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MATRIX WEIGHTING OF SEVERAL REGRESSION
COEFFICIENT VECTORS

By AraN T. JaMES! AND WiLLiaM N. VENABLES
University of Adelaide

For small sample random effects models, results are derived which
show in certain cases, and indicate in general, that an estimated random
effects variance matrix may be used in the weight matrices without causing
undue error in the empirically weighted mean. Exact error variances are
derived mathematically for the empirically weighted mean for the two
sample case in one and two dimensions. Simulation is used to determine
errors for a practical example of six five-variate samples. For estimation of
their mean, the differences between the samples are ancillary. The biases of
the average and weighted mean estimators conditional on these ancillaries
is illustrated in a diagram plotting values obtained by simulation. A curious
range anomaly is illustrated which arises if random effects are ignored
when present.

1. Introduction. A general problem which occurs throughout a wide
spectrum of statistical practice is as follows. A series of data sets analysed by
the same linear model has led to independent estimates of the same regression
coefficient parameter vector B. An efficient estimate of B is needed, allowing
for both within data set and between data set matrix components of variation,
as in the random effects models introduced by Henderson, Kempthorne, Searle
and von Krosigk (1959).

The simplest such random effects model specifies p + 1 independent sample
regression coefficient vectors b, € R", i = 1,2,..., p + 1, conditionally dis-
tributed as

bi'Bi ~ N(Bi: Fi)

with the B, independently marginally distributed as N(B, A). Hence,
marginally, the b, are independently distributed as N(B, A + I};). Models for
comparison of two or more mean vectors, or more general linear models can be
built up, but the inferential issues with which we are concerned are the same
as for the estimation of a single mean vector B and between regressions
variance component matrix A.

We shall assume that the I, are known or accurately estimated, but that A
is not only unknown, but that there is no prior information concerning it. It
may be zero but this cannot be assumed.
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This problem of similar regressions has arisen in so many different contexts
that different terminologies have grown up. Feldman (1988) classifies four
different methods of analysis which have been used:

1. Pool all the original data and do a combined analysis ignoring random
effects. The above author calls this method naively pooled data (NPD) but
other authors such as Gumpertz and Pantula (1989) simply call it ordinary
least squares (OLS).

2. Standard two stage (STS). Ignore the estimated errors of the regression
coefficient vectors b, and treat them as raw homoscedastic data. The
maximum likelihood (ML) estimator of B will then simply be the aver-
age, b .

3. Weighted least squares (WLS). Assume a random effects model and form a
matrix weighted mean using a simple but inefficient moment estimator A(™
of A. Equivalently, however, one can go back to the original data by
incorporating A, or its estimate A into the variance matrix of the pooled
original data to give a generalized least squares (GLS) analysis of it. When
an estimate of A subject to appreciable sampling error is used instead of A
itself, the method is called estimated GLS (EGLS).

4. Residual maximum likelihood (REML) estimates can be made of the mean
vector B and variance matrix A. This is iterative. We shall refer to the use
of the REML estimate, A of A in weights as empirical weighting.

If the original p + 1 regressions are linear, then for normal data the ML
estimates b, together with the REML estimates s? of the error variances o;?
are sufficient. It is therefore not necessary to go back to the original data
because a weighted mean will supply an algebraically identical estimate. For
nonlinear or nonnormal data this will be approximately so if efficient ML
estimation is used. Besides going back to the original observations, which was
unnecessary in the context of our example to be described in Section 2, much
of the literature deals with best linear unbiased prediction (BLUP) of the
random effects or coefficients B,. BLUP is important in many areas such as the
plant and animal breeding discussed by Henderson, Kempthorne, Searle and
von Krosigk (1959), but not in our work, though our results do impinge on
BLUP.

Data or models with equal I}, that is, [} =T, = -+ =T are called bal-
anced. The average b, is then the ML estimator of B as given by method 2.
The REML variance estimator involves cutoff as described and proved by
Ameniya (1985). Let B be the n X.(p + 1) matrix of vectors b,. If their
conditional variance matrix I' is ignored as in method 2, then the REML
estimator of their variance matrix is the matrix of mean sums of squares and
products,

V,=(B-%1,.,)B-b1,.,)/p,

where b.= B1 p+1/(p + 1). The variance matrix of b. would then be estimated
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by V,/(p + 1). The standard errors of b, given in Table 1 of Section 2 are
estimated in this way.

If T is taken into account, however, then E[V,] = A + I and V, — I is the
REML estimator A of A, provided it is positive or positive semidefinite. If not,
then the REML estimator requires cutoff, because, if for a € R”, the estimator
of a'(A + I'a is less than a'T a, then the latter value must be used, since a' Aa
cannot be negative. This requirement is achieved as follows.

Provided T is positive definite, there exists a nonsingular matrix L and a
diagonal matrix diag(A;), such that I' = LI’ and V; = L diag(A;,)Li. Then

A = L diag(max((A; — 1),0))L.

