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SPLINE SMOOTHING WITH AN ESTIMATED
ORDER PARAMETER!

By MicHAEL L. STEIN
University of Chicago

Smoothing splines of a fixed order are commonly used as nonparamet-
ric regression estimates. The only parameter, then, that needs to be
estimated is the smoothing parameter, which is often estimated using some
form of cross validation. This work allows the order of the smoothing spline
to be estimated using a model in which the order parameter is continuous.
Within this setting, generalized cross validation and modified maximum
likelihood estimates of the order and smoothing parameters are compared.
I show that there are both stochastic and fixed regression functions for
which modified maximum likelihood yields asymptotically better estimates
of the regression function than generalized cross validation. These results
are supported by a small simulation study, although there are functions for
which the asymptotic results can be misleading even for fairly large sample
sizes.

1. Introduction. Smoothing splines are a popular approach to nonpara-
metric estimation of regression functions [Eubank (1987) and Wahba (1989)].
The smoothing spline estimate minimizes a sum of the residual sum of squares
and an integral of the square of the mth derivative of the estimate [see (1.1)].
The constant that determines the relative contribution of these two terms is
known as the smoothing parameter and m is the order of the spline. Most
work on using smoothing splines for nonparametric regression assumes that
the order of the spline is fixed and only the smoothing parameter is estimated,
commonly by cross validation or generalized cross validation [Craven and
Wahba (1979)]. While it is possible to use cross validation to select the order of
the spline in addition to the smoothing parameter [Wahba and Wendelberger
(1980) and Gamber (1979)], the asymptotic analysis is muddied by the discrete
nature of the order parameter. Viewing the smoothing spline as an optimal
linear predictor under a certain stochastic model for the regression function
provides a natural way to let the order parameter be continuous. Now the class
of nonparametric estimates of the regression function depends on two continu-
ous parameters, and it is possible to use more standard methods to obtain
asymptotic results.
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The central problem this paper addresses is the effect of estimating these
two parameters on the subsequent estimate of the regression function. Under
weak assumptions, past research has shown that selecting the smoothing
parameter by cross validation can yield estimates of the regression function
that do as well asymptotically as using the optimal values of these parameters
[Wahba (1985), Speckman (1985) and Li (1986)]. Such results do not allow us
to distinguish between two procedures that both satisfy this optimality prop-
erty. This work studies the properties of regression function estimates based
on generalized cross validation and modified maximum likelihood estimates of
the smoothing and order parameters. Specifically, for certain classes of fixed
and stochastic regression functions, I derive the second term in the asymptotic
mean square error of the regression function estimate based on approxima-
tions to the modified maximum likelihood and generalized cross validation
estimates. While I would expect that all of the results given in this paper for
the approximations to these estimates also apply to the estimates themselves, I
have not been able to prove that this is the case. These results suggest that
there are both fixed and stochastic regression functions under which modified
maximum likelihood estimates of these parameters yield asymptotically better
estimates of the regression function than generalized cross validation.

We will restrict attention to evenly spaced observations and estimates of the
regression function that have an interpretation as optimal linear predictors
assuming the regression function is a stationary process on the circle. When
the order m is an integer, these estimates correspond to what are known as
periodic smoothing splines [Cogburn and Davis (1974)]. Wahba (1975) and Rice
and Rosenblatt (1981) have also used periodic smoothing splines to obtain
results that are much more difficult to derive in a more general setting.

Suppose we observe

Y,=f((i-1n )+ fori=1,...,n,

where the s are iid N(0,0;) and f and 6, are unknown. The periodic
smoothing spline estimate of f of order m is the function f that minimizes

n
(L1 27t T (Y- g((i - Da Y+ aem) [ {gm(o) de
i=1 0
among those functions g with an absolutely continuous (m — 1)th derivative
satisfying the periodic boundary condition

g9(0) =g¥(1) forj=0,...,m — 1.

Common practice would be to select a value of m a priori, often m = 2, and
then estimate A using cross validation.

The function minimizing (1.1) also can be interpreted as the best linear
unbiased predictor of f under a stochastic model for the regression function.
Suppose Ef(x) = u, u unknown,

cov( f(x), f(x')) = 6,05 f‘, Jm cos{2mj(x — 2')),
j=1
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and the ¢,;’s are uncorrelated with f. This stochastic process is stationary on
the circle of unit perimeter. The best linear unbiased predictor of f(x) is of the
form Yc;y;, where the c¢,’s are chosen to mininiize var( f(x) — Xc;y;) subject to
the unbiasedness constraint Xc; = 1. For A = 2/(8;n), the best linear unbi-
ased predictor of f(x) equals f (x) where £ is the function minimizing (1.1)
subject to the periodic boundary condition. Viewed in this stochastic frame-
work, there is no compelling reason to restrict m to being an integer, so we
will consider the model

(1.2) cov( f(x), f(x')) = 0,0 ij“’2 cos{2mj(x — x')},

Jj=1

where 6, > 1. Whether or not we take this stochastic model seriously, we can
study the class of estimates of f we get as 0, and 0, vary as a generalization
of the class we get from (1.1) where A > 0 and m is a positive integer.

Given that we want to use an estimate of f from the class defined by the
stochastic model in (1.2), we need a method for choosing 6, and 6,. One
standard possibility is generalized cross validation (GCV). Another is the
modified maximum likelihood (MML) estimates under the assumptions that f
is a Gaussian process with mean u, covariance function as in (1.2) and the ¢,’s
are iid N(0, 0,) and independent of f. Wahba (1985) and Stein (1990) have
compared GCV and MML estimates of 6; when 6, = 2m is fixed. Wahba
(1985) showed that GCV appears to select nearly optimal values of 6, for large
sample sizes in a much broader set of circumstances than MML. Stein (1990)
showed that under the Gaussian model for the regression function and assum-
ing that the selected value of mis correct, while both methods of estimation
yield asymptotically optimal predictions of the stochastic regression function,
the likelihood method does have a large sample advantage in the second term
in an asymptotic expansion for the mean square prediction error.

