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KERNEL-TYPE ESTIMATORS OF JUMP POINTS AND
VALUES OF A REGRESSION FUNCTION'

By J. S. Wu anp C. K. CHU
Tamkang University and Tsing Hua University

In the fixed-design nonparametric regression model, kernel-type esti-
mators of the locations of jump points and the corresponding sizes of jump
values of the regression function are proposed. These kernel-type estima-
tors are analyzed with almost sure results and limiting distributions. Using
the limiting distributions, we are able to test the number of jump points
and give asymptotic confidence intervals for the sizes of jump values of the
regression function. Simulation studies demonstrate that the asymptotic
results hold for reasonable sample sizes.

s

1. Introduction. In applications of regression methods, we are often
interested in the locations of jump points and the corresponding sizes of jump
values of the regression function. For example, when studying the impact of
advertising, the time at which this action takes effect could effectively be
modeled by the location of a jump point and the magnitude of the effect of this
action is measured by the size of the jump. If we ignore the existence of the
jump point, then we may make a serious error in drawing inferences about the
process under study. For this, see Figure 1 where it is difficult to distinguish
visually from the simulated data (solid squares) alone that the underlying
regression function (dotted curves) has a jump point at x = 1. Note that, in
the neighborhood of this jump point, the difference between the regression
function and the moving weighted average of the data (dashed curve) is large.
Here the weights assigned to the observations are proportional to the heights
of the closely spaced dotted curve at the bottom.

In practice, a suitable parametric method may not be available to estimate
the locations of jump points and the corresponding sizes of jump values of the
regression function. Whenever there is no appropriate parametric method
available, we may start from nonparametric regression. Nonparametric regres-
sion is a smoothing method for recovering the regression function and its
characteristics from noisy data. The simplest and most widely used regression
smoothers are based on kernel methods. For the asymptotic properties of
kernel estimators, see the monographs by Eubank (1988), Miiller (1988) and
Hardle (1990, 1991) for the case that the regression function has no jump
point. For the effects of jump points on the asymptotic behaviors of kernel
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Fic. 1. Plot of the discontinuous regression function (dotted curves), 50 independent observa-
tions (solid squares), |J(x)| (solid curve) and the moving weighted average of the observations
(dashed curve), where the weights assigned to the observations are proportional to the heights of
the closely spaced dotted curve at the bottom.

estimators and those on an optimally chosen bandwidth, see, for example, Wu
and Chu (1993). For these, see also van Eeden (1985), van Es (1992) and Cline
and Hart (1991) in the related field of kernel density estimation.

For the case that the number of jump points is known, the locations of jump
points and the corresponding sizes of jump values of the regression function
and its derivatives can be estimated by the smoothing algorithms proposed by
Shiau (1985) and Speckman (1988) along with obtaining a regression function
estimate. McDonald and Owen (1986), Chiu (1987) and Hall and Titterington
(1992) introduce smoothing algorithms that can produce discontinuous output.
Based on local averages of the response variables, Yin (1988) gives strongly
consistent estimators for the number of jump points, the locations of jump
points and the corresponding sizes of jump values of the regression function.
Also, Miiller (1992) gives weakly consistent estimators for the locations of
jump points and the corresponding sizes of jump values and the rates of global
L? convergence of kernel estimators adjusted to estimates of the locations of
jump points. In the field of edge detection in image analysis, Lee (1990)
proposes smoothing algorithms to estimate the locations of jump points and
the corresponding sizes of jump values of the regression function and its
derivatives. See also the references given therein for more applications of jump
detection.

In this paper we will use kernel estimators to construct estimators of the
locations of jump points and the corresponding sizes of jump values of the
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regression function. The motivation and the precise formulation of the pro-
posed kernel-type estimators are described in Section 2. The almost sure
behaviors and limiting distributions of these kernel-type estimators are given
in Section 3. Using the limiting distributions, we are able to test the number of
jump points and give asymptotic confidence intervals for the sizes of jump
values of the regression function. The choices of kernel functions and values of
bandwidths for constructing these kernel-type estimators are discussed. Sec-
tion 4 contains simulation studies which give additional insight into what the
theoretical results mean. Finally, sketches of the proofs are given in Section 5.

2. Regression settings and kernel-type estimators. In this paper the
equally spaced fixed-design nonparametric regression model is considered. The
regression model is given by

(2.1) Y, =m(x;) + ¢,

fori =1,2,...,n. Here m is the unknown regression function defined on the
interval [0, 1] (without loss of generality), x; are equally spaced fixed-design
points, that is, x; = i/n, ¢, are independent and identically distributed (iid)
regression errors with mean 0 and variance o2, 0 < 0% < », and Y, are noisy
observations of m at x;.

The regression function m in (2.1) is defined by

(2.2) m(x) =r(x) + ¢(x).
Here r is a continuous function defined on the interval [0, 1] and ¢ is a step
function defined by ¢(x) = X2_,d; I[, (%) for x €[0,1]. Note that p is a
nonnegative integer representmg the number of jump points of m, t; are
locations of jump points and d; are nonzero real numbers representlng the
sizes of jump values of m at ¢.. If p is 0, then m is a continuous function. For
simplicity of presentation, let d,,, =0, |d,| > |d;,,| and ¢; €[5,1 — 3] for
J=12,...,p, and let the distance between any two of these ¢; be greater
than 6. Here § is an arbitrarily small positive constant. The purpose of this
paper is to use the observations Y; to discover the value of p, the locations of
jump points ¢; and the sizes of jump values d; of the regression function m
in (2.2).

