LEMMa 1.

@) Ay xlh) — yP(xlh) - x = —x(x|h) forx € R* and 0 < ¢ < 1, where A
is the Laplace operator.

(ii) There are absolute constants c > 0 depending on the dimension k only,
such that for t > 0,

sup |y (xlh) | < c;lhlA (),
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where A(t) £t U272 j>2 A,@t)% —logt and A(t) £ Ay(#) £ 1. For
k=1 we have A,(t) = 1.
(iii) Let Q denote a finite signed measure on R* with Q(R*) = 0. Then

¥ (21h)Q(dx)

< chj(t)sup{‘fh(xs +a)Q(dx)|:0<s<1l,a€ Rk}
for j € N,.

Proor. The proof follows by an easy calculation [see Gotze (1991), Lemma
2.1]. For the proof of (ii) in the case £ = 1 notice that f= i/ is continuous,
bounded and satisfies Stein’s equation f'(x) — f(x)x = —x,(x|h). Thus it
equals the solution (2.9) of Stein (1972) and therefore f['(x) = ¢/(x|h) is
uniformly bounded by cl|kl.. O

LEMMA 2. Assume (a) and let @ be a probability distribution on R*. If
a > 0, then

Uf(dQ d<1>)l ! ’[ ( Ih)dQ’ 2
su - < —sup || x.2(" —a
fel?.l/ 3 hew 21

where a? is the t-quantile of the x*-distribution with k degrees of freedom.

£
Y
— g2

Proor. This is Lemma 2.11 of Gotze (1991). The proof is an easy conse-
quence of standard smoothing inequalities [e.g., Bhattacharya and Ranga Rao
(1986), Lemma 1.14]. O

We introduce a slight modification of a construction of Schneller (1989). Let
M denote the set of eight-tuples i = (i,...,ig) € A, X Al satisfying
ly=ly © Ig=iy © Iz=lg © I7=1lg,
ly=1i3 © I5=1ig
(2.1) ii1=i, © lg=1Iy
lg=1i3 & i5=1Ig
lg=1, © lg=1Ig.
If i e M, we fix permutations u(i), v(i), s(i) of A, with the following
properties: u(i) is the product of at most four transpositions of the elements

ii,...,ig and satisfies i; = i, iz = i, iy = g, i4 = i and u(i) leaves the
elements outside {i,, ..., g} fixed. Under v(i): i; = i,, i, = i; and v(i) leaves
the elements outside {i,,...,i,} fixed. s(i) just transposes i; and i,. Using

(2.1) one checks that such permutations always exist.
There is a slight subtlety in the representation of (i) and v(i) as products
of transpositions. If i,...,ig are all disjoint, one can put

u(i) é»r. .o, . OF. . OT. .
il "igls “lglg ‘lgle?
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where 7; ; is the transposition of i and j. However, the r.h.s. above does not
always define u(@i) in an appropriate way. If, for example, i, = i, i3 # i, then
it sends i; to i;. However, we can partition M into pairwise disjoint and
nonvoid sets M,, M = U ,M,, which are defined by inequalities and equalities
among the i,, 1 < k < r, such that on each of the M,, we can fix a permuta-
tion (0,(1),...,0,.(8)) of (1,...,8) such that
(2'2) u(l) - T‘aa) to@ T‘a(a) to@) °Ti ZORZIC) °Ti o io®
defines u(i) such that it has the desired properties. The exact form is of no
importance for us [see Schneller (1989) for details]. Similar remarks apply to
v(i) (whose representation is, of course, simpler).

Let I = (I,,..., Ig) be a uniformly distributed random variable with values
in M and 7, be a uniformly distributed random permutation of A, which is
independent of I. We put

my = meu(l), g = myov(I), 7y = w3 s(I).
Furthermore, let
Jp = m(14i) 1<k <4,
Jyor =m(1) l1<k<4.
The following lemma is proved in Schneller (1989).

LEMMA 3.

() g, 7, m, are uniformly distributed.
(ii) m, and I, are independent and for 1 <k <3, =, and
{I,...,Iy3-#,¢4,...,Jys-4} are independent.
i) (I, m,(I,) is uniformly distributed on A, X Ay for 1 <k < 4. For
2 <1 < 8, (I, m,(1)) is uniformly distributed in A3, (1 <k < 4).