If for unbalanced data, we replace I' by T.= ITI,/(p + 1), then we obtain
the moment estimator A‘™). For p = 1, it is proved in Theorem 1 of Section 4
that this is the REML estimator, but for p > 1, A # A", for unbalanced data
with which we shall be concerned.

The moment estimator is easy to simulate but the REML estimator, being
iterative, is not.

It has been widely assumed that with a small number p + 1 of random
effects, the use in weights of an estimator of A with large sampling error
would render the weighted mean B much less accurate than other possible
estimators. Our main result in this paper is that the estimator B is more
accurate than the average b, for small A and generally not much less accurate
for large A.

On account of the large sampling error of an estimate of A from a small
sample of random effects, one is tempted for convenience to assume A is zero,
or simply ignore it, and use method 1. We show that in two or more dimen-
sions this can produce a strange range anomaly.

The paper aims to overcome a prejudice against the use of empirically
weighted means in the small sample random effects model that has little
foundation and establish it as a viable statistical method.

1.1. Outline. Section 2 describes a practical example in which the problem
arose. Section 3 shows by an artificial example how the range anomaly arises,
and how an empirically weighted mean cures it. Exact mathematical theory is
developed and discussed in Sections 4-6. Simulation is treated in Section 7.
The paper closes with a discussion and succinct conclusions.

2. An example from mitochondrial experiments. Our interest in the
problem of matrix weighting came from our attempts to summarize the results
of six experiments designed to produce a quantitative model of mitochondrial
performance. Mitochondria are numerous organelles within the cells of plants
and animals which generate the aerobic power. During nine months of pre-
liminary experiments, James, Wiskich and Conyers (1989, 1993) perfected
experimental technique and developed a thermokinetic model to describe
quantitatively how the potential of mitochondrial power decreases with load in
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TABLE 1
Six independent row vectors of five regression coefficients with their standard errors, and four
types of mean vectors. ey, e, e3 are potentials and ry, ry are resistances measuring mitochondrial

performance
e ey ey 100r, 100r,

Rat number, i In units In units In units In units % ~! In units % ~!
Hexokinase

1 4.249 + 0.055 4.786 + 0.065 5.538 + 0.080 0.775 + 0.144 1.078 + 0.056

2 4.380 + 0.048 4.985 + 0.057 5.401 + 0.064 1.408 + 0.158 1.072 + 0.078

3 4.556 + 0.090 5.145 + 0.095 5.913 + 0.112 1,943 + 0.303 1.176 + 0.107

4 4.424 + 0.066 4.976 + 0.073 5.567 + 0.079 0.864 + 0.172 1.023 + 0.068

5 4.537 + 0.047 5.016 + 0.057 5.700 + 0.069 1.292 + 0.118 0.794 + 0.044

6 4.391 + 0.038 4.899 + 0.043 5.370 + 0.048 0.861 + 0.118 1.076 + 0.046
Mean Vector Weight

Average I 4.423 + 0.046 4.968 + 0.049 5.582 + 0.082 1.191 + 0.184 1.037 + 0.053

Simulated error 0.042 0.043 0.071 0.164 0.057

Scalar (diag(I',))_1 4.410 + 0.021 4.945 + 0.024 5.509 + 0.028 1.080 + 0.060 0.992 + 0.024

Matrix I‘,‘1 4.283 + 0.019 4.780 + 0.022 5.348 + 0.025 0.842 + 0.056 0.945 + 0.023

REML (T, + A)~! 4.407 + 0.041 4.946 + 0.041 5.557 + 0.070 1.144 + 0.161 1.027 + 0.055
Moment (T, + A)~! 4,415 + 0.046 4.954 + 0.049 5.567 + 0.082 1.164 + 0.182 1.031 + 0.052
Simulated error 0.042 0.043 0.071 0.161 0.056

a manner analogous to the fall of voltage of a car battery when the starter
motor is engaged.

Six final independent experiments were done as a test of the model. The
results were fitted by nonlinear regression giving rise to six sample regression
vectors each of 10 components published in James, Wiskich and Conyers
(1993). Five of the components of each regression vector pertain to the
mitochondria and five to the load. Three potentials and two resistances
comprise the five components pertaining to the mitochondria. They are given
as the row vectors b, i = 1,2,...,6, of Table 1 with their standard errors.
Since the standard errors are estimated on the equivalent of 43 degrees of
freedom, they are reasonably accurate compared to the uncertainty of the
between regressions component A. The six 5 X 5 correlation matrices of the b,
obtained from determining variables X; are given in Table 2. The imbalance of
the data lies in the large differences between the correlation matrices, and
between the standard errors for the six experiments.

A Dbiological interpretation of these results requires the six regression
coefficient vectors to be summarized by a single vector of potentials and
resistances. The variation between and within experiments is of secondary
interest, but must be acknowledged by the analysis. In other situations
hypothesis tests on the components of the mean vector may likewise be
important.