To construct the kernel-type estimators # ; and d ; of t; and d;, respectively,
for j=1,2,...,p, we consider the kernel estimator proposed by Gasser and
Miiller (1979). Here p is a given positive integer since the value of p is
unknown. Given the kernel function K as a probability density function and
the bandwidth A, then the Gasser—Miiller estimator is defined by

(2.3) m(x) = L[ Ky(x-z2)de,
i= Si-1
for x €(0,1), where K,(-) = h 'K(-/h), sq =0, s; = (x; + x;,,.,)/2 for i =
1,2,...,n—1land s, = 1.
The rest of this sectlon is devoted to deriving t and d for j =1,2,...
The ideas behind t and d will be shown in Flgures 1 through 3 wh1ch
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represent simulated regression settings defined in Section 4. In these figures
the simulated data were generated by (2.1) with n = 50 and o2 = (3)% To
discover ¢;, we consider the magnitude of the difference between two kernel
estimators. Let

(2.4) J(x) = hy(x) — rhy(x),

for x € (0,1), where i (x) and Ri,(x) are Gasser—Miiller estimators with
different kernel functions K, and K,, respectively, and the same bandwidth
k. In the following, the value of |J(x)| will be analyzed in each of the two cases
that m(x) has no jump point and multiple jump points.

If m(x) has no jump point, under the usual regularity conditions, then
M (x) and 71,(x) are uniformly strongly consistent estimators of m(x) for
x €[8,1 — 8]. For this, see, for example, Theorem 3 of Cheng and Lin (1981).
In this case, the magnitude of |J(x)| is of small order for x € [§,1 — 8]. Figure
2 shows simulation results for a continuous regression function m(x) (dotted
curve), the average of |J(x)| (solid curve) over 1000 data sets and vertically
rescaled K ,(x — 3) and K,,(x — ;) (dashed curve and solid curve at the
bottom, respectively). Note that the small and approximately constant magni-
tude of |J(x)| in Figure 2 indicates the continuity of the underlying regression
function.

On the other hand, if m(x) has jump points, then, by (2.1) and (2.2), J(x)
consists of two components. One is the difference between the two kernel
estimators applied to the sum of the continuous function r(x) and the
regression errors &;. The other is the same difference for the step function
¥(x). As above, the magnitude of the former component is of small order. We
now consider the magnitude of the latter component. Since ¢(x) is a step
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FiG. 2. The magnitude of |J(x)| in the case of a continuous regression function m(x).
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function, to show locations of ¢; by the magnitude of the latter component, we
add the following conditions. Let K; and K, be compactly supported in the
interval [—1,1] and satisfy K(x) = K,(—x) for all x and [jK, # [¢K,. For
these K, and K,, through a straightforward calculation, the magnitude of the
latter component is symmetric about ¢, and convex downward on some
neighborhood of ¢; for each j = 1,2, ..., p. Also, outside of the union of these
neighborhoods of ¢;, the magnitude is of small order. Note that this neighbor-
hood of ¢; is the union of the intervals where K,,(x — ¢;) and K,,(x — ¢;) are
supported for each j = 1,2,..., p. Based on these characteristics of the mag-
nitudes of the two components, the local maximizers of |J(x)| are good
estimators of jump points, in some sense. Since K, and K, are supported in
[-1, 1], the widths of the above neighborhoods of ¢; are less than or equal to
2h. Combining this result with the fact that |d;| > Id;,,| for j = 1,2,..., p,
we propose to take # ,; as maximizers of |J(x)| over the sets A;, where

j-1

A;=1[5,1-58]- U [8 — 2h,i, + 2R],

k=1
for j =1,2,...,p.

Figure 1 shows |J(x)| (solid curve) derived from the simulated data (solid
squares) and vertically scaled K,,(x — ¢;) and K,,(x — t,) (dashed curve and
solid curve at the bottom, respectively). Note that the maximizer of |J(x)| over
the interior [0.2, 0.8] of the interval [0, 1] shows the location of ¢; accurately.
Figure 3 also shows simulation results for a discontinuous regression function
m(x) (dotted curves) with ¢, = 3+ and d, = 1, averages of |J(x)| (solid curve),
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Fic. 8. The magnitudes of |J(x)l, J(x) and S(x) in the case of a discontinuous regression
function m(x).
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J(x) (dashed curve) and S(x) (closely spaced dotted curve), over 1000 data sets
and vertically rescaled K,,(x —¢,), Ky(x — t)), K3 (x — ¢;) and K, (x — t;)
(dashed curve, solid curve, dotted curve and closely spaced dotted curve at the
bottom, respectively). Here S(x), K3, and K, will be defined later. In Figure
3, |J(x)| is approximately symmetric about ¢, and convex downward on the
neighborhood of #;. Also, outside of this neighborhood of ¢, [/(x)| is of small
and approximately constant magnitude. This neighborhood of ¢, is the union
of the intervals where K;,(x — ¢;) and K,,(x — ¢;) are supported. The maxi-
mizer of |J(x)| shows the location of ¢; accurately.

To estimate d ;, s based on the above tj, an immediate idea is to take the
rescaled oJ (t ) as d for each j = 1,2,..., p. Here the scale factor for J (t ) is
the ratio of d to J (t ) for each j =1, 2 .., p. This idea is indicated in Flgure
3. Figure 3 shows that J (t,) # d,. By this, J(?,), an estimator of J(¢,), should
be rescaled by the ratio of d, to J(¢,) to properly estimate d,. However, in
this paper, we do not adopt thls idea. To estimate d;, we propose to take the
rescaled S(t ) as d for each j = 1,2,..., p, where

(2.5) S(x) = ry(x) = my(x),

for x € (0,1), and where  4(x) and % ,(x) are Gasser-Miiller estimators with
kernel functions K; and K,, respectively, and the same bandwidth g. Here
K, and K, satisfy the above conditions given on K, and K,, respectively, and
the value of g is of larger order than that of A. In the following, we shall use
the above example to illustrate the effects of magnitudes of » and g on these
two estimators of d ;.