Let S be any mapping from the set of permutations of A, to R.
LEMMA 4. There is a universal number K such that for 1 < i, j < 4,
E|S(m;) — S(m)|
< K{E|S(m)) = S(myom,1,)| + E|S(my) = S(myom, 1)}

Proor. Obviously, it suffices to prove the bound for j =i+ 1,1 <i < 3.
We take i = 1, which is the most complicated case. Also, it suffices to estimate
E(S(my) - S (77'2)|11e u,), for each set M, of the above mentioned partition of
M. On M,, u@) is defined by (2.2). Remarklng that 7 o7 ; is uniformly
dlstrlbuted for 1 <k, 1 < 8, we see that E|S(m;) — S(m,)| can be estimated by

K{E|S(m,) = S(myom, 1) | + E|S(my) = S(7yom, 1) |} D
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3. Proof of Theorem 1. Let ¢ always denote a generic constant > 0,
depending only on the dimension %, but which may vary from formula to
formula. Of course, we may assume that | f lo < 1forall fe .

If A,B,C>0;n,NeN,n<N,let I, yv(A, B,C) denote the set of map-
pings ¢ A% — R* satisfying ET = 0 and for which there exists a linear
statistic T0 such that

B(T°) <A, EIT-T°<B, &T,T%<C, cov(T° =id.

As B5(T°) > cn~ 12, we assume A > n~ /2 Let
3

6 £ Bn,N(A’ ByC) 2 Sup{

Ef(T) - ffdtbl: feo, te Z,N(A,B,C)}.

Of course, 6 also depends on the class &7, but this is considered to be fixed. We
shall estimate 6 in terms of n, A, B, C and itself, thus obtaining a recursion
relation.

More precisely, we will show that

8(A,B,C) <c[(1+y)(A+VC) + B +5,(Clogn)*?|

(3.1) 1
+—-—48(¢;4,¢,B,c,C),
2¢;

where 8, = 0, 8, = 1 for £ > 2, and c, ¢, are positive constants. Iterating this
inequality and using & < 1 proves the theorem.

Before starting with a detailed derivation of (3.1), we give an outline of the
strategy. The first step is a fairly standard smoothing which in our case is
tailored in such a way that it tallies nicely with the multivariate version of the
Stein approach: From Lemma 3 we get for 1/Vn <¢e < 1

(32) 8 <csup(|Exa(TIf)|: fe o, t e T, y(A, B,C)} +cye.

The ¢ is chosen later.
The smoothing with .= is particularly useful as the Stein equation is, by
Lemma 1(G) just

(33) Ex(TIf) = EAyo(TIf) — Ey@(TIf) - T.

The idea of the Stein method is that the second summand on the right-hand
side, by a Taylor expansion, approximately cancels with the first one.

There are, however, a number of problems. First, one would like to replace
T by a linear version T,. One step is trivial: If ¢t € J, y(A, B,C), and T° is
chosen accordingly, then by Lemma 1(ii)

(3.4) |Ey@(TIf) - T — EgP(TIf) - T°| < cEIT — T?| < ¢B.

Handling the nonlinearity inside ¢3’(:|f) is more delicate and must be taken
care of together with other things. Writing T° = T%#) = ?_,a(i, 7(i)) where
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7 is uniformly distributed on the set of injective mappings A, — Ay, we have
n
Ey(TIf) - T° = L Ey@(T(m)If) - a(i, m(i)),
i=1

which we can write in more compact form as

nE(uP(T(m)If) - a(1,7(I))).

If T were linear, T = T,, we would like to write T =T — a(I, w(I)) +
a(I, (1)) and expand ¢P(T|f) with Taylor around T — a(I, w(I)). However, a
moment’s reflection reveals that this term is not independent of a(I, 7w(I)) and
so a more complicated procedure is necessary. In fact the combinatorial
construction in Section 2 was introduced exactly for this purpose. Coming back
to the more general case where T is nonlinear, one immediately sees that
writing T = T, + (T — T,) and expanding ¢?(|f) around T, would be much
too crude. A closer look however reveals that it suffices to have the nonlinear
part far enough out of the way that it does not meddle with the combinatorial
manipulations alluded to above. This is made precise in the following way.