With hindsight, we can now see that a simple average would have been
adequate biologically, with some cutoff for its estimated error variance based
upon T'. We were concerned, however, that there were big differences in errors,
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TABLE 2
The six sample correlation matrices given as upper or lower halves. The variance matrices T; can
be reconstituted from them and the standard errors given in Table 1

0.8010 0.8216 0.6393 0.1616 0.8697 0.8835 0.7127 0.2215
0.7288 0.8638 0.6729 0.1689 0.7677 0.9407 0.7576 0.2381
0.7454 0.7900 0.6943 0.1677 0.7905 0.9119 0.7735 0.2366
0.4781 0.5370 0.5491 —0.5317 0.5918 0.6754 0.6931 -0.3969
0.1321 0.1025 0.1050 -—0.7146 0.0244 0.0318 0.0424 -0.6656

0.8109 0.8251 0.6731 0.1462 samples
0.7198 0.8441 0.6910 0.1458 1 3
0.7535 0.8294 0.7063 0.1436 2 4
0.5619 0.6144 0.6402 -0.5216 5
0.0541 0.0653 0.0725 -0.6705 6

and at an early stage considered omitting experiment number 3 from the
average on the grounds that it had much higher error than the other results.
Such an arbitrary procedure, however, seemed difficult to justify.

It nevertheless seemed desirable to downweight the less accurate experi-
ments by weighting by the inverses of their variances. By dealing with each
component marginally, we obtained the estimates shown in Table 1 opposite
the heading ‘‘Scalar” that were in accord with our intuition. The standard
errors are low because they do not contain the between experiments variance
component which we now recognize to be important.

Although the results look reasonable, they do not necessarily provide the
best estimate of a function of the components, nor its error. For a coherent
multivariate analysis, matrix weights given by the inverses of the variance
matrices should be used. When we did this using matrix weights I, !, because
the estimate of A was so much subject to error, we obtained the matrix
weighted means shown in Table 1 whose second and third components lay
outside the range of the six values of which they are supposed to form a
summary. This is what we refer to as the potential range anomaly of method
1 or OLS.

In Section 3, we illustrate by an artificial example just how it comes about,
and how it does not appear to occur under the more realistic random effects
models of methods 3 and 4.

From now on we change our notation for the vectors and their marginal
distributions from b, ~ N(B,,A + IDtoy, ~ N(n,A+T)),i=1,2,...,p + 1.

3. Illustration of matrix-weighted mean displacement. Suppose two
independent bivariate sample vectors had the following values with known
variance matrices given by

1 -09 1 - 09
y1=[2]’ F1=l:_0‘9 1 ]’ y2=[_0a]: r2=[09 1 ]

It looks highly artificial to take both observed abscissae as zero, but it makes
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Fic. 1. Likelihood contours for two separate bivariate likelihoods.

the figure described below easier to comprehend. One could rotate it a little
and displace it from zero without altering the essential argument.

We begin by treating this ‘“data’ by method 1 which ignores random effects,
to illustrate the consequences.

Figure 1 shows the contours of the separate likelihood functions for the
expectation vector, obtained from each observed vector. One sees how two
ridges of high likelihood extend out from the observed vectors when the
correlations are numerically large, and how, when the correlations are very
unequal, the ridges will intersect in a region of high product of their likeli-
hoods. If it can be assumed that the two observed vectors have a common
expectation vector, its likelihood function is the product of their likelihoods.
This function is illustrated graphically by the surface shown in Figure 2.
Hence one can see how a matrix weighted mean can be well away from a scalar
weighted mean, due to the first of the two variates having a strong covariance
on the second.

If it is reasonable to assume that the expectations of the two vectors are
equal, and if the region of the intersection of the two ridges of high likelihood
is well within the two confidence intervals of the expectation obtained from the
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Fig. 2. Likelihood surface given by the product of the likelihoods in Figure 1.

individual observed vectors, then the matrix weighted mean is acceptable. The
considerable displacement and high accuracy are due to the extra information
from the strong covariance.

On the other hand, if the observed vectors differ significantly as tested by

X3 = d(T, + ;) 'd = 2%,

where d = y, — y;, then the assumption underlying method 1 is significantly
rejected. A random effects model, however, will fit the ‘“data.” A variance
component matrix must be estimated even though it is only on one degree of
freedom. It is given for the n dimensional case by Theorem 1 stated and
proved in Section 4.

We now come to a common situation in which random effects may possibly
be zero or negligible but this cannot be assumed. Suppose there is no a priori
certainty that the expectations are equal, but x2 is below significance as, for
example, y2 = 3.5 when a = {/3.5/2 = 1.32. If, in an attempt to use method
1, we persist in specifying a model of equal expectations on the basis that the
estimates do not differ significantly at the 5% level, then the ML estimate of
the mean vector, with standard errors, is

+_[119+031
B 0+031]

On this specification, the first element, is highly significantly different from
zero. But this inference depends entirely upon the assumption of no random
effect. If the assumption is doubtful, the inference is correspondingly dubious.