In Figure 3, S(x) was derived in the case of g = 2, K3 = K, and K, = K,
Note that the maximum value of S(x) occurred at ¢,, and is approximately
equal to that of J(x), which also occurred at ¢,. Hence, the scale factors for
S(#,) and J(#,) determined by the ratios of d; to S(¢,) and J(¢,), respectively,
are approximately equal in magnitude. Note also that, for each x in the
neighborhood of ¢;, the magnitude of the difference between S(x) and S(¢,) is
smaller than that between J(x) and J(¢;). This neighborhood of ¢, is the
union of the intervals where K 3g(x ¢t and K, (x — t,) are supported. By
these two results, to estimate d, if 7, falls into this neighborhood of ¢, then
the rescaled S(,) is of better performance than the rescaled J(#,), in the sense
that the former is closer to d; than the latter.

Finally, the asymptotic behaviors of the proposed kernel-type estimators ¢ ;
and d; of ¢; and d, respectively, will be studied in Section 3.

3. Results. In this section we will study the asymptotic behaviors of ¢ !
and d; for j = 1,2,..., p. For these, using the regression model (2.1), |J(x)| in
(2.4) and S(x) in (2.5), we impose the following assumptions:

(A.1) The function r(x) in (2.2) is Lipschitz continuous.

(A.2) The regression errors ¢; are iid random variables with mean 0, with
variance o2, 0 < 02 < o, and with the Ith absolute moment finite for
some [ > 2.
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(A.3) The kernel function K, supported on the interval [-A, 1], A €[0,1],is a
probability density function with [!,2K, # 0. The first derivative K"
of K, is square integrable and Lipschitz continuous. Also, K{’(0) # 0.
Here and throughout this paper, the notation f¢’ denotes the jth
derivative of the function f. The kernel function K, is defined by
K((2) = K,(—2) for all z. The kernel functions K; and K, satisfy
/&Ky — [3K # 0. Furthermore, -there is a constant 1 > 0 such that
l[E(K, — K,)l > n - c2 for any sequence c, of positive real numbers
converging to 0 as n — .

(A.4) The kernel function K, supported on the interval [-w, 1], » € [0, 1], is a
square-integrable and Lipschitz-continuous probability density function
with [! 2K, # 0. The kernel function K, is defined by K,(z) = K,(—2)
for all z. The kernel functions K; and K, satisfy [¢K, — [¢K; # 0.

(A.5) The total number of observations in this regression setting is n with
n — o, The bandwidths & = h, and g = g, satisfy » — 0 with nh — o,
and g —» 0 with ng » was n — .

We first give the formulation of d ;- Based on the above assumptions and
the regression model (2.1), through a straightforward calculation,

(3.1) E[S(x)] =S(x) + _Z d;S;(x),

j=1

for x € (0, 1), where

$(x)

r(x )/ K3 (x —2) —K4g(x—z))dz
O(g),

S() = Ll () [ (Koglx = 2) = Kyglz = 2)) &2

/(:_x)/g( K, - Ky) + O((ng) Y).

Based on (3.1),

E[S(t)] = 4d;- [jOlK4 - /O‘"Ka] +0(g +(ng)™"),

for j =1,2,..., p. According to this result, d;, the rescaled S(fj), are de-
fined by

a

dj = Cw * S(ij),
for j =1,2,...,p. Here the scale factor ¢, is defined by

wn[fr ]
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Let y and 6 be positive constants, where 8 € (0, 1), 8, be a sequence of
positive real numbers diverging to « as n — «, d* denote the supremum of
IS(x)| over the interval [a, b], where 0 <a < b < 1, and A; = (n/W)*(E; -
tj),(ng)l/z((fj —d;)" for j = 1,2,...,p. Here the notation T stands for the
transpose of a matrix. Theorems 1 and 2 give the asymptotic behaviors of # ’
and d; in the cases of p > p > land p > p > 0, respectively. Theorem 3 gives
the limiting distribution of d* for p = 0. The proofs of these theorems are
given in Section 5. In these theorems the conditions given on the values of #,
g, v and B,, include:

(B.1) (n¢-/tpte20y =1 _ (1),

(B.2) (nh1+40) ™" = O(1),

(B.3) n'hi*(gB,) " = o(1),

(B.4) n’g(B,logn) " = o(1),

(B.5) n®"'(gB,) " = 0(1),

(B.6) n=2vrA/Dp=2(g logn) "' = o(1),

(B.7) nTtrYrA/DpIg 2 < 9K M,

for n sufficiently large, where K{/ denotes the maximum value of K|,
(B.8) nU/2+A/A-DpA/DTE+D(og n ) * = (1),
(B.9) nh3 = o(1),
(B.10) n(/2+A/C= DA+ 10+ Dg=1-A/2(Jog n )1+ = (1),
(B.11) nY/2h1*0g=1/2 log n = o(1),
(B.12) ngd = o(1),
(B.13) hg~! = o(1).

THEOREM 1. In the case of p > p > 1, under the above assumptions, if
(B.1) and (B.2) hold, then

(3.2) P(l; -t} > " *?logni.o.) = 0,
forj=1,2,...,p. If (B.l) through (B.7) hold, then

(3.3) n'(B,logn) ld,—d,| >0 a.s,
forj=1,2,...,p. If (B.1), (B.2) and (B.8) through (B.13) hold, then

(3.4) A; = N((O,O)T,O'z(dj_ozU 3))
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forj=1,2,...,p, and these A j are asymptotically independent, where
- (e - xeyfizmpo)
V=c2[(K; - K,)"

THEOREM 2. In the case of p > p > 0, under the above assumptions, if
(B.1) through (B.7) hold, then

(3.5) n?(B, log n)_lcij -0 a.s.,
forj=p+1L,p+2...,p

THEOREM 3. Based on the above assumptions, if 1 > 3, m(x) is Lipschitz
continuous on the above interval [a, b], and g = n™*, k € (3,1 — 2/1), then

(3.6) P(dA* <a, +b,x) - exp(—2exp(—x)),

where

[(ng) ‘o2 [ (K, K4)] |80 + 2 (log(3(4m) ™)),

172
by = | ) ot (K, - K| g,
and where
8as = [210g((b — a) /)],
We now close this section with some remarks.