Let m,, g, 74, w4, be the random permutations constructed in Section 2, and
define

T, 2¢(m), T°£T%m), R, 2T,-T° 1<ix<4,
AT, 2 T,,-T, AT*2TS,-T° AR,2R,,-R,

fori=1,2,3.
Of course, we can write everything in terms of T,:

Ey@(T,f) - T = EyP(TL + RIf) - T,

and we now replace R, by R; estimating the difference by

LEMMA 5.
|EgP(T,If) - T — EyP(TL + RyIf) - TL| < e(1 + 8,(C log n)*?).

We will prove this below.

The reason for this replacement is that R; is independent of crucial terms
in the combinatorial manipulations. We develop according to the Taylor rule
with integral remainder. According to the probabilists’ abhorrence of writing
integral signs, we express the integral remainder with an expectation over an
independent random variable n distributed uniformly on [0, 1]:

Ey@(TL + RIf) - T = nEYP (T + R,If) - a(Iy, Jy)
= nEY@ (T + Rilf) - a(Iy, Jy) - ATY
+ nE[{y@ (T + AT + n AT + Rylf)
—y@(TL + Ryl )} - a(Iy, dy) - ATY]
£L,+L, say,
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where we used the fact that E[y@(T{ + R,lf) - a(I;,J)] = 0 because of
Lemma 3(ii).
L, is treated by the following:

LEMMA 6.
|L, — EAYo(Tolf )| < ce™'C.

The most delicate part of the proof is the estimation of L,. In L,, essen-
tially the third derivative of .. enters, whose maximal absolute value is of
order ¢~ !. We have to use the fact that ¢ is large only on a small part of R*.
This is the place where we have to use a bootstrapping argument leading to a
recursion:

LEMMA 7.

C c
L, < CA(]. + 8_15n,N(CA,B + W’C + W))

Combining (3.2)-(3.4) and the Lemmas 5, 6 and 7 we obtain
8, (A, B,C) <c[ye + B +58,(Clogn)*® + ¢7C + A

1 C1 ¢
+015_A8n,N clA,B+T,C+; ,
n

where c; > 0 is a constant depending only on %2. We may assume ¢; > 2. As A
was assumed to be > ¢/ Vn, we may also assume B > ¢,/ Vn and as ¢ will be
chosen > ¢/ Vn, we may also assume C > ¢, /n. Therefore, we get

5(A, B,C) < c[ye + B +8,(Clogn)”* + ¢7'C + A]
+ c;67"A8(cA, ¢;B,c,C),
we choose & = max(2c?4, VC) and obtain

8(A,B,C) <c[(1+v)(A+VC) +B +8,(Clogn)*?|
1
+ 2—c15(clA, CIB, CIC),
which is (3.1). Therefore the theorem is proved. O
It remains to prove the three lemmas.

Proor oF LEMMA 5.
|By@(TF) - T - Ey@(TO + Rylf) - TP
<| B[Lyzp2 (WP (T + RAF) = vP(T + RilF)) - 2]
+| B[ 1ymp 0@ (T2 + Ry + m(Rs — R)IF) T - (R, — Ry,
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where y > 0 will be chosen later on and 7 is a uniformly distributed random
variable on [0, 1] which is independent of all r.v. defined so far.

Using Lemma 1(ii) and Chebyshev’s inequality the first summand on the
r.hs. is

< cE(IT11p2 ) < cEITLP /y?

-2

<cy using Lemma A1l of the Appendix,

and the second is by Lemma 4 and
e>1/Vn <cylog(n)EIR, — R, < cylog(n)8(T,T°) < cylog(n)C.

We choose y to minimize the sum of the bounds leading to the required
inequality for £ > 2.