If on the other hand one specifies a random effects model, then the
estimated variance component matrix is

. 1 1 0 0 0 0
A:—— 1—————- =
2( 2a2)[0 4a2] [0 %]
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(2.-2)

(0,-1.32)

0.2) ©:342)

Fic. 3. Likelihood surface for the parameter vector in the random coefficients model.

0.34 + 0.62
0+ 1.16

A. If we allow for the sampling error of A as developed in Section 5, but
evaluate the error at A = A, we obtain

giving a weighted mean of i = [ ] if we ignore the sampling error of

- _[0.34 +0.67
® 0+1.25]

To us, this seems a far more reasonable inference. This weighted mean is the
value at which the likelihood surface for the random coefficients model, shown

in Figure 3, has its maximum. The surface also shows high likelihood at [g].
At A = A, this estimate has a smaller error than the average
_ [0 + 0.71]

0+1.32]

The range anomaly comes about by treating data with a nonzero A as if it
were zero. But A is not the direct cause of the range anomaly, it is an indirect
cause. A operates only through a large difference, d =y, — y;, which is
reflected in A as a function of d. If d is fortuitously small, then there is no
range anomaly when NPD or OLS is applied. Likewise, when the NPD
produces a range anomaly, it is A as a function d which rectifies it. In
dimensions in which A is singular, there are no differences to create a range
anomaly.

On the other hand, if A fortuitously overestimates A, then the weights
move conservatively towards the equality which gives the average, ¥.

These considerations led us to question a widely held belief that large errors
in A would produce excessive errors if it was used in weighting of means. The
situation should not be confused with a common one in which errors in
weights are independent of the observations they weight.

Consequently, we set out to investigate mathematically what would other-

wise be regarded as the hopelessly inaccurate situation of two samples. Fortu-
nately this is mathematically tractable.

<l
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4. Theory for two vectors. For two vectors with p = 1, we can give an
explicit formula for the REML estimated variance component A.

THEOREM 1. For two independently normally distributed vectors, y,,y, €
R™, with a common expectation vector p, and variance matrices I'y + A, T, + A,
where TI';,T, are known, the REML estimator of the variance component
matrix A between them is the moment estimator,

~ |0, if x2 <
T (- Dad/(2x?), ifxt=1
whered =y, —y, x?=dT 'dand T =T, + I,.

(4.1)

Proor. The residual likelihood must be based on the distribution of d,
because the probability density of y;, y, factorizes into the probability densities
of the weighted mean @ of y, and y, with weights (I, + A)~, (l"2 + A)7! and
of 271/2d ~ N(0,(1/2)T + A). Hence the residual log likelihood is

constant — 3 logdet(3T + A) — %tr{(%l‘ + A)_I%dd’}.

The rest of the proof is an adaptation of the Appendix to Ameniya (1985).
Choose a matrix L not depending upon A such that L(T'/2)L =1,

L(dd'/2)L' = S, where S is zero except for s;; = x? in its top left corner. Put

LAL =Uand W= (I + U)™! <. Apart from an additive constant involving

log det(L), the log likelihood to be maximized with respect to W is then
3(logdet(W) — wy,x?).

The maximum occurs when W is diagonal and w;; = 1 for i = 2,...,n, leaving
%(108’ det(wy;) — wan),

which is maximized at

RY if x2<1,
1 1/x2%, ifx%2=1
that is,

0, if y2<1,
u =
B x-1, ifx?z 1,

and all other elements «; ; = 0. Hence, the estimator is either zero or

2
x°-1
= S
2

and on detransforming with L~!, we have either zero or
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Since for p = 1, the range of A lies in the range of d = y, — y,, it might
likewise be conjectured that with three or more vectors, y;,y,,ys, - .- ' Yp+1 €
R™ with p < n, the REML estimate of the (n X n) variance matrix would have
its range in the subspace of dimension < p < n, spanned by the differences
y; — y; of the vectors; but a numerical example showed that this is not so in
general.

If i is the least squares weighted mean of y; and y, with weights (T, + A)~!
and fi is their empirically weighted mean with weights (I; + A)~1, then by
substituting for the y; in terms of their average y. and d one has the following:

THEOREM 2. For two vectors as in Theorem 1, the least squares weighted
mean is

(42) h=3.—(T, - T)I'A"'d/2,

where T; = var(d) = T + 2A and A =T,T"%, and the empirically weighted
mean is

(4.3) i =¥~ (T, - [)I'e(d)
where, what we shall call the cutoff function is

d/2, ifxt<1,
(4.4) c(d) = |V i x

T la/@x?), ifxt=1,

and its variance is

(4.5) var(ii) = var(y.) + (T - T)T ™'V, T 7T, - I),
where V, is the variance kernel, given by
(4.6) V, = var(c) — 3A7'E[dc’] — ;E[ed' ]A?

and var(y) =T,/4.