REMARK 1 (Strong convergence rates of the proposed kernel-type estimators
of the sizes of jump values) Based on (B.4) and (B.5), the maximum value of
'y in (3.3) and (3.5) is 3 which is arrived at when the value of g is of order

~1/3 in each case. Combining this result with the conditions that 6 € ©, %

> (1 + 40)/(20) and the value of h is of order n~¢, where ( )
(1 +20)1+0)'<¢<A+20)1 + 46)" L, then the rate of strong consis-
tency of d in (3.3) and (3.5) is n~'/3(8, log n) in each case. This rate of
strong cons1stency is the same as that of uniformly strong consistency of
kernel estimators of a Lipschitz-continuous regression function as given in
Theorem 3 of Cheng and Lin (1981).

REMARK 2 (Choices of kernel functions and values of bandwidths for con-
structing the proposed kernel-type estimators of the locations of jump points
and the corresponding sizes of jump values). For the case of p >p > 1, to
estimate ¢;, a possible approach for the practical choice of the value of 4 and
the kernel functions K; and K, is based on an analogue of the mean square
error. Using (5.7) and the above assumptions, through a straightfor-
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ward calculation, the asymptotic mean square error (AMSE) of #  can be ex-
pressed as

(3.7) AMSE[?;] = O(h*) + n™'hd;?0?U,

for j =1,2,...,p. For the components of AMSE, the first and the second
terms on the right-hand side of (3.7) represent the asymptotic bias-square and
the asymptotic variance, respectively. By (3.7), the optimal values h* of h for
the estimation of ¢; are of the minimum order of the values of h satisfying
(B.1), (B.2), (B.8) and (B.9). However, this minimum order is not available
since it depends on the unknown value of [. Therefore, the choice of these
optimal values /% needs further study. In practice, if a too small value of h is
inserted into |J(x)|, then ¢; might pick locations of outliers (observations with
large reg'ressmn errors) as estlmates of ¢;. This result is caused by the fact that
if the averages in |J(x)| are made with too few observations, then the effects of
outliers appear on the magnitude of |J(x)|. By (B.9), the value of A is of
smaller order than n~!/3. Combining this result with (3.7), then the magni-
tude of the second term on the right-hand side of (3.7) is of larger order than
that of the first term. According to this, if there are kernel functions K} and
K which minimize the value of U over K, and K, in (A.3), then K} and K
are the optimal kernel functions of K, and K,, respectively, in the sense of
AMSE. Unfortunately, by Jensen’s inequality, the minimum value of U over
K, and K, in (A.3) is not attainable. Hence, we suggest choosing K, and K,
by minimizing the value of U over the class of fourth-degree polynomials
satisfying the conditions given in (A.3). Through a straightforward calculation,
the minimum value of U over this class can be arrived at by choosing K; and
K, as

Ky(x) = (0.4857 + 3.8560x + 2.8262x> — 19. 1631x3 + 11.9952x%)

X Ii_¢2012,1(%)>

and K,(x) = K,(—x) for all x. To estimate d;, apply the same idea to g, Kj
and K,. Using (5.8) and the above assumptlons, through a straightforward
calculation, the AMSE of d can be expressed as

(3.8) AMSE([d;| = c28(t,)* + n~'g Y20 [ (K, — K,)”,

for j = 1,2,...,p. Theoretically, if there exist a value g} and the kernel
functions K ;“ and K}; which minimize (3.8) over g in (B. 10) and (B.11) and
K, and K, in (A.4), then g} is the optimal value of g, and K3J and Kj; are
the optlmal kernel functions of K3 and K,, respectively, in the sense of
AMSE. By (3.8) and the order of magnltude of § (¢,) in (3.1), the values of g7
are of the same order n~'/3 for j =1,2,...,p. Note that gF, K3, and K
“depend on the unknown factors 1, ¢;, r and o2, In practice, we may plug
“estimates of these unknown factors into (3.8) to get estimates of g, K3, and
K ;. However, the performance of these estimates of g¥, K3; and K i needs

further study.
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ReEMARK 3 (Minimum asymptotic variances of the proposed kernel-type
estimators of the sizes of jump values). Using the Jensen inequality and the
Cauchy-Schwarz inequality, through a straightforward calculation, the value
of V in (3.4) has a lower bound, V > 2, over K; and K, in (A.4). This lower
bound on the value of V can be arrived at by choosing K(2) = I;_; o(2) and
K (2) = Iy ;(2). Note that these rectangular kernels K3 and K, exhibit jump
points at endpoints of their support. In general, kernel functions with jump
points will lead to bad finite sample behaviors of kernel estimators. For this,
see, for example, subsection 5.3 of Miiller (1988) and subsection 2.1 of Hardle
(1991).

REMARK 4 (The hypothesis test of the number of jump points). Using (3.6),
we can test whether the regression function m(x) has jump points on the
interval [8,1 — 8]. Replacing a, b and o2 in (3.6) with 6, 1 — 8 and a
consistent estimator 62, 6% = 0® + 0,((ng)~'/?), respectively, and applying
Slutsky’s theorem, through a straightforward calculation, (3.6) becomes

(3.9 P((f* <4, + Snx) — exp(—2exp(—x)).