Sections 2 and 3 investigate the properties of the MML and GCV estimates
assuming the stochastic model for the regression function is valid. Section 2
gives the asymptotic distribution for 0 the MML estimate of 6§ = (01, 05,05). 1

have been unable to obtain rigorous proofs for the properties of 6, the GCV
estimate of (6,, 6,). Instead, I consider the properties of an approximation to 6,
denoted by 6*, based on linearizing the estimating equations obtained from
the GCV criterion function. While it appears reasonable that § and 0* should
have similar asymptotic behavior, that remains to be proven. Both 6 and 6*
are asymptotically normal and the rates of convergence for the estimates of
(6,,0,) are the same. However, the MML estimates have much higher asymp-
totic efficiency, particularly for large 6,. An interesting feature of these results
is that the asymptotic correlation for either 6, and 6, or 6% and 6% is 1.
Section 3 studies the mean square error of predictions of f(0) for Gaussian
°f based on estimated values of 6; and 6,. Define f(O 0’) to be the best linear
unbiased predictor of f(0) for a particular 6" and 6* to be the approximation
to 6 we obtain by linearizing the likelihood equations. Predictions based on
either 6* or 6* are asymptotically optimal and the leading term in the relative
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increase in mean square prediction error due to using either estimator of 6
rather than the true 6 is of order n~'/%2. However, the constant multiplying
this n~1/% term can be much smaller for §* than for §*, especially for
large 0,.

Sections 4 and 5 investigate the asymptotic properties of these procedures
for a class of fixed regression functions. Suppose

f(x)=a,+ i {aj cos(2mjx) + b; sin(277jx)},
j=1

where, roughly,

m+k m+k
Yy (a? + bjz) =2cl; ), j "
j=m Jj=m

for some ¢ > 0 whenever m is large and % is not negligible relative to m. In
Section 4, 8, = ¢ and 6, = v are shown to be the asymptotically optimal values
for §, and 6, in terms of estimating f. However, using values of 0, very
different than v can yield estimates of f that are asymptotically only slightly
suboptimal if 6, is chosen appropriately. Under the much stronger assumption
a? + b? = 2¢05j " + O(j ") for some n > v + 1/2, the approximations to the
MML and GCV estimates of (6., 6,) are asymptotically normal with limiting
mean (c, v). The asymptotic variances are of the same order of magnitude as in
the stochastic setting but with considerably smaller constants for both approx-
imate estimates. Somewhat surprisingly, the asymptotic advantage of the
approximate MML estimate over the approximate GCV estimate is even
stronger than in the stochastic setting. This advantage in estimating v and ¢
translates into an advantage in estimating f similar to that obtained in the
stochastic setting. :

Section 6 describes the results of a series of simulations for three closely
related fixed regression functions. For a fixed regression functions satisfying
a2+ b} =9j7* for all j>1, MML yields clearly better estimates of the
regression function than GCV, in line with the asymptotic theory. However, by
setting a? + b2 = 0 but leaving the other Fourier coefficients of f unchanged,
GCV now yields better estimates of f than MML for n = 100, about the same
for n = 400, and only for n = 1600 does MML yield clearly better estimates.
In contrast, if a? + b? is increased rather than decreased, MML produces
better estimates of f than GCV for n = 100 and n = 400. Since changing a
single Fourier coefficient does not affect the asymptotic results, we see that the
asymptotic results do not tell the whole story.

2. Parameter estimation. Throughout Sections 2 and 3 we will assume
that f is a mean u Gaussian process with homogeneous covariance function

(2.1) cov( f(x), f(x + h)) =0 i k% cos(2mkh),
k=1
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where 6, > 1. All probability statements and expectations in these two sec-
tions will be unconditional over the distribution for f. We observe

=f((j—1)/n)+e, Jj=1,...,n,

where the ¢;’s are iid N(0, 6;) and independent of f. Then Y, = (Y,...,Y,)
has a circulant covariance matrix with ijth element

03 I;_;, + 0, ¥ k=% cos(2mk(i — j)/n) |,
k=1

where 6, = 02/6,. All symmetric circulant matrices of order n share a com-
mon set of real eigenvectors [Brockwell and Davis (1987), page 130], and by
taking S to be the matrix whose rows are these eigenvectors, we get that

=(Z,,...,Z,) = SY, has independent Gaussian components with EZ, =
0 for j <n and EZ, = n'/?u. Furthermore, the variance of Z; can be shown
to be

05 + 30,05n' "2H(0,, j/n) = get03w;(01, 05),

where

o

H(05,x)= Y Ip+x|™%

p=-—®

Here and elsewhere define 0% = 0.

The MML estimate 6 of 6 maximizes the likelihood of (Z,, ..., Z,_,) with
respect to 6. Let .# be the expected Fisher information matrix for 6 in
(Zy,...,Z,_ 1), and #; the ijth element of #. The following proposition is
proven in Appendix A.

ProposiTION 2.1. For 0 <60, <o, 1<6,<owo 0;,>0 and B =
0, log(6,/2), as n — o,

) 1 o,

/0

(2.2) Sy =n'/f2— (
4, 1
- 2

nl
nl/0s

2
1/6,-1
( ) (6515 logn + BIy + I,)(1 + O(n™%)),

1/6,
(31 {6521, log® n + 205 (BI, + I,) log n

+B%I, + 28I, + L}(1 + O(n™%)),
Sy = n/(203),
H3 = 0(n'/*%)

and
Sz = 0(n'/%1og n),
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where ¢ = min(0; ', (20, — 1X(6, — 1)/(36, — 1)), and
© log’ydy

o (1+ yoz)
From Proposition 2.1, it follows that
_ 1+2/o2_}__ 2/62—-2 _ 72 -8 2
| Z]=n VP (0,/2) (IoI, — IZ)(1 + O(n~° log® n)),
3

where

d =min|—,1 — — .