CoMMENT. The correction subtracted from the average y. to give the
empirically weighted mean fi is the imbalance factor (I, — [T, + ') 1!
times the cutoff function, and the difference of their variances has the variance
kernel V, premultiplied by the imbalance factor and post multiplied by its
transpose. The variance kernel V, is the variance of the cutoff function c(d)
minus terms which come from covariances of §. with ¢ and ¢ with §.

The variance kernel expresses the difference of the variances of i and §, in
the most extreme cases of imbalance. Its positive or negative definiteness and
magnitude therefore express their relative accuracies.

Proor oF THEOREM 2. Formula (4.3) follows from formula (4.1) by use of
the identity
(I+Arda) " =1-Ada/(1+)a'd)
with A = (2 - 1)/x? and a = T'"1d.
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In formula (4.5) there are terms for
cov(y.e) = E[(§.— n)e'] = E[E[(F.— n)d]c]
and its transpose. Since §. regresses on d, we have the conditional expectation
E[(F.— r)d] = cov(¥,d)T;'d = 3(I, - [)I"'A~'d
and from this the covariance is obtained. O
4.1. The scalar case. In the scalar case, n = 1, we can judge magnitudes of

the error relative to var(y) =TI,;/4, by studying the function f(A/T) =
V,/var(y.) such that

var([:;r—(;a;r(?.) _ (FZ ; h )2(%)

THEOREM 3. When n =1,
Fz - I11
r

A=y-

c(d),
where the cutoff function is

J) = d/2, if ld| <T,
“D=1\r/2d), ifldl=F.

Also

var(i) = var(y.) + (F2 ; h )Z{Var(c) - E[fc] }
and

f(A/T) =81 — &
where \
g, = var(c) /var(y.)
=2/(mA) (A7 = Dexp{—1/(2A)} + 2®(A~1/?)
- 1-2{1-d(A%)}/A2

and

g, = A'E[dc]/var(5)
= —(2/0)"" exp{—1/(2A)} /Vm + 2{2B(A~1/?) — 1}/A
+4{1 - o(ATVH)}/ A,
where A =1 + 2A/T and ®(2) is the standard normal distribution function.

The integrals were evaluated by hand, checked algebraically with the com-
puter program MAPLE and checked numerically by simulation.
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1.5
c(d)

1.0

0.5

c(d) 0.0

-0.5

-1.0

-1.5

Fic. 4. The cutoff function, c(d), for two sample scalar random effects models, ¢, multiplied by
the imbalance factor, (T'y — I'y)/(Ty + Iy), gives the correction subtracted from the average, §, to
give the empirically weighted mean, .

4.2. The cutoff function. The cutoff function, shown in Figure 4, is analo-
gous to the influence function used by Hampel, Ronchetti, Rousseeuw and
Stahel (1986) in robust regression, as shown in Figure 5. When the difference
d is small, the estimate of A is zero by cutoff, and one corrects y. linearly in d
for the variance imbalance of T'; # I',. When the effect of A appears in d from
under the shadow of T' =T + I',, however, the effect of A > 0, offsets the
variance imbalance and gradually brings the weights back to the equality of
those in ¥. To ignore A as in NPD, is to extrapolate the line to infinity both
ways. This is analogous to accepting the full effect of an outlier in a least
squares analysis with its consequent distortion, instead of downgrading its
influence by the influence function in a robust regression. Not to apply cutoff
is to extrapolate the hyperbola to +~ at d = +0.

4.3. Comparison of variances of estimators. By the Gauss theorem, the
variance of the truly weighted mean { with random effects, constitutes a lower
bound, but such an estimator is not available due to ignorance of A. We shall
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influence=score/informatjon

least squares regression

robust regression

[ =
.0
B©
5
oo outlier
@
Q
c
[0}
=
E
[o N
b
¥
T T T T
¥ B o N <

Standardized Residual

Fic. 5. The influence function.

compare variances of the empirically weighted mean with random effects (i the
weighted mean without random effects u* and the average 7.
For the various estimators, m = i, i, u* of the mean, Figure 6 shows the

function
(( var(m) — var(y.) )
var(y.)

plotted against A/TI". When m = f, the function is f and has a maximum of
f=10.0080 at A/T = 4.2.

The abscissa constitutes the curve for y.

For A/T < 2, the empirically weighted mean i has lower variance than the
equally weighted mean y. and the difference is substantial for A/T" < 1. For
A/T > 2, i has a slightly higher variance than y, but from a practical point of
view, the difference is negligible. Hence, the empirically weighted mean is to be
recommended.