Here 4, and b, are coefficients a, and b, with parameters a, b and o
replaced by 6, 1 — & and &, respectively, in each case. From (3.9), the test of
the null hypothesis H,: p = 0 against the alternative hypothesis H,: p > 0 is
available. For [ > 4, according to the facts that Y, are independent, m(x) has
the finite number of jump points and r(x) is Lipschitz continuous, then &2
can be constructed as a trimmed mean, that is,
n-q

(3.10) 62=(2(n-1-29)) " ¥ &=0%+0,(n"1?),

i=2+q
where the last part follows through a straightforward calculation. Here ¢;, for
i=2,83,...,n, denote the rearranged (Y, — Y,_,)% and £ are in ascending
order. The number ¢ is determined by the experimenter. In this case, the large
jumps caused by the noise and the regression function can be left out in
constructing &2. For the untrimmed version of &2 see, for example, Rice
(1984). Based on (3.2) and (3.6), we can test the number of jump points of
m(x) on the interval [8,1 — 8] by the following approach. Let d* denote the
supremum of |S(x)| over the sets A;, where

Jj-1 J
A =1[6,1-8]— U [f—2h, i+ 2h] = U A4,
k=1 k=1

and where A, are disjoint subintervals of A; for £ =1,2,..., Jj and j =
1,2,....1If j=p, given &,,%,,...,t,, through a straightforward calculation,
then

p+1

(3.11) P(d%,, <x)= kI]leXp(—2eXp(—(x — @y 1)/ bnp))

Here a, , , and b, , , are coefficients of a, and b, in (3.6) with a and b, the
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endpoints of the interval [a, b], replaced by the endpoints of the subinterval
A, .1 1> respectively, for each £ =1,2,..., p + 1. The notation L, = R, de-
notes L,/R, — 1 as n — . Replacing o® in a, ,, and b, , , with 67 in
(3.10), in each case, then the test of the null hypothesis H,: p = j against the
alternative hypothesis H;: p > j can be performed.

ReMark 5 (Bandwidth selection for the hypothesis test of the number of
jump points). In practice, using (3.9) and (3.11) to test the null hypothesis
H,: p =j against the alternative hypothesis H;: p > j for some j > 0, the
choice of the value of g and the kernel functions K3 and K, needs further
study. By (5.10), if a too small value of g is used in |S(x)|, then the effects of
outliers appear in the magnitude of |S(x)|. In this case, a large jump caused by
the noise might be taken as the value of the test statistic ci;‘.‘ 1. On the other
hand, if a too large value of g is used in |S(x)|, then the value of J;'-‘H is
affected severely by the quantity S(x) in (3.1).

REMARK 6 (Asymptotic confidence intervals for the sizes of jump values).
For p>p>1 and [ > 4, using the asymptotic normalities of d ; in (3.4),
replacing 0% with 62 in (3.10) and applying Slutsky’s theorem, through a
straightforward calculation, then

(3.12) P((ng)*(52V) *(d, - d;) <x) - @(x),

for j =1,2,...,p. Here ® is the distribution function of a standard normal
random variable. Based on (3.12), asymptotic confidence intervals of d; are
available for j = 1,2,..., p.

REMARK 7 (Applications of the proposed kernel-type estimators). The re-
sults of this paper can be applied directly to the heteroscedastic regression
model. For example, we might be interested to check whether the variance
function I' of the independent regression errors ¢;, that is, I'(x;) = varle;] for
all i, has jump points. In this case, the locations of jump points and the
corresponding sizes of jump values of I' can be estimated by the following
approach. Set [}, = (2)(Y,; — Y, )? for i = 1,2,...,[n/2]. Applying |J(x)| in
(2.4) and S(x) in (2.5) to I}, results similar to Theorems 1, 2 and 3 follow,
through a straightforward calculation. Note that this method will be inefficient
since not all information available on the differences is utilized. In the case
where the variance function I' is continuous, see, for example, Carroll (1982)
and Miiller and Stadtmiiller (1987) for the estimation of T'.

Remark 8 (Construction of the proposed kernel-type estimators in the
unequally spaced fixed-design case). The proposed kernel-type estimators can
“be constructed in the case of unequally spaced fixed design. Suppose that the
unequally spaced fixed-design points x; satisfy the conditions 0 < x; < x, <
- <x,<1 and x;=i/n + O(n~!) uniformly. An extreme case of this
design is that some observations are allowed to be made at the same design
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point. Given this design, if some design points are closer to their neighbors
than others are, then the asymptotic variance of the Gasser—Miiller estimator
f(x) in (2.3) might be increased. For this, see, for example, Chu and Marron
(1991). To deal with this drawback to #1(x), we propose a new version of the
Gasser-Miiller estimator /»*(x) defined by
n .
wr(x) = LY [

i
i=1 “G-D/n

K,(x — z)dx.

Under the above assumptions, through a straightforward calculation, 72*(x) in
this unequally spaced fixed-design case has the same AMSE as /i (x) in the
equally spaced fixed-design case. By this, replacing Mi(x) by m*(x) in Section
2, the motivation for constructing # ; and d ; 1s still available in this unequally
spaced fixed-design case. Finally, the performance of the resulting estimators
of ¢; and d; needs further study.

4. Simulations. To investigate the practical implications of the asymp-
totic results of # ; and d; presented in Section 3, an empirical study was
carried out. The simulated regression settings and those given in Figures 1
through 3 are introduced in the following. The sample size was n = 50. The
regression model (2.1) and the Gasser—Miiller estimator (2.3) were considered.
The continuous function r(x) and the step function ¢(x) in (2.2) were
r(x) = x* and ¢(x) = I; 5 ;(x) for x € [0, 1]. Two regression functions m(x)
were considered. One m(x) had no jump point, that is, m(x) = r(x). The other
m(x) had one jump point, that is, m(x) = r(x) + (x), where the location of
the jump point was ¢, = 3 and the corresponding size of the jump value was
d; = 1. The regression errors ¢; were pseudo independent normal random
variables N(0, 02), where o2 = (3)2. Based on (2.1), 1000 independent sets of
the observations Y; were generated for each m(x). For the latter m(x), given
this large value of o2 = (3)?% the location of the jump point #;, = 3 was not
always distinguishable visually from the data alone. For this, see, for example,
Figure 1. The kernel functions K, and K, and K5 and K, were those given
in Remarks 2 and 3, respectively. Finally, the values of 6 in (2.2) and ¢ in
(3.10) were & = + and q = 2. The choice of the values of § and ¢ was made
arbitrarily.