It can be shown that

2 w(6, — 1 2
Ioly ~ I = s STl N Y
05 sin® (mw/8,) | | 05 sin(/0,)
which is positive for 6, > 1. Defining .#% to be the ijth element of .#~!, we
have the following corollary to Proposition 2.1:

COROLLARY 2.1. Under the same conditions as Proposition 2.1, as n — ®,

n—1/024(01/2) —1/65+2

S = 1.1, —I2 {6271 log® n + 265 1(BI, + I;) log n
0+2 1
+B21, + 28I, + I}(1 + O(n™°log? n)),
n=1/029(9, /2)" /%21
Pac (0,/2) (655 log n + BI, + I,)(1 + O(n~°log? n)),

IyI, - 112
S8 =0(n"'log?n),
n”1/%(9,/2) "

22 _ —5 Jng2
I AT (Io + O(n=°log® n)),
SFB=0(n""logn)
and

H38 =20%n"1(1+ O(n~%log® n)).

If we had only derived the highest order term for each .7; in Proposition
2.1, we would not have been able to obtain the highest order terms in £~ 1.
Us1ng this corollary, we can obtain:

CoROLLARY 2.2. Under the same conditions as Proposition 2.1, there exists
a sequence of local maxima of the likelihood equations with asymptotic distri-
bution N(6, £~ 1).
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The proof of this corollary is an easy application of Proposition 2.1 and
Corollary 2.1 to Theorem 1 of Mardia and Marshall (1984), which is in turn an
application of a general theorem on maximum likelihood estimates due to
Sweeting (1980).

Assuming that the global maximum to the likelihood function has the same
asymptotic behavior as given in Corollary 2.2, we have that the asymptotic
correlation between 01 and 6, is 1. Furthermore, for any function A from R2
to R? that is smooth in a neighborhood of (8,, 8,), the components of A will
also have asymptotic correlation of 1. By taking a transformation that depends
on n, we can get a nondegenerate limiting covariance matrix. Specifically, for
t = (¢,¢,), define u(?) = (u(8), uy(¢)y, where

t2_02

t —_
ut) = - —logn
1 2

and u,(¢) = ¢, — 65, the dependence of « on n and 6 being suppressed. Then

( nt/ @2y (§) )

n1/2(53 - 03)

(2.3) (8,/2)" /% B2, + 28I, + 1, BI,+1,| 0
-, N|O0, TI-12 Bl, + I, I, 02 )
otz 1 0 0 202

where it is understood that x(6) means u(6,, 6,).

This paper makes no attempt to prove similar results for GCV estimates or
for MML estimates when the regression function is fixed. Instead, I will only
consider the properties of approximations to these estimates obtained by
linearizing the estimating equations that are obtained by setting derivatives of
the GCV criterion function or the likelihood to 0. Under certain regularity
conditions [Crowder (1986)], these linearized approximations are asymptoti-
cally equivalent to the actual estimates. However, even if we could verify the
conditions in Theorem 3.3 of Crowder (1986), we would still not be able to
obtain rigorous results on the mean square errors of estimates of the regres-
sion function with estimated 6, as this theorem says nothing about the
convergence of moments of estimates of 6. _ o

Let us now consider the GCV estimates 6 = (6, 6,) of 6, and 6, under the
stochastic model for f. The GCV estimate minimizes

n IR (Z,/wy(0,65))°
—1vn— —12.
{n zj=1wj(01’02) }

By taking derivatives of this equation with respect to 6, and 6,, linearizing the
resulting equations and setting certain quadratic forms equal to their expected
values (see Appendix A), we obtain an approximation to § which we will denote
by 6*. The MML has a similar linearized approximation which we will denote

(2.4)
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TaBLE 1
Constants for comparing asymptotic properties for MML and GCV estimates of 8 under the
stochastic model for the regression function given in (2.1)

0, Iy/dy Ii/dy I,/dy Loy / d% Ly/d% Ly /dE Y™ Yo

2 0.868 —-0.868 2.14 5.45 -1.82 2.55 0.318 0.637
4 1.07 -1.20 2.54 32.6 -10.4 6.01 0.225 0.750
6 1.08 -1.20 2.47 94.4 —23.6 9.31 0.159 0.743
8 1.08 -1.18 2.40 2.05 x 102 -41.4 12.5 0.122 0.731
10 1.07 -1.15 2.34 3.78 x 102 -63.8 15.7 0.109 0.726
20 1.04 -1.09 2.19 2.67 X 103 —246. 31.2 0.0498 0.697

See (2.3) and (2.5) for the relationship between columns 2-7 and the asymptotic covariance matrix
of the estimates. See (3.3) and (3.4) for the definitions of vy, and yc. dy = Iols - IZ and
de = Io o — Ifh. ’

by 6*; (2.3) still holds if u(8) is replaced by u(6*). Define
=yt log’ ydy
k= a +y02)k+2 ,
so that I;, = I; and let
Ly,=ILi1dge1,1doe = (Ipndgenn + Loy Lg) e + Tyl I,
Then (see Appendix A)
nl/@0)y (%)

(2.5) . (0 (0,/2)" "% (B2Lgo + 2BLyg+ Ly BLgo + Lm))
’ (I Ig — 1121)2 BLoo + Lo Loo ’

which we can compare to the analogous result for the MML estimates given by
(2.3). The rates of convergence are the same in each case but the constants are
different. Some comparisons of the covariance matrices (2.3) and (2.5) are
given in Table 1. We see that as 6, increases, so does the relative superiority of
MML to GCV. Even for 6, = 4, which corresponds to f_behaving locally like
integrated Brownian motion, the asymptotic variance of 6% is roughly 30 times
that of 6,.