Note that by Lemma 1(i) for 2 = 1, |[¢/®(x)| remains bounded and we have
in that case no (log n) contribution. O

ProoF oF LEmMMA 6. Since (a(I;, J,), ATY) and T + R, are independent,
we obtain

L, =nEyQ(TP + Rilf) - E(a(l,d;) - ATY),
which by an easy calculation
= EAyo(T9 + R,If)
= EAyo(Tylf )
+nEy@(Ts + Ry + nAR,If) - a(Iy,Jy) -a(I,d;) - AR;.

By Lemma 1(ii) and Lemma 3 the second summand on the right-hand side is
dominated in absolute value by

ce 'EIAR,E|a(1;,d,)[* < ce7'8(T, TO).
Therefore,
|L, — EAY(Tylf)| < ce™'C. O

Proor oF LEmMMA 7. Consider the conditional expectation given I, =
igyeees Iy =14, J) =jy,...,Jd4 = j,. This leaves a(I;, J;), AT and AT, fixed.
The term R, depends on 7; which is independent of I,,..., J,. We write

T+ R, =T?+R, + AT? = T, + ATY.

Unfortunately, AT, is not fixed (it still depends on ). To overcome this
dlfﬁculty, we introduce T 2 TQ + R, as a new function of m, (keeping I, =
o dy =, fixed).

Let ET denote the conditional expectation of T given I, = iy,...,J, = j,.
We show that T' suitably rescaled belongs to I, n(A, B',C’) where A, B',C’
are shghtly larger than A, B,C and do not depend oniy...,Jj, Notice that
AT? is a sum of terms of the form a(i, j), a(i, 7 (i), a(mw™ 1(‘]) j) and
a(m~(j), w(i)) where i, j € {iy,..., j} and 7 = 7. Subtracting E AT, the
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first term cancels and we arrive at a sum of centered summands of the other
three types, which we denote by S;, S, and Sj, respectively. Here S; and S,
are already linear statistics. For S, this is clear. As for S, this can be seen by
the following calculation:

. 1z
a(m=(j),J) = Ea(77'(j), J) = a(77'(j), J) = ng,la(l,j)

n

- £ atrd) s~ 37 )

r=1

Let 3 denote the covariance matrix of T? + S, + S,.
We first show that X is close to the identity matrix. To see this, it is
sufficient to estimate E|S,|* and E|S,|*. We have

= 2 1 N .12 1 N .. 32/3
Ela(i,m(i))|" = N Yle(@ NI <| X N Y. la(i, j)l < A%/3
Jj=1 i=1* j=1
and
A -1 . |12 1 i . . 2 2/3
Ela(n7'(), ) = 5 Ela(i, DI < 4%2,
i=1
S0

Ela(w1(j), j) - Ba(z=(j), )| < 423

Therefore 3 is arbitrary close to the identity matrix if A < A, when A, is
chosen small enough.

We approximate T' 2 3~1/2(T — ET) by the linear statistic 70 £ 3-1/2
(T? + S, + S,). Then

1 N
Ba(8y) <csup— 1 la(i, j)1? < eBs(TP) < cA,
1 Jj=1

3

n 1 N
Bs(Sy) <csup Y, = ¥ la(r, j)I
J r=1Ns=1

ls———j - .

N

< cA.

Of course, we can assume that A is smaller than a fixed constant A,. A < A,
and T € J, y(A, B, C) together imply

Ba(T°) < cA.
Write
P - 0= 31T, - T0) + 31128,
In order to prove that 7' e I, n(cA, B + ¢/ Vn,C + ¢/n), it suffices to ob-
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serve that

EISy| < csup E|a(m=1(j), w(i))|
i,J

1 1
=csup|<=la(i, /)| + ——=——= Y ¥ la(l,r)]
i | N N(N -1) I#i rj

<cn~ 1?2 (since ]a(i,j)]2/N < k)

and that
]_ n
; h E|Sy(meor) — Sy(m)| <en”t,
i=1

which is as straightforward, too. 3

In order to obtain a recursion we approximate the distribution of T — ET
again by a normal distribution with mean zero and covariance 2, say ®y. Let
¢ denote the 3-algebra generated by I,..., I 91, ..., J,. Then we may write

Ly = nE{[E(s®(T + bIf) - b3(B)€) + E(d3(b)I€)]
(3.5) Xa(ly, dy) - AT - (ATS + 0 ATS))

=L;+ L, say,

where b £ ET + n/(ATY + n AT®) denotes a “measurable r.v.,, ' is uni-
formly distributed in [0, 1] and independent of all r.v. introduced so far, and

ds(x) & [uP(x +yIf)Dy(dx).