For each data set, to test whether the underlying regression function has
jump points, 21 equally spaced values of g on the interval [0.02, 0.48] were
chosen. For each data set and each value of g, the values of |S(x)| were
calculated on the grid u; =i/(8n) for i =0,1,...,3n. The maximum value
d* of |S(x)| on the interval [6,1 — 8] was calculated. After evaluation on the
grid, a one-step interpolation improvement was done, with the result taken as
d*. When d* was obtained, the values of &, and b, in (3.9) and 62 in (3.10)
were calculated. Based on (3.9) and given a = 0.05, the test of the null
hypothesis H,: p = 0 against the alternative hypothesis H;: p > 0 was per-
formed. For the two cases of m(x), Figure 4 shows the number of times N out
of the 1000 data sets that the null hypothesis H,: p = 0 was rejected for each
given value of g.
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Fic. 4. The number of times N out of the 1000 data sets that the null hypothesis Hy: p = 0 was
rejected when the value of g was inserted into |S(x)| in the cases of the continuous regression
function (circles) and the discontinuous regression function (solid circles).

In Figure 4, for the case that m(x) had no jump point, the values of N
(circles) showed that the empirical Type I error was at least 10%, although
a = 0.05. This poor performance of the hypothesis test of p = 0 might be
caused by the small sample size n = 50 and the slow convergence of d*
toward the double exponential as given in (3.6). On the other hand, for the
case that m(x) had one jump point, the performance of the hypothesis test of
p = 0 was poor as the value of g was small, since the corresponding value of
N (solid circle) was small. As the value of g increased, the value of N
increased and the performance of the hypothesis test was improved. In this
example of the discontinuous regression function, based on the increasing
values of N, there was no empirically best value of g for the test of p = 0.

We now describe the calculation of #, and d, for the case that m(x) had
one jump point. For each data set, to estimate ¢, the above 21 equally spaced
values of g chosen for calculating d* were taken as the values of 4. For each
data set and each value of &, the values of |J(x)| were calculated on the above
grid u;. The maximizer 7, of |J(x)| over the interval [§,1 — 8] was calculated.
After evaluation on the grid, a one-step interpolation improvement was done,
with the result taken as #,. When #, was obtained, the 21 values of g were
inserted into c, - S(#,) separately to derive 21 values of d,.

The absolute values of the sample biases, the sample standard deviations
and the sample mean square errors (MSEs) of the ratio £, /¢, and the sample
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TaBLE 1
The equally spaced values of h and g ( first column), the absolute values of the sample biases
(second column), the sample standard deviations (third column), the sample MSEs of i/t
(fourth column), where &, was derived by |J(x)| with the value of h in the row, the sample MSEs
of d,/d, with g = h (fifth column), the MSEs of dAl/d1 with g = g* (sixth column) and the
minimizers g* (seventh column) of the 21 values of the sample MSEs ofd 1/d,, where d, were
derived by c,, - S({,) with the value of h in the row and the 21 values of g in the first column

separately
Absolute
Values value of MSE of MSE of

of h the bias  Variance  ME of d,/d, d,/d, Value
and g of £, /%, of #, /¢, i/t withg=h  with g =g* of g*
0.020 0.0039 0.3114 0.0970 3.0200 - 0.1019 0.4645
0.043 0.0082 0.2724 0.0743 1.1440 0.1195 0.4041
0.066 0.0035 0.2292 0.0526 0.5061 0.1103 0.3707
0.089 0.0065 0.1844 0.0341 0.1932 0.0851 0.3052
0.112 0.0053 0.1578 0.0249 0.1153 0.0723 0.2856
0.135 0.0020 0.1344 0.0181 0.0777 0.0653 0.2640
0.158 0.0017 0.1215 0.0148 0.0653 0.0579 0.2458
0.181 0.0049 0.1166 0.0136 0.0602 0.0558 0.2428
0.204 0.0038 0.1085 0.0118 0.0562 0.0548 0.2471
0.227 0.0051 0.1110 0.0123 0.0552 0.0542 0.2507
0.250 0.0081 0.1115 0.0125 0.0535 0.0525 0.2599
0.273 0.0126 0.1147 0.0133 0.0537 0.0532 0.2681
0.296 0.0183 0.1175 0.0141 0.0563 0.0554 0.2668
0.319 0.0218 0.1152 0.0137 0.0599 0.0534 0.2141
0.342 0.0269 0.1144 0.0138 0.0647 0.0541 0.2378
0.365 0.0323 0.1134 0.0139 0.0699 0.0518 0.2370
0.388 0.0377 0.1093 0.0134 0.0797 0.0484 0.2381
0.411 0.0454 0.1068 0.0135 0.0889 0.0493 0.2452
0.434 0.0548 0.1057 0.0142 0.1018 0.0474 0.2615
0.457 0.0651 0.1025 0.0147 0.1130 0.0460 0.2629
0.480 0.0743 0.0975 0.0150 0.1230 0.0450 0.2676

MSEs of the ratio d, /d, were summarized. The sample bias of 7 was taken as
the average of the 1000 values of # — 1. Here 7 denotes the ratios ?,/t, and
d 1/d, in each respective case. The sum of the sample variance and the sample
bias-square was taken as the sample MSE. For each given value of £, there
were 21 values of the sample MSEs of d,/d,. Among these 21 values of the
sample MSEs of d,/d;, the minimizer g* was calculated. For each &, when
g* was obtained, the MSE of d,/d, with g = g* was calculated. The numeric
results are given in Table 1.

We now analyze the performance of #;. As the value of h (first column),
h €[0.02,0.19], increased, the performance of #; was improved, since the
magnitude of the bias (second column) and the standard deviation (third
column) of #, /¢, essentially decreased. This result was caused by the fact that
the magnitudes of the effects of outliers on the value of |/(x)| decreased as the
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value of & increased. As the value of A increased further, both the magnitude
of the bias and the standard deviation of £, /¢, increased. However, the latter
decreased as the value of h, h €[0.3,0.48], increased. This result was caused
by the fact that the large magnitude of bias had the effect of shifting #, to one
side of the selection interval [5,1 — 8]. In this example, based on the MSEs of
£,/t, (fourth column), the empirically best value h* of A for the estimation of
t; was h7 = 0.2119 derived by a one-step 1nterpolat10n improvement.