3. Predicting with estimated parameters. Let us first consider pre-
dicting 7(0) based on the observations Y, as defined in the previous section in
the case where 6 is known. The best linear predictor of f(0) based on Y, is

+(3.1) £,(0) = w;u +n~1/? i (1- wi1)Z;.
j=1

The best linear unbiased predictor is f(0) = £,(0) + w, *(n~"/?Z, — u). By
symmetry, the mean square error of the best linear unbiased predictor of
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f(j/n) is the same for each j, so the following result, proven in Appendix B,
applies to f(j/n) for any integer 0 <j < n.

ProprosiTiON 3.1.

m0,01/ %2

(82) var(£(0) = (0)) = -5 s

When 6, is an even integer, (3.2) agrees with (4.7) in Stein (1990).
 We next consider the effect of using estimates of 6 on prediction. Let
1(0; 6" be the predictor of f(0) obtained using the estimate ¢’ in place of 9 in
the expression for f(0). Then

f(0:0)) = £(0) = {£(0) = £(0)} + {£(0;6) — £(0)}
and the two terms on the right-hand side are exactly independent when 6’ is 6,
6 or their approximations, which follows from the independence of f(0) — £(0)

and Zy,...,Z,_,. Using a Taylor series in § to approximate £(0;6) — £(0), it
follows (see Appendix B) that

(n/2)""7 1+ O(nt=% + n=1- /%),

Arn. A 2 1/6,
(3.3) E(fSO;o*) —f(O))2 =1+ YM(92)(*) / +o(n=1/%)
E(f(0;0) - £(0)) oun
and
Arn. 4 2 1/,
E(f(0;0) ~ £(0)) b
where
0.} — Oy sin(m/0,)(Iy1o, — 21,11, + Iy 1y)
Yu(0s) = 77'(1012 _ 112)
and
ye(8y) Oy 8in(7/03)(L11lo; — 2L1g15; + LgoIy) ‘

”7(1121 - 121[01)2

While the relative increase in mean square error is O(n~'/%2) in each case, the
constant multiplying this term is much larger for the approximate GCV
estimate when 6, is not near 1 (see the last two columns of Table 1).

4. Deterministic regression functions. In this section and the next,
we will consider estimating a fixed function f on [0, 1] with absolutely conver-
gent Fourier series of the form

(4.1) F(x) —ag+ Y {ay cos(2mkx) + b, sin(2mwkz)).
k=1

Let £, = (f(0), f(1/n),..., f(n — 1)/n)y and g, =(g,,...,8,) = Sf,. By
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straightforward calculation,

(n/2)"* T (@pnsj + Ggenn-y), forj <[n/2],
k=0
(4.2) g, = {(n/2)"? L (bpnsj + Bsnn—y), for[n/2] <j<n—1,
k=0
n2 Y ag,, forj=n.
k=0

Defining Y,, and Z,, as in Section 2 (except here f is fixed), we have Z; = g; +
e;, where the e/’s are iid N(0, 8;). Let A(0)Y,, be the best linear unbiased
predictor of f,, as a function of 6 under the stochastic model used in Section 2.
Taking expectations over the distribution of the' e;’s, the expected average
squared error (EASE) of this estimator of f,, is

1
EASE(9) = —EIIf, - Y, |I°
(43) 2 2
1 n—1 . 0 n—1 1 0
=—Z‘,(——g’ )+—3Z‘,(1—————)+—3.
noj-1 w;(61,05) noi-1 w;(6,,05) n

For some ¢ > 0, suppose
Trtp(a? + b7 — 2¢05) ")

L
PR B

=0

(44) lim sup

m=%° p>rm

for all » > 0. Note that the assumption that f has an absolutely convergent
Fourier series implies that v > 2. The following proposition describes the
asymptotic behavior of EASE(9) under (4.4) (proof available from the author).

PROPOSITION 4.1. Suppose (4.4) is satisfied with v > 2 and 6, > 1 and
a? +b? < Qj" for all j and some constant C. Let
R(6) = [(02 — v+ 1)(v — 1)sin(w/0,) | 27v(6,— 1)
V2 2(0, — 1) sin{m(v — 1) /6,} (v — 1)8%sin(m/0;)’
R, (v — 1) being defined by continuity. For 6, > v -1/2,
i‘lalf EASE(6) ~ R, (05)05¢"/"n~1+1/".
3

For v =20, + 1 and 6, > 1(so v > 3),

(v - Disin(2r/(v - 1))
27 (v — 3)

inf EASE(0) ~ 22<v—3>/»<v-1>{
61

9@-v)/(=1)
X _—
y—

+ 2(u—3)/(u—1))03(c log n)l/vn'lﬂ/".
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R.(62) 21 < e — ]

o ‘e
° _ttengy s —
~ ~ =206070T0T0000038348

Fic. 1. Plots of R,(8,) [see (4.3) for definition] for various values of v; solid line for v = 2,
dashed line for v = 4, open circles for v = 8 and filled circles for v = 16.