Since X, is ¢“measurable but approximates the % X k-identity uniformly pro-
vided that B3(T°) < A < A, with A, sufficiently small we conclude that Ps(x)
is uniformly bounded with respect to x and 3. Thus

L, <cA.

Using Lemma 1(ii) [with j = 3 and Q(dx) = P(T € dx) — ®5(dx)] together
with the invariance of .2/ under shifts and the linear transformation 312 we
obtain

c c

L3SCS_1A5,"N cA, B + W,C-'- ; .

Implementing these estimates into (3.5) proves Lemma 7. O

4. Proof of Theorem 2. Let X;,j=1,...,n be defined on (&, &, P)
taking values in E. Since E is a polish space there exists finite o-fields
&7, € & (partitions of E) which form a monotone increasing sequence with
(U o) = &.



1704 E. BOLTHAUSEN AND F. GOTZE

Define
th(ky, ..o k,) 2 E(E(Xy, .., X)X, €Bl, j=1,...,n),

where o7 is given by the partition E=B{U --- UBL and 1<k;<n,.
Here tL is considered as a function of r.v. K,,..., K, taking values in the
discrete probability space A7, with probabilities

,P(K; =k;) 2 1,P(X; € B).
By Jensen’s inequality, the conditions of Theorem 2 together with the martin-
gale limit theorem show that for a(j, 1) £ E(T|X; € Bf") = EGYK; = 1)
n
lim ¥ E(b%a(j,K;))" = E(b"E(TIX;))", p=1,2,3,beR*

and that B4(T°), E|T — T°| and &(T,T,) are limits of the corresponding
discrete quantities.

As remarked at the beginning of Section 3, we may assume sup; ¢ o1 fl» < 1.
If fe &, we have similarly as in Lemma 2 for ¢ > 0,

B7(T) - [fao|
<(1+ O(s"))fug/I Ex,o(Tlh) — ®(x.2(-1h)| + 0(e)
< (1 + o(£°))limsup sup | Ex,s(tE(h) — ®(x,2(:1k))| + 0(e).
hed

L—ox

As x,s(-|h) is a convex combination of elements in &7 we obtain by letting
e —0,

sup ‘Ef(T) ~ [fd®| < lim sup sup ‘Ef(tL) —~ ffdd)‘.
fes L fe

Finally we may choose for every L an integer N € N large enough such that
P(X; e B) = my /N + 01/N), j=1,...,n, m; €N and a function tL N,
A} — R* with ¢ N(A}) = t£(A7,)). Let w denote now a random permutation
on A, with uniform distribution. As N — «, the laws of (7(1),...,m(n))
converges in variation to that of (K, ..., K,).

Furthermore, the corresponding quantities for a(j,1), B5(T®), EI|T — T°|
and 8(T, T,) for the r.v. %V converge to those of ¢* as N — » (and therefore
to those of T as L — ).

Thus Theorem 2 can be deduced from Theorem 1. O

5. A Sampling version of linear order statistics. Sampling versions
of limit theorems for all kind of statistics have become important in recent
years in connection with bootstrap and jackknife procedures, see, for example,
Wu (1990). Our main Theorem 1 can be used quite routinely to obtain such
results. We illustrate this by deriving a sampling version of a Berry-Esseen
theorem for linear functionals of order statistics which appears to be new.
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For a random permutation m on Ay, and n < N, we define the ordered
sample r(w) = (r(m),...,r,(7)) by the requirement 1 <r; <r,< -+ <
r, <Nand{ry,...,r,} ={mQ),...,7(n)}. Of course, we can also regard r just
as a random subset of n elements in Aj.