We now show the performance of dl, ¢, - S(,). For each value of h given in
the first column, the MSE of d,/d, with g = h, the MSE of d,/d, with
g =g* and g* were given in the fifth, sixth and seventh columns, respec-
tively. These values decreased as the value of &, A €[0.02,0.19], increased. As
the value of h, h €[0.19,0.3], increased, d derived by using g = h or g = g*
gave nearly the same performance, since the corresponding MSEs of d1 /d;
were approximately equal in magmtude As the value of h, h [0.3,0. 48]
increased further, the MSE of d,/d, with g = h increased, but that with
g = g% decreased. Hence, the performance of d with g = h deteriorated.
This drawback to d 1 with g = k& could be 1mproved by using the bandwidth

g* in d1 For this, see the corresponding MSEs of d1 /d; with g = g* which
were smaller than those with g = h.

For each positive integer j, to test the null hypothesis H,: p = j against the
alternative hypothesis H;: p >j, by (3.11), we should cut out the reg'ions
[, — 2h,%, + 2h] for k =1,2,...,j — 1. In this case, if the value of A is
chosen as h = 0.2119, the emplrlcally best value of A for the estimation of ¢,,
then the test statistic d] [* given in Remark 4 cannot be calculated since the set
A, is empty. To make the set A; of enough length such that d* can be
calculated, if a small value of A is glven then the resulting d;“ will suﬁ'er from
the effects of outliers. For this, see Remark 5. Therefore, the hypothesis test of
p =Jj was not performed in this simulation study.

5. Sketches of the proofs. The following results and notation will be
used in this section. By the regression model (2.1) and the Gasser—Miiller
estimator (2.3), J(x) and S(x) can be decomposed into

J(x) =dy(x) +J(x) + f d;J;(x),
Jj=1

S(x) = Sy(x) + §(x) + Z d;S;(%),

j=1

where $(x) and S;(x) have been given in (3.1) and Sy(x) is defined as S(x)
with r(x;) replaced by &,. Here J,(x), J(x) and J;(x) are defined as SV(x)
“S(x) and S;(x) with K3, K, and g replaced by K, K2 and h, respectively, in
each case.
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Let z;, i € Z, denote partition points of [0, 1] satisfying z;, — z,_, = n~ %, ¥
the interval [5,1 — §],

J -
V* = {i:z; €V}, V¥ = {x: x€W¥ and [T, isnegny = 1},
k=1
vy =itz € ¥

and zj‘ the partition point satisfying Iz;f< — tjl = minflz; — th: z;, €[6,1 - 8]}
for j=1,2,...,p.

ProoF oF THEOREM 1.
We first give the proof of (3.2). The proof for 7, is complete by showing

(5.1) P( sup |J(x)] 2|J(z’f)|i.o.) - o.

xeW¥;
To check (5.1), by (A.1), (A.3), (B.2) and |d,| > |d;,,| and J;(x) =0, x &
[¢; — h,t; + k] for j = 1,2,..., p, through a straightforward calculation,

sup |J(x)| = O(h),

x€VY,

p
)y dej(x)

Jj=1

|d1Jy(2F) | — sup

xeV¥,

+0(n~h1Y) > 4C + O(n"th7Y),

d1j‘;he(logn)(K1 - Kz)

where
C = Yd,Inh*(log n)>.

Combining these two results with the decomposition of J(x), through a
straightforward calculation,

sup |J(x)| —|J(2})]

xe ¥,

<2sup |Jy(2z;)|+ sup  sup |Jy(x) — Jy(z)]

iew* ie¥f |x—z,|<n"2
—4C+ O(h +n~ a7 1.
By this inequality, the proof of (5.1) is complete by showing that

P( sup |Jy(z)| = C i.o.) =0,
iey*

Plsup sup |Jy(x) - Jy(z)| + O(h +n " h1) = 2C i.0.| = 0.

i€V |x—z,|<n~2

These proofs are essentially the same as (2.1) of Cheng and Lin (1981). Hence,
the proof for #, is complete.
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We now give the proof for Z,. The proofs for the rest of £; follow similarly.
Since the distance between any two of ¢;, j = 1,2,..., p, is greater than & and
h = o(1), then, for sufficiently large n, we have |25 — ¢,/ > 3h. Using this
result and the property of #; in (3.2),

P(z5 € [£ — 2k, + 2h] i0.)=0.

Following essentially the same proof of (5.1), through a straightforward calcu-
lation,

P( sup [J(x)| = | (z8)] i.o.) 0.
xeV,
According to the property of £, in (3.2) and the fact that

B, =t = I8y — 11 — 18, — ¢4 = 2R — |E; — 23],
then
P(t, —t,l <h io.)=0.
Combining these results with the definition of ¥,
P(#, — t,l > ' *°(log n) i0.) = 0.

Hence, the proof of (3.2) is complete.

We now give the proof of (3.3). Here we only give the proof for d 1 — d;. The
proofs for the rest of d ; —d; follow similarly. Using the decomposition of
S(x), (A.1) and (A.4) and subtracting and adding the term X2_,d;S;(¢),
d, — d, can be asymptotically expressed as

d, - dy = c,8y(E) +c, f d,(S,(8) - S;(t2))
(5.2) o

+ + 0(g).

p

Co 2 d;S;(t;) —d;
j=1

Multiplying the second term on the right-hand side of (5.2) by Iz > s +qog n))

+ Iz — 1 < 11 *910g ny @Nd combining the result with (A.4), through a straightfor-
ward calculation, it becomes

P
Co ‘E__’,ldj(Sj(z?l) - Sj(tl))’

. I[|?1—t1|2h1+”(logn)] + O(h1+og_1(10g n))

p
Co gldj(sj(fl) - 8,(t1))

_ Combining this result with (5.2), (3.1), (B.2) through (B.4), the property of #;
“in (3.2) and (2.1) of Cheng and Lin (1981), through a straightforward calcula-
tion, the proof of (3.3) is complete.