For v > 20, + 1 and 0, > 1,
liminfn!~1/@%*Dinf EASE(9) > 0.
6,

n—o

Furthermore,

45) inf EASE(6) ~ EASE(c,v,0 2mby e\ e
(45) 0111,102 () (¢,v,85) Vsin(ﬂ'/v)(Z) " '

Equation (4.4) is closely related to the last equation in Section 3 of Wahba
(1985), in which she notes that maximum likelihood appears to work well
when this sort of condition is satisfied. The connection between (4.4) and the
stochastic model of the previous sections can be seen by noting that under the
stochastic model with 8, = c and 8, = v, E(a® + b}) = 2¢6,;". Plots of R,(6,)
as a function of 8, for various values of v are given in Figure 1. We see that it
is possible to use values of 6, very different than » and still obtain estimators
that are nearly optimal within the class A(6)Y,. Since the GCV statistic is
supposed to approximate ASE(6), it is apparent that GCV will not provide
much information about v. However, if we are only interested in estimating f,
with an estimate of the form A(9)Y,, then Figure 1 suggests that using 6,
near v is not essential as long as a good value of 6; for the particular 6,
selected is used. Hall and Marron (1988) give similar results for the density
estimation problem. Note that the right-hand sides of (4.5) and (3.2) are the
same if we identify 6, with ¢ and 6, with v.

5. Predicting a deterministic regression function with estimated
parameters. For fixed regression functions with algebraically decaying
Fourier coefficients, we describe results analogous to those in Sections 2 and 3
for Gaussian regression functions. Suppose

(5.1) a%+b% =2c0,j7" +0(j™")
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for some n > v + 1/2. This condition is surely much stronger than necessary
to obtain the results in this section; the point here is to show that there is
some class of fixed regression functions for which results similar to those for
stochastic regression functions can be obtained. Throughout this section, all
integrals, sums and functions, such as I;, that implicitly depended on (6, 6,)
in Sections 2 and 3 will now depend on (¢, v). In particular, now define u(¢) by

—C tz -V
u(t)y=——-logn
and u4(¢) = ¢, — v. The analogous result to (2.3) is
nl/(z”)u(é*)
(5.2) 5 N(O (c/2)”"" (BzMooz +2BMyg + My, BMogy + M102))
o (12 - I, 1) BMooy + Mg, Moz ’

where g = v~ 1log(c/2),
Mpqr Ip+1 14gq+1, IJOr ( +1,1 + Ip+1,qu1)J1r + IpIIqlJZr

and
kv j
© y*log’y
J,=| ———=dy.
Jk j;) (1 + y,,)k+3 y
For the approximate GCV estimates,
nl/(ZV)u(é'*)
-1/v
(5.3) - N( _/2 " [B*Moos + 2BMygs + Myy;  BMogs + M103))
T (I3 - I dy)® BMgo3 + M3 M3

Proofs are essentially the same as for (2.5). We see that we have the same rates
of convergence as in the stochastic case. Some values for the asymptotic
covariances in (5.2) and (5.3) are given in Table 2. Not surprisingly, the
estimates of v and c in this setting are considerably less variable than those of

TABLE 2
Constants for comparing asymptotic properties of MML and GCV estimates of ¢ and v for fixed
regression functions satisfying (4.4)

v M002/d12ll M102/d12ll MllZ/d%l M003/d%' M103/d%' MllS/d% SM 80

2 0.0592 -0.131 0.363 0.536 —0.204 0.477 0.0488 0.0910
4 0.0581 -0.132 0.310 4.10 -1.57 1.10 0.0269 0.121
6 0.0457 —0.101 0.226 12.8 -3.79 1.73 0.0144 0.124
8  0.0367 —0.0793 0.173 28.8 —6.83 2.34 0.00875 0.124
10  0.0304 —0.0649 0.139 54.3 -10.7 2.94 0.00584 0.124

.20 0.0161 —0.0333 0.0691 401. —42.5 5.92 0.00157 0.122

See (5.2) and (5.3) for the relationship between columns 2-7 and the asymptotic covariance matrix
of the estimates. See (5.4) and (5.5) for the definitions of 8,; and 8§, and Table 1 for the definitions
of dj; and d.
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6, and 6, in the stochastic setting given in Table 1. Less obvious is that now
the relative asymptotic advantage of 6* over 6*, in terms of estimating v and
¢, is even greater than it was in the stochastic setting. Analogous to (3.3) and
(3.4), we have

54 EASE(6*) i 2 )1/" y
. _— = + —_— + - v
(54) EASE(c, , 0,) M(”)(cn o(n=7)
and X
5 5 EASE(6*) Lts 2\ y
. —_— = + ——— + - v
(65) EASE(c, v, 6,) C(”)(cn) o(n=),
where
vsin(mw/v)(M 51y — 2M 0,15 + Myg,1,,)
6M(V) = 2 2
77'(11 — Iolz)
and X
vsin(w/v)(My3lo; — 2Mg51; + Mogs1,,)
60(1/) = .

77(1121 - 101121)2

Appendix C outlines a proof of (5.5); the proof of (5.4) is similar. The last two
columns of Table 2 show that §,,(v) is considerably smaller than 8c(v) when v
is large.

6. Simulations.

6.1. Summary. This section reports the results of simulations on three
fixed regression functions that are identical except for their leading Fourier
coefficient. Since the asymptotic results from the earlier sections do not
distinguish between these three functions, it is instructive to see how the
results for these functions differ for various sample sizes. For a fixed regres-
sion functions f satisfying (5.1) exactly for j > 1, MML yields clearly superior
estimates of f. By setting a? + b7 = 0, the small sample behavior of the MML
estimates of f changes substantially, so that GCV yields better estimates of f
for quite large sample sizes. In contrast, making a? + b? very large does not
seriously effect the estimates of f based on the MML.

6.2. Computational issues. All computations reported on here were done
in double precision FORTRAN on a SUN Sparcstation 1.