For a real matrix A = (a(i, £));c 4, ¢ c 4, We define

n
T(m) 2 ¥ a(i, (7).
i=1
It should be remarked that T is not linear in the sense of Section 1 and in fact
it appears to be unavoidable to assume a kind of second order differentiability
of A. In order to keep the calculation as simple as possible, we assume these
derivatives to be bounded. Let

A = max|a(i, k)],
i,k

A; = max max|a(i+1,k)—a(i, k)],
l<i<n-1 &
A = ',k+ 1) - ':k )
o= max max Ja(i k + 1) - a(i, k)|
A, = max max |a(i+ 1,k + 1)

l1<i<n-11<k<N-1
+a(i, k) —a(i+1,k) —a(i,k+ 1),
To simplify things further, we assume ET = 0, var(T) = 1,
A <Kn~12
A, < Kn=3/?,
A, < Kn~Y2N"1,
A, <Kn=3/2N"1

for some constant K > 0. We want to prove:

(5.1)

THEOREM 3. Under the assumptions (5.1),

sup|P(T <x) — ®(x)| < c(K)/\/;.

ReEMARK. The above setting is natural only when n stays away from N,
n < AN, say, for some A € (0, 1). For example, if

n
T= Z Cilis
i-1
an easy calculation yields
var(r
var(T) = (ry) nY. (i Aj)ee; — (8)7,
n-—1 ij

where ¢ = X?_jic;. If n <AN, A € (0, 1), then var(r;) ~ (N/n)% In order to
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have var(T) = 1, one needs max, ¢, = O(1/NVn) if all ¢, are of about the
same size and if not nE; ;(i A j)ec;c; — (€)® = o(n*) which would be a degener-
ate situation. So we see that (5.1) is a natural condition if one is willing to use
boundedness conditions at all. If, however, n is close to N, then var(r;) is of
course much smaller than (N /n)?. T may then be written as a function of the
subset {1,..., N}\{ry,..., r,} and our Theorem 3 gives a bound which typi-
cally is of order (N — n)~ 172, We leave the details to the reader.

Proor oF THEOREM 3. In order to apply our main Theorem 1, we have to
find an appropriate linear statistic. This linear statistic is

n
To= X a(i,m(i)),
i=1
where a(i, k) = (i) — y(k),1 <i <n,1 <k < N. The description of 8 and vy
is given in terms of a random sampling 1 <s; < -+ <s, <N which, for
later purposes, is assumed to be independent of 7. We write { ) for the

expectation on this s-sampling.
IfkeAy,let

I(k) 2 min{j € A,:s; > k}.
If s, <k, weset I(k) £ n + 1. We define

n—1
y(k) & <a(I(k),sI(k)) + Z‘zk)(a(j +1,s;) - a(j,sj))>,
j=I
n—1
B(i) £ < . 1(a(j +1,8;) — a(j,sj))>.
j=

With these definitions, we get
T(m) = To(m) = ¥ {<a(1(ri),s,(,,.)) —a(r,r) +{ X d(i,j)>},
i=1 jeli, I(r)]
where
d(l’.]) =a(j + l’sj) + a(j’ri) - a(.] + l’ri) - a(j,sj)

and for a,b € N,

b—-1
Yy, ifa <b,
Jj=a

Y =10, ifa=0,

Jj€la,bd]

a—1
-y, ifb<a.
j=b
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We write
U(rm) & ~§1(<a(1(ri),sl(,i)) - a(I(r), 7)),
m) & ; d(i,j)).
V() i§1< L dii))

jeli, Ir)]

The reader should keep in mind that I(%) depends on our sampling s.
Obviously

U(m)| < ¥ I = sy60s,
i=1

[V(m)| < i <|l —I(r)|(Is; =7l v Is; = 31(r,-)|)>A125

i=1
r; — Sy, 18 stochastically of the order of one spacing of the sample, that is, of
order N/n. It is easily checked that

N2
EIr; = sypl*) = 0(7;7)

and similarly

. 2 2
(5.2) E<l‘ - I("i)| (|3i -rl Vs, - sI(ri)l) >= 0(N2)-
Therefore
(5.3) E|T — Tyl* < ¢{N?% + n?N?A%,} < ¢(K)/n.

We get var(T;) = 1 + O(1) and can as well assume that var(T,) = 1, as is
required.