We now give the proof of (3.4). Here we only give the proof of the asymptotic
normality for A,. The proofs for the rest of A; follow similarly. By the
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decomposition of J(x), the proof of the asymptotic norniality for £, is based on
P
(5.3) 0 =JD(F) =JP(F) + JO(E) + ¥ d,;JI(E).
j=1

By Riemann summation, (A.1), and (A.3), through a straightforward calcula-
tion,

(5.4) sup | JD(x)| = O(n~h"2 + 1),
xe¥
(5.5) JP(x) = h (K, - Ky)((x — t~)/h) + O0(n"'h7?),
for x €V and j=1,2,...,p. Multiplying (5.5) by I, - t1|>h1+0(1ogn)] +
Iy, - 1< B *(log )] and comblnlng the result with J;(x) = 0, x € [¢; — h,t; + h]

for j = 1, 2,...,p, X0 1d JX()) in (5.3) can be asymptotically expressed as

Z d;J0(t) = Z d; I O(E1) * Tz, —eyy» w1 +9q10g my
Jj= Jj=1
+[dih YK, — Ky)((8, — t1)/h) + O(n~'h72)]
X I[lfl—tll < h1*%log )]

Combining this result with (5.3), (5.4) and (A.3) and applying Taylor’s theorem
to K, — K,, through a straightforward calculation, (5.3) becomes

— JP(E;) +

p

w7y -
'Z1dej (tl)] Tt — 2> 11+910g )
o

(5.6) +2d, R Y K$(0) + O(h°(log n))] (2, — ¢,)

X Tig _p < mt+ogogny T O(n~Th72 + 1).
Giving partition points on [0, 1] such that the distance between every two

consecutive partition points is 2n~1/2-A/U=p1/2 apd ysing Theorem 2 of
Whittle (1960) and (B.8), through a straightforward calculation,

sup  |JP(x) = JP(8)] = 0,(n”V/h2).
|x—t,|<h'*%(log n)
Combining this result with (5.6) and the property of #; in (3.2), (5.6) becomes
(5.7) Py (1)(t1) +o0,(n"?h73/2) + O(n"th™% + 1)
1mhT 2d,h"2K{P(0) + O(h* 2(log n))

By the Lindeberg-Feller theorem, through a straightforward calculation,
'R 2P () = N(o, o? [(KP - Ké”)z).

Combining this result with (5.7), (B.9) and (A.5), the proof of the asymptotic
normality for £, is complete.
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The proof of the asymptotic normality for d, is now given. Using the
decomposition of S(x) and following essentially the same proof of (5.7),
through a straightforward calculation,

dy —dy = ¢,Sy(ty) +¢,8(t;)
+0,(n"2g71/2) + O(h'*’g~*(log n)).
By the Lindeberg-Feller theorem, through a straightforward calculation,

(78)"*5y(t2) = N[0, 0*[ (K, ~ K.Y').

Combining this result with (5.8), (3.1), (B.10) through (B.12) and (A.5), the
proof of the asymptotic normality for d 1 is complete. By (5.7, (5.8) and the
Cramér-Wold device, through a straightforward calculation, the asymptotic
normality of A; follows.

We now give the proof of the asymptotic independence between A;, j =
1,2,..., p. Following essentially the same proofs of (5.7) and (5.8), through a
straightforward calculation, we have

JP(t;) + 0,(n"2R7¥2) + O(n"'h72 + 1)
iThT 2d;h 2K D(0) + O(h°~2(log 1)),

d; —d; =c,Sy(t;) +0,(n"2g"1/%) + O(g + k' *’g'(log n)).

Based on these two results and (B.13), the limiting distribution of A; depends
on the observations Y; whose design points x; € [t; — g,t; + g] for j =
1,2,...,p. Since the distance between any two of ¢;, for j =1,2,...,p, is
assumed to be greater than §, then, for sufficiently large n, the intervals
[t; —g,t; +g] for j=1,2,...,p are disjoint. This result implies AJ are
asymptotlcally 1ndependent Hence, the proof of (3.4) is complete, that is, the
proof of Theorem 1 is complete. O

(5.8)

A

ProoF oF THEOREM 2. Based on the decomposition of S(x), (A.1) and (A.4),

(5.9) S(#) = Sv(&) + Zd Si(£;) + O(g),
forj=p+1,p+2,...,p. By (3.2),
P
P(fj € Uty —h,t,+h] i.o.) =0,
k=1

forj=p+1,p + 2,...,p. Combining this result with the fact that S,(x) = 0
x &[t, —ht,+h],fork=12,...,p,

(Zd Sy(2 )¢Olo)=0,

forj=p+1,p +2,...,p. Combining this result with (5.9), (B.4) and (2.1) of
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Cheng and Lin (1981), through a straightforward calculation, the proof of
Theorem 2 is complete. O

PrOOF OF THEOREM 3. Let d** denote the supremum of [Sy(x)| for
x € [a, b]. By the Lipschitz continuity of m, K5 and K, sup, c 4 |S(x)| = O(g).
Combining this result with the decomposition of S(x),

(5.10) d* = d** + 0(g).

Following essentially the same proof of Theorem 7 of Stadtmiiller (1986),
through a straightforward calculation,

P(d** <a, +b,x) - exp(—2exp(—x)).

By (B.12) and the orders of the magnitudes of a;, and b,, g = o(a,) and
g = o(b,). Combining this result with (5.10), d* and d** have the same
limiting distribution. Hence, the proof of Theorem 3 is complete. O
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