The MML estimate was computed by profiling the likelihood based on
Zy,...,Z,_, over 6; and then maximizing the profiled log likelihood with
respect to 6, and 60, This profiled log likelihood and the GCV criterion
function were optimized using a double precision version of POWELL [Press,
Flannery, Teukolsky and Vetterling (1986), page 299], a modified conjugate
direction set method for minimizing a function of several variables. It is
helpful to use log(1 + 8,) and 6, for the input variables to POWELL, especially
when minimizing the GCV criterion function, as the contours of the GCV
criterion function tend to be closer to ellipsoidal in this coordinate system. In
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some cases, the estimates of 6; or 6, or both will tend to infinity. I put
artificial upper bounds on 6, and 6, of 10'® and 50, respectively, to avoid
computational problems. While these bounds are arbitrary, they appear to
have essentially no effect on the estimates of the regression function.

The minimum of the GCV criterion function is often difficult to determine
because there is commonly a curve of values of 6, and 8, giving very close to
the minimum value of the GCV criterion function, which is not surprising in
light of the results in Section 4. Fortunately, while §, and 6§, might sometimes
be difficult to determine, the resulting predictions are rather insensitive to
changes in 6, and 6, along the curve for which the GCV criterion function is
nearly minimized. While the MML estimates are fairly insensitive to the choice
of starting values for 6, the calculated GCV estimates do sometimes depend
somewhat on the starting values, especially for n = 100 and f,,. These simula-
tions used multiple starting values to minimize the effect of the starting values
on the final estimates. Still, there is no guarantee that the calculated estimates
are always the global optima of the criterion functions.

6.3. Results. We consider the following three fixed regression functions:

fu(x) = 3{a cos(2mx) + ), m~2 cos(27rmx)}
m=2

for @ = 0,1,2. We have f(x) =372%x? —x + 1/6). These functions are in-
finitely differentiable on (0, 1) and satisfy f(0) = f(1) but f’(0) # f'(1). They
all satisfy (5.1) with » = 4 and ¢ = 4.5. One hundred simulations were run for
each of these functions with n = 100, 400, 1600. The same e,’s were used for
each function to facilitate comparisons between functions. The results of the
simulations are summarized in Table 3.

Since all three functions satisfy (5.1), MML should yield better estimates of
the regression function than GCV for sufficiently large n. The superiority of

TABLE 3
Average squared errors for fixed regression functions

Median ASE Mean ASE
Function n MML GCV MML GCV  MML vs GCV* median(9,)

fo 100 0.1541 0.1087 0.2939 0.2183 33 1.72
fi 100 0.0917 0.1004 0.1003 0.1394 78 4.20
fa 100 0.0951 0.0997 0.1019 0.1276 63 5.59
fo 400 0.0345 0.0352 0.0364 0.0376 54 2.69
fi 400 0.0315 0.0350 0.0332 0.0365 81 3.96
fo 400 0.0318 0.0352 0.0334 0.0365 69 4.84
fo 1600 0.0117 0.0125 0.0121 0.0131 70 3.18
f1 1600 0.0113 0.0124 0.0117 0.0130 83 3.98
fa 1600 0.0115 0.0125 0.0118 0.0129 74 4.69

*The number of times out of 100 that ASE(8) < ASE(9).
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MML over GCV for estimating f, is apparent even for n = 100, in agreement
with the asymptotic results of Section 5. In contrast, MML does worse than
GCV for f, when n = 100, about the same as GCV when n = 400, and only
for n = 1600 is MML clearly superior. For f2, MML does nearly as well as for
f1 even though both f, and f, have the same absolute difference from fi-
The results for GCV are much less sensitive to the differences between the
three functions.

The trouble MML has in estimating £, is directly traceable to its tendency
to choose small values of 8,. Based on (5.1), it is reasonable to define the
“true” value of the parameters 0, and 0, as 9, = 4.5 and 6, = 4 for all three
functions. The last column in Table 3 shows that MML tends to underestimate
6, for f, and overestimate 6, for f,. Considering the results in Section 4, it is
not surprising that underestimating 6, is a greater-problem than overestimat-
ing it.

GCV estimates

20 4

10 A 2l

10° 104 108 10%2 1016 1020

MML estimates

5.0
4.5 1 . o
1 el e
o .
~ T * - '“‘ . 3
6, 4.0 S . .
- .“ .;.. :
351 s
3.0 T T T T T T
5 2.5 3.5 4.5 5.5 65 75

61 on cube root scale

Fic. 2. Estimates of 6, and 0, for f; with n = 1600.
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Let us now briefly consider the behavior of the estimates of 6. Figure 2 plots
the MML and GCV estimates of 6, and 6, when the regression function is f;
and n = 1600. 6, is plotted on a cube root scale, which helps to normalize its
distribution. The GCV estimate of 6 is very dispersed; there are many cases
for which the estimates are only constrained by the artificial upper bound of
10'° I have imposed on 6,. These very large values of 6, do not lead to bad
estimates of the regression function, nor does changing the bound have a
substantial impact on the estimates. For f,, and f,, the GCV estimates tend
not to change dramatically, while the MML estimates of 6 are, as already
noted, substantially biased for f,, and f, even when n = 1600.

APPENDICES
Appendix A. Proof of the results from Section 2.

ProoF oF ProrosiTioN 2.1. From (2.5) in Mardia and Marshall (1984), for
/\J(a) = 03Wj(01, 02)

1n-
l=§§( A(@))( A(@))/A (0"
So, for example,

n—1

_ . 2 2

S =072 ) H(6y,j/n)"/w;(01,05)
j=1

and X

n—1
Hag = %0%"’2_202 Z {log nH(8,,j/n) + J(ez’j/n)}z/wj(ol:az)z’

j=1

where

0

J(0y,x)= ) Ip+ x| loglp + xl,
p=-—»

and 072 log0 is taken to be 0. Consider .#;;. Using H(6,, x) = H(6,,1 — x),
for « <1 and af, > 1,

"l (H(6yj/m) |} 2‘”“'{H(02,J/n)}2 <2K"+W2‘{H(02,j/n)}2
j= w;(6y,05) w;(0y,05) B w;(0y,05) .