(5.4) Bs(T,) < C(K)/\/;

is an easy consequence of A < K/n, A; < K/n%/2,

The estimation of 8(T,T,) is slightly more delicate. If j € A,, then r’' =
(ry,...,m)=r(wer;) is r with probability n/N or, with probability (N —
n)/N, is obtained by taking one of the r, out and replacing it by an element
which is uniformly chosen among the elements x & {r,, ..., r,}. If, for exam-
ple, x > r,, r, <x <r,,, say, where l > k,thenr; = r, for i <k, r/ =r; , for
k<i<l, rp=ux,r,=r; for i >/, and similarly when x <r,. In the above
case, we have

% {a(100),5103) = a(1(0),70) = a(1(7), 516) + (1))

=|a(I(x)’31(x)) —a(I(x),x) - a(I(rk)1sl(rk)) - a(I("k),"k)(

S Az(lsl<x) - xl + ISIO.k) - rkl).

If, for fixed x, r;, that is, fixed 7 and 7;, we take the s-average ), it is easily
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seen that
N
(Usriey = % + I87r,y — Tal> = O(-’;)
and therefore
1 n N
(5.5) - Y E|U(1r) — U(wwrj)| < c(K)AzI <c(K)n=32,
j=1

which is better than required.
We come to the estimation of

]_ n
Py Z E|V(7T°'Tj) - V(’TT)l.
i=1

We fix first j as before and set 7(j) = r;,, 7o, = 7’ and the ordered sample
by (ri,...,r},), where

{ri,-com} ={riy e s Ta 1y Thstr e s Ty X}

We keep the sample s fixed for the moment. For i # &, r; is either r}, r/,; or
r;_y. If x = r;, we see that

Y X d@n- X X d@ie)
itk teli, I(r)] itk teli, I(r)]

<cy (d(i,i) vd(i,i+1) vd(i,i—1)).

Taking E{ ) expectation, this is
N

< c(K)n\/;-;(n':”/zN‘l) =c¢(K)n %

By the estimates (5.1) and (5.2), we have
E< > |d(k,t)|>3c(K)n‘3/2.

telk, I(k)]
Therefore, we get

1 n
— L E|V(mor) - V(m)| s e(K)n ™.
Jj=1

Together with (5.5), this proves
8(T,Ty) < c(K)n™ ',
With (5.3), (5.4) and Theorem 1, this proves Theorem 3. O

APPENDIX

In this Appendix we prove a moment inequality which might be of indepen-
dent interest by means of simplified arguments from the proof of Theorem 1.
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LeEMMA Al. For a linear statistic T® € R* we have
E|IT°? < c((trcov(To))s/2 + B3(T°))
for some constant ¢ > 0.
Proor. For h(x) 2 |x|%, x € R*, where | - | denotes the Euclidean norm,

notice that Lemma 1(i) holds and that the bound in Lemma 1(ii) can be
replaced by

(A2) [y (xlh)| < e(1 + |27

for 0 <j <3 and ¢ > 0, since A(x) admits three uniformly bounded deriva-
tives in R* \ {0}.

By Jensen’s inequality we have for fixed ¢ = 0.1, say, (using the notations of
the proof of Theorem 1)

(1 - ¢)**Eh(T?) — Eh(S) < Eh((1 —t)/*T + /28 — Eh(S)
(A3) —Ex,(Tlh)
_(E A(l/t(T40|h) - E¢(1)(T40|h) ' T40),

using Lemma 1(i), where S is independent of all other r.v. and has normal
distribution with mean zero and covariance cov(T °).

Similar arguments to those in following (3.5) immediately yield [exchanging
the argument T, of ¢ by Ty which is independent of a(I;,J;)]

|E Ay, (TLIR) — nEyD(TIR) - a(Iy, Jy)|
< n|Ey@(TL + ' (ATY + n ATY)R)
Xa(I;,d,) - ATS - (ATS + 0 ATY)|
<cBy(T°) by (A2).

Here 7', n are uniformly distributed in [0, 1] and independent of all other r.v.
Thus (A3) and (A4) together imply

ER(T°) < c(Bs(T°) + Eh(S))

(Ad)

< 0(33(T°) + (trcov(TO))3/2),

proving the lemma. O
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