For A/T from 0 to 0.3, one would do best by weighting without random
effects. Unless one has definite information that A/T" < 0.3, however, one
cannot be sure of this and empirical weighting should be used.

P!

2
) X 100%
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1.0
//// /OLS
0.5 ////
/
/
/
/
//
Average
R — g
0.5
-1.0- | | | I
0 ) 2 3 4 |
a/r

Fic. 6.  Difference of variance estimators as a percentage of the variance of the average.

At about A/T = 1.5, there is 50:50 chance that random effects will be
significant, that is, A > 0. Hence above 1.5, it is clear that random effects must
be specified, but in this range, ¥, has about the same accuracy as /.

For 0.5 < A/T < 1.5, there is low power in the significance test, but the
weighted mean without random effects w* is highly inefficient. This is the
dangerous region if one ignores A in the hopes that there are no random
effects. Such a procedure is highly nonrobust. If the data is completely
unbalanced with I', /T large, then if one is certain of no random effect, that is,
that A = 0, one can ignore y, and use y, as the estimator of u. It has a
negligible variance, and hence is 100% below the average, 3.= (y, + y,)/2. In
the absence of certain knowledge of no random effect, it is dangerous to ignore
its possibility. If one allows for a possible random effect when in fact A = 0,
one pays a penalty that the variance of i is only decreased to 70% of 7.

Within the range 0 < A/T" < 1.5, the empirically weighted mean /i has less
error variance then the average y. and substantially less in the lowest part of
this range. The results confirm the use of the empirically weighted mean.

5. The two dimensional case. In the case of two vectors y,,y, € R?,
p =1, n =2, we can compare the error variance matrices of the empirically
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weighted mean i with the average ¥y, by making a nonsingular linear transfor-
mation:

y['ﬁ)Lyi, ll_)Lﬁ" 5’—’ LS’
such that the induced congruence transformations map I to I and diagonalize

A:

5, 0
Ir->LTL =1, A-LAL = .
0 s,

The variance kernel V, given by (4.6) undergoes the same congruence transfor-
mation and becomes a diagonal matrix

2,(84, 82) 0
0 25(81,8,) |’

which is a function of 8, 6, with z,(8,, 8,) = 2,(8,, §,).
There are two extreme cases of imbalance:

(a) Different but proportionate variance matrices,
this is analogous with the scalar case. Then

var(fi,) — var(y.1) B 42,(8;, 83)
var(y.1) C(1+268)

(5-1) f1(51752) =

(b) Difference of correlation,

0 1
l-‘1=|:_ s F2=[ :I’ l-‘2_I‘1=[1 0]’

this is the case where NPD leads to range anomaly. We have

[T T
[T ST
M S
[ ST ST

£o(81,8,) = var(fi;) — var(¥y.) _ 425(5,,0,)
2o T2 var(y.1) 1+ 28,

(5.2)
~ 424(85,8,)

1+ 26,

If we put d, = r cos(9) and d, = r sin(8), we have the following:

THEOREM 4. For the two sample two dimensional case, we have

§1+§2
1+26,°

1
24(8,8,) = 5(1 + {3 —
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B x/2 (1 1, cos’()  sin®(0) || ,
{1 = —f / exp( 5" { 5, + 5, r* cos“(0) drdé,

1 /2 [® 1 cos?(8)  sin?(9)
B -3 + 2(0) drd®,
9 o5, f6=0fr=1exp( 57 { . 5, r cos?(6) dr
1 /2 (® 1 9 cos?(0) sin?(9) .
" 2my ) + ~!cos®(0) drdf.
. 21/618y ‘/;7=0‘/;=1exp( 2r { 04 8, r=" cos*(0) dr

The integrals have been evaluated by MAPLE and checked by simulation.

Contour plots for the functions in (5.1) and (5.2) are shown in Figure 7 and
8. As in the univariate case, one sees that var(j,) is substantially less than
var(y.;) for small A, and generally only negligibly greater for large A. Usually
f, and f, are negative or less than 0.01, but in case (b), f, rises to a
maximum of 0.0575 at §, = 0 and &, = 18.5. This appreciable value comes
about in an extreme case in which ¥; has a small variance of 0.25 but the

82

5-0.3 0.1 -005 -0.03 -0.01
T

1

o
1
o{o_——

N
PRy
o

0

[

Fic. 7. Bivariate case (a).
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652

-0.01

5 -0.3 -0.1 -0.05 -0.03
T T T T T
0 1 2 3 4
&

e

Fic. 8. Bivariate case (b).

correction to ¥.; to obtain the weighted mean involves d which has a variance
of 37, giving a variance of 0.27 for the weighted mean component p ;.

For bivariate data, the dangers of ignoring a random effect when present are
worse than for univariate. If, on the other hand, one allows for a possible
random effect when in fact A = 0, the penalties for both completely unbal-
anced cases (a) and (b) are a variance reduction of 56% instead of 100% below
the variance of the average ¥.