For 0 < x < 1/2, there exists a constant C (depending on 6,) such that
0 < H(8,, x) < Cx~°2, and it follows that

Kn+1)/2j{H(92,j/n) 2

Jj=1 Jj=ln|

— O(na+202—2a02) .
j=1n®l w;(01,0,) }
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Furthermore, for j < |n®], H(8,, j/n) = (n/j)% + 0O(1), so

lnz"l {H(Gz,j/n)} _ [an“J {(j/n)02 + }_olnl—oz}_ J{l + O(nt= 162y}

j=1| w;(0y,0,) j=1 2
and
0 0 1 -6 —2 I_n"‘J . 0y 1 -6 _9
OSnfo (2% + 30,n' %) “dx — ) {(J/n) + 30,n 2}
j=1
n, g 1 . 1-6,) 2 ® 0 1 . 1-65) 2
<n x%2 + 50,n' 7% dx +n x% 4+ 30,n' 7% dx
fo ( z0:n' %) fnaj/n( z0:n' %)
— O(n2+% + na=2a0y+205) ’
Finally,
nj; (%2 + %491n1_"2)_2 dx = n202_2+1/02(01/2)1/02_210.
Thus,

S = 1n%%(8,/2) TP L(1 + O(nV2)) + O(n2+e—2a2 4 1)
_ %n1/02(01/2)1/02_210{1 + O(n(a—1)02 4+ p2ta—2a0,-1/6; 4 n—l/oz)}.

Setting @ = (2 + 6, — 1/6,)/(38, — 1) yields (2.2). The other elements of .#
can be handled similarly. Explicit expressions for the I ’s can be obtained
using (3.241.4), (4.252.4) and (4.261.14) from Gradshteyn and Ryzhik (1980),
respectively. O

Proor oF (2.5). Differentiate (2.4) with respect to 6, and 6,, set the
resulting equations equal to 0, and rearrange terms to obtain

n—1 _n-1 . - e =
L i) (G
Jj= Jj=
(A]') n—1 _ L. -2 n-1 Y -2
= & {H(Buri/m)u(60,8) ") T {270,(50.82) ") =0
Jj=1 Jj=1
and
n—1 .. _1n-1 . ~ ~\—3
;le(ﬁl,ez) ;1{ZjZJ(Oz,j/n)wj(Gl,Oz) }
(AZ) ) n—1 ” _gy n—1 . =2
. -y {J(éz,j/n)wj(él,éz) } Y {waj(él,ez) }=0.
j=1 Jj=1

Since the distribution of (8, 6,) obviously does not depend on 03, let us take
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0;=1 for convemence Taking first- order Taylor series about 6; and 6,,

H(b,,j/n) = H; — uy(8)J,, J(B,, j/n) = J; — u(6)M; and
P ~ pbn'~2H,
wj(ol,ez) ~w;P|1— 12—w{ul(0) - u2(0)(alog n+dJ;/H; )}
J

J

where o =1-1/8,, w;, =w;6,,0,), H; = Hy, j/n), J; =J(8,,j/n) and
M; = M(6,, j/n), where .

)

M(65,x) = Y, Ip+x|""log?p +xl.
p=—oo

Define
n—1

Sabcde — Z w—aHchz2dMe
Jj=1

where a, b, ¢, d and e are integers, and trailing zeros are omitted, so
S, = S1oooo, for example. Using the above approximations to linearize (A.1)
and (A.2) yields u(8) = A~'b, where A = (a; ;) is given by

ay; = 0,0 %%(38,8 4501 — 352153101 — S3252001)
= log n{aolnl_oz(_ %S1S4201 + %S21S3101 + S32S2001)
+81S3101 — 321‘32001}
+ 0,0 %2( 83,8 5001 — 2818411 — 2520183101 + S2183011)
+ 8183011 — S20152001
ag = 01n1_02(§S1S4111 + 385185011 — 820183101 — S31152001)>
ay = log n{aBlnl_oz(SzolSmm + 831152001 — %S1S4111 - %‘321‘33011)
+8185011 — 820182001}
+ 0,7 %2(38201S3011 + 30252001 — $81S84021) + S1S30011 — S2001S20001

and

S1S3101 - SleZOOl

b= .
8183011 — S20152001

The variability in A is small relative to its expected value, so let us define
(A3) u(6*) = (E(A)} 'b.

The usual approach to deriving the asymptotic distribution of u(0) would be to
obtain the asymptotic distribution of x(6*) and to show that u(6) = u(6*) in
an appropriate sense. This second step is normally quite difficult and will be
left unproven.
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To derive the asymptotic distribution of u(6*), note that for a a positive
integer,
(A4) 'S, = n + 0(n'/%),

and for a, b, ¢ and e nonnegative integers satisfying 0 < b + ¢ + e < a, there
exists ¢ > 0 such that

. —b—c—e+1/6y
Sache — 2n1/02+(02—1)(b+c+e)(_§01) (1 + O(n—e))
A5
(A.5) wy@ b= _glogn + B + logy)°+22
X
0 (1 +y02) .
Using (A.4) and (A.5), it can be shown that
. S —Sgalogn — S
_1lp 2-9,| P32 32 311 e
E(A) = 36.n 2[3311 S, alogn — (1 +0(n7*))

for some & > 0. Then from (A.5) we obtain

det( E(A)) = 4n*®=4+2/%(10, )" **(12 — ), 1,))(1 + O(n"*)).
Thus,
u(6*) = in2_302_2/02(§01)_3_2/02(1121 - 101121)_1(1 +0(n7°))

alog n(8S51831182001 + 5183283011 — S1831183101 — 52018328 2001)
X +821850282001 + 81831183011 — S18302S3101 — S 20183115 2001
521851182001 + 8153283011 — 1851185101 — 820183282001

Equation (2.5) follows using standard central limit theory. O
Appendix B. Proof of results from Section 3.