6. Comment. For the example in Section 2, the 5 X 5 matrix REML
estimator A“ has a log likelihood which is 0.83 higher than that for the
moment estimator AC™). An increase of 0.83 in log likelihood is an appreciable
indicator of a better estimator. Both A and A”” have rank 3 and, as one
would expect, have practically identical ranges. Indeed, the cosines of the
critical angles between their range spaces, which are given by the canonical
correlations between the first three columns of the respective matrices, are
0.9839, 0.9995 and 1. But the 3 X 3 nonsingular matrices A;, and A{? in
their top left-hand corners, differ appreciably, as is shown by the eigenvalues
of ATAYD, which are 0.71, 1.75 and 1.05. This may be due to the following
situation.
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Since the moment estimator A of A involves the average T of the T, it is
strongly affected by the most inaccurate experiment, number 3, with a vari-
ance matrix I'; much greater than the other I;. By contrast, the efficient
REML estimator has a score involving the information matrices I ! and is
hence predominantly influenced by the accurate experiments with low error
variance I, i # 3.

6.1. Marginal inefficiency and conditional bias. For normally distributed
observations y; for which the variance matrices A + I; are known, at least to
the point of having correct relative weights, there is no point in considering
other estimators than the least squares estimator, because this is the unbiased
minimum variance estimator. Furthermore, since it is sufficient, it has no
nontrivial ancillary statistics.

When A has to be estimated and consequently the least squares estimator is
not known exactly, it is then useful to compare one estimator such as a
weighted mean, with estimated weights (I, + A)~! with another estimator
such as an average ¥, by expressing the weighted mean as the simple average
plus multiples of differences of the observations y; — y; which are ancillary to
the estimation of the mean. Inference concerning the mean should be condi-
tional on the differences because they are ancillary. In the conditional dis-

0.5

0.4

Bias of &b,

0.0

T T T T
0.0 0.1 0.2 0.3 0.4 0.5
Bias of ¢/j3

Fic. 9. Absolute value of conditional biases from a simulation of 1000.
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tribution, the differences are constants with no variance. Consequently, all
marginally unbiased weighted means have the same conditional variances
irrespective of their weights, and this must be the minimum variance
(ZPHHA + T))" Y ! of the least squares estimator.

Of such conditionally minimum variance estimators, however, only the least
squares estimator is conditionally unbiased. The conditional bias of any other
estimator is its difference from the least squares estimator, and in fact the
marginal expected mean square conditional bias of an estimator equals the
increase of its marginal variance over the variance of the least squares
estimator.

For data with unknown variances, these considerations are of no use, but in
simulations for which a variance matrix has been set, the least squares
estimates and hence the conditional biases can be computed and used to
illustrate what effect inefficiency of an estimator, having a marginal variance
above the least squares estimator, produces in conditional bias. Figure 9 shows
the biases of a certain contrast a'y, of §. plotted against those of the same
contrast of . The contrast will be explained in the next section.

7. Simulation. Since the data in Section 2 has highly significant differ-
ences between experiments y2; = 913, a random effects model is required.
Attempts to avoid it have been shown to lead to serious anomalies.

For the least favourable case p = 1 the mathematical theory developed in
Sections 4-6 shows, at least for n = 1,2, that REML will achieve lower error
variance than the average for small A, and only negligibly larger variance for
large A. One would expect the same to hold for the more favourable cases of
p > 1. To confirm this we turn to simulation.

An approximation to the error variance matrix of the moment estimator
B(™ can be found as the mean square sum and product matrix XY (™™ /N
of moment estimates B{™ of the zero vector B = 0, obtained from a large
number N of samples generated by random numbers. The REML estimator
could also be simulated. It tended to agree with the moment estimator relative
to the average, but being iterative, was too slow for large scale simulation.

At A = A, N = 600,000 simulations were done. The coefficient of variation
of the variance should be y2/N X 100% = 0.18%. Two variance matrices
V,,V, can be compared by taking the eigenvalues of V; 'V,. The simulated
variance matrices of the average and least squares estimators were compared
with their theoretical values (A + T')/6 and (£(A + T,)~1)~%. In each case the
eigenvalues came out close to one, the average discrepancies being about
0.25%, a figure comparable with 0.18%.

The variances are given in Table 3.

From component parts of the simulation, we have noticed some correlation
in the simulated variances. Hence it may be slightly more accurate to make
comparisons with the moment estimator between simulated values even when
theoretical values are available for the error variance matrices of the least
squares estimator and the average.
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TaBLE 3
Variances of estimators X 100

Theoretical least squares 0.1672 0.1709 0.4942 2.5988 0.3040

Average 0.1777 0.1817 0.5089 2.6778 0.3241

Simulated least squares 0.1677 0.1714 0.4945 2.6057 0.3050

Moment 0.1734 0.1776 0.5031 2.6498 0.3151

Average 0.1784 0.1825 0.5097 2.6871 0.3254
TABLE 4

Eigenvalues measuring efficiencies and relative efficiencies

var(b,)~! var(B™) 0.869 0.965 0.985 1.000 0.999
var(B™) ! var(B) 0.853 0.950 0.980 0.998 0.999
var(b,)~ ! var(§) 0.741 0.916 0.965 0.997 0.999

One sees that the variances of the averages are about 2—-3% higher than for
the moment estimator which in turn is about the same amount higher than
for the least squares estimator.

The variance matrices, var(b.) and var((™) can be compared by the eigen-
values of the inverse of the first times the second, because if a is an eigenvec-
tor corresponding to the eigenvalue A, that is, var(b )a = var(™)aA, then
A = (a’ var(B™)a)/(a’ var(b )a) is the ratio of the_variances of the estimates
of the contrast a'@, that is, the efficiency of a'b, relative to a'B™. The
absolute efficiencies are found by eigenvalues relative to the least squares
estimator B as in Table 3.

One sees that all the eigenvalues are close to 1 except for the first, which
has as an eigenvector for var(b)~! var(B(™), the contrast

a=[08 -0.19 0.13 -0.10 0.51]

The first eigenvectors of the second and third matrices are practically identical
with a, having cosines of angles with it greater than 0.998 relative to the inner
product given by the least squares variance matrix _var(fi). The closeness of the
first eigenvectors show why the efficiency 0.74 of b, is practically equal to its
efficiency 0.87 relative to B times the efficiency 0.85 of B (relative to B).

As explained in subsection 6.2, the inefficiencies of B™ and b, show up in
their conditional biases which for the contrasts, a ™ and a’b. are plotted in
Figure 9 for a simulation of N = 1000.

8. Discussion. For small sample random effects, the notion that the large
sampling error of the estimated random effects variance matrix, A must
produce much larger sampling error var(B) in the empirically weighted mean f
than the error var(b.) of the average b, is contradicted in the special case of
two samples, p = 1 and n = 1 and 2 dimensions. Our mathematical theory of
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Sections 4 and 5 shows that var(B) can be considerably less than var(b,) for
small A, and is barely greater for large A.

Since p = 1 is the most unfavourable case in which A has maximum error,
it strongly indicates that var(f) will compare even more favourably with
var(b,) when p > 1, The range anomaly of NPD or OLS, illustrated in Section
3, and its correction by inclusion of A in the weights, supplied heuristic
evidence of this. Furthermore, near the end of Section 3, it was pointed out
that it is the difference d not A, which is the direct cause of range anomaly,
and the fact that A is a function of d is the reason why the inclusion of A in
weights rectifies the range anomaly. Such arguments also apply for more than
two samples.

Namely, if in some direction, A seriously underestimates A, leaving the
weighted mean subject to highly different variance matrices, A+T, and
A+ I, then this is because the differences b, — b; are small in that dlrectlon
that 1s the b, in that direction are close together and hence errors in the
weights in that direction will have little effect on the weighted mean.

If A is singular, then the components of the differences b, — b ; ; in its null
space tend to be small. Hence the empirically weighted mean is little affected
by part of A being missing from its estimator A.

If on the other hand, A overestimates A, then the weights will become more
equal than they should thereby pushing f towards the conservative average b.
This also explains why, when A is zero or negligible but one cannot be sure of
this, there can be considerable loss of accuracy in incorporating A in the
weights. In spite of this, the use of A is still to be recommended because if A
were appreciable, the omission of A would lead to a high error which would
appear as a conditional bias.

To put the matter to the test for more than two random samples p > 1,
however, in Section 5 we simulated the situation of the practical example in
Section 2. Although the standard errors of the moment estimator b‘™ are
barely less than those of the average b, one of the five canonical components
has an efficiency for b, of only 87% of that for b, The effect of this in the
simulated conditional biases of the corresponding contrasts a’f™ and a'b, are
shown in Figure 9.

The simulations are also valuable for producing standard errors for the
moment estimators which allow for the error of A”™. We believe that in this
case, they will be close to the standard errors of the REML estimator, f.

Even if one can assure oneself that whatever the value of A, the weighted
mean compares favourably with the sample average, their estimated errors are
only on low degrees of freedom p.

The integration and simulation prove the validity of empirically matrix
weighted means in the cases to which they apply, and they indicate this is
generally so, though when A is clearly large relative to T, the method 2 of
simple averages will work just as well.

9. Conclusions. Estimated weights can always be used in unbalanced
small random effects models.
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There is never any appreciable loss of accuracy compared with a simple
average, but there can be a considerable gain if the random effects are small.

The NPD or OLS of method 1 should not be used unless one has definite
prior knowledge that there are no random effects.

Simulation can be used to find the error variance of a moment estimator of
a mean.
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