ProOF OF PrOPOSITION 8.1. Since f(0) — f,(0) and £,(0) — £(0) are uncor-
related,

var(f(0) — £(0)) = var( £(0)) — var(£,(0)) + var( f,(0) - f(0))
2 (w; _1) 05

= 9,0, Zp 2 —9,n~1 )
1p=1 j=1 w; nwn

and

_ ln/2 —_1)?
n-l i (w 1) =9p-1 2 (wj 1)
w; Jj=1 J

+0(n'~2%2),
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so
2
in/2 (w; ~ 1) 05

var( £(0) - £(0)) = 6,6, ¥ p~ — 20", %,

p=1 j=1 W nwr,
+ O(n'™2%%)
ln/2l w;—1 2 0
=0, ) olj—"z—zn—l(—’—)— + = 4+ 0(n'"%).
Jj=1 wj n

For 1 <j < ln/2l, H(8,, j/n) = (n/j)? + O(1), and it follows that
var(f(0) ~7(0))

| I VP (/) ke /)
“0 BT TR T (et (/i) + O(L)

03
+—=+0(n'" %
= 4 0(n!")

ln/2] glj—oz

=03 ) —
P 1+ (1/2)6,n 7"

Furthermore, using the Euler-Maclaurin formula [Abramowitz and Stegun
(1965), taking n = 1 in 23.1.30], it can be shown that

ln/2l 1 dx 1
Lln/2| -6 -1-1/6

Y ————— = — 4+ —+40(n"%+ /02y,

S %+ (1/2)0n -[1 x% + (1/2)0,n  Oin (n " )

(1+0(n'"%)) + % + O(n'~?%).

so that
ln/2l 1
7 (/2o
® dx 1 1 dx
T amee o h v

© dx

— +O(n~ 17102 4 =03
[ln/ZJ x%% + (1/2)0,n ( )

- - ._L + O(nl—ez + n—l—l/oz)'
sin(w/0,) 6.n

1/(1 1/65=1 T
i (30)
0, \ 2

Proposition 3.1 follows. O

PrOOF OF (3.3). We merely outline the proof as the technical details are
similar to those leading to (5.5) (see Appendix C). The proof of (8.4) is



1542 M. L. STEIN

essentially the same. Taking a first-order Taylor series in 6,
£(0;6%) = £(0;0) = 36,n1/*~%2u(6) Sy,
—30 n1/2—02(0‘ = 05)(Sz011 + @ log nSy0;)

plus a remainder whose second moment is o(n~1). By lengthy but straightfor-
ward calculations, we obtain

A A A 2 203(12101 - 211111 + IOI2 ) —
E(f(();e*) —f(O;O)) = n(IOIz_Ilz) 1 +o(n 1).

Equation (3.3) follows using (3.2) and the independence of £(0;8*) — £(0; 9)
and 7(0;0) — £(0). O .

Appendix C.

Proor or (5.5). This Appendix outlines the proof of (5.5), the proof of (5.4)
being similar.

First, define w; (01, 0,) = 0 whenever ; <0 or 6, < 1. If we let 6 = §*
when 6% > 0 and 0* > 1 and 6 = (0, 2) otherwise, then EASE(§*) = EASE(9).
Let

g~
d.(6) =—2—2_+ +e;,
O = o)

so that
n—1
ASE(9) = n-l( Y d,(6)® + e,%).

By taking a second-order Taylor series in 6 about (c, ») with remainder, it can
be shown that d;(0) = d,; + d;(6) + d,;(6) + d;(6), where

do; =d;(c,v),
ay0) = BT )+ (o) (wlog B+ ),
2
d2,(0) = (8; = &) L ajus(6)"uz(0)*™,

dg;(0) = (g — ¢;) E brj(;)ui(0)*us(6)* 7,

and ¢; is between (c,») and (6,, ,). Here, we define w; = w;(c,v) and simi-
larly deﬁne H; and J;. Furthermore, there exists a constant C such that for
all n sufﬁmently large

(C.1) lag;l < Clog?nn'~"H,/w?
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and for any fixed a > 0
(C.2) sup |bkj(¢>j)| <Clog®nn'~"H,/w}.

lu()l <n==

For @ < 1/v, there exists B > 0 such that P(|u(8)| > n™%) < exp{—nP} for all
n sufficiently large using the fact that all normalized quadratic forms in
normal random variables have uniform exponential bounds on their tail
behavior [Ponomarenko (1978)]. Using this fact and (C.2), it is possible to show
that for @ = 1/(2v), say,

1 n—-1 _ 9 1 n—1 _ 9
E{— Z d3j(0) =E[{— Z d3j(0) {I{lu((;)lsn_“} + I{lu(§)|>n_"‘)}
n j=1 n j=1

=o(n 17/, :

Using (C.1) and (5.1), it can be shown that
1 n—1 _ 3 _ _ .
—E T {dy(8)" + d;(B)do; + di;(B)do;) = o(n ") and
j=1

205( My 31 — 2M 03111 + Myosls) +
2
n(I121 - 101121)

1 n—1 9
E{— Y dlj(é) } = o(n™1).
n 5

Equation (5.5) follows using Proposition 4.1. O
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