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ORTHOGEODESIC MODELS

By O. E. BARNDORFF-NIELSEN AND P. BL&SILD

Aarhus University

A variety of exponential models with affine dual foliations have been
noted to possess certain rather similar statistical properties. To give a
precise meaning to what has been conceived as ‘“similar,” we here propose
a set of five conditions, of a differential geometric/statistical nature, that
specify the class of what we term orthogeodesic models. It is discussed how
these conditions capture the properties in question, and it is shown that
some important nonexponential models turn out to satisfy the conditions,
too. The conditions imply, in particular, a higher-order asymptotic indepen-
dence result. A complete characterization of the structure of exponential
orthogeodesic models is derived.

1. Introduction. Some composite transformation models have properties
similar to certain of the properties of exponential models with affine dual
foliations. The properties in question are of a geometrical nature. The present
paper represents an attempt to give a unified delineation of those properties, in
differential geometric terms. More specifically, we define, by purely differential
geometric conditions, a class of parametric statistical models which we call
orthogeodesic models and which comprises the exponential models with affine
dual foliations as well as all the composite transformation models that we had
noted for their similarity with such exponential models. Except for general
smoothness assumptions, we use five conditions to define an orthogeodesic
model. These are stated in Section 3, which also contains a number of
examples. Section 4 consists of a discussion of the implications of the four
defining conditions; in particular, it contains a result on higher-order asymp-
totic independence. In Section 5 we study what further properties can be
inferred if the model is assumed to be exponential. Section 2 reviews some
basic concepts from statistical differential geometry and establishes the nota-
tion used throughout the paper.

2. Preliminaries. In this section we introduce some notation and review
those concepts from the theory of statistical manifolds [as described, for
instance, in Lauritzen (1987)] which are needed throughout the rest of the
paper.

We consider a statistical model .#, that is, a set of probability measures, on
a sample space 2" and assume that .# is a d-dimensional differentiable
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manifold. For simplicity of exposition we suppose, moreover, that .# may be
covered by a single chart or, equivalently, that .#= {P,: w € O}, where Q is
an open subset of R? and where the mapping ¢ taking » into P, is smooth
and one-to-one; this assumption is not essential and our theoretical results
hold without it. The set Q is the parameter space and we use suffixes
r,s,t,... to denote generic components of the parameter w = (0, ..., ®%).
Furthermore, we assume that .# is dominated by some o-finite measure u
and we let p denote the model function, that is,

' dP,
p(x;0) = —(x), x € X, w€E N,
du

which is assumed to be positive. _

We let 4, or simply d, denote the coordinate frame d/dw” at w, and for an
arbitrary real-valued function f defined on Q we write f,, =9, f(), f,,, =
9,9, f(w), and so on. Thus, in particular, /, and [, are the two first
derivatives of the log-likelihood function

{w) =l(w;x) =log p(x;w).

With a slight abuse of notation we later on let d,,, or simply d, denote the
element in T,,.#, the tangent space to .# at m = P, given by

d
dw”

0. f= —F(e(w))
for any smooth real-valued function f defined in a neighborhood U,, C .#
of m.

We impose the standard conditions that E{l,} =0 and EJfl [, }=
E{-1,}, where E, indicates mean value under the probability measure P,,
and that the expected (or Fisher) information matrix i(w) = {i,(w)} is positive
definite, and we use {i"*(w)} to denote the inverse i ~!(w). Under these assump-
tions .# is a Riemannian manifold, the metric on .# being the expected
information metric which in the local coordinates  is given by i(w).

Any affine connection V on the tangent bundle T.# may be characterized in
the local coordinate system w by the upper Christoffel symbols T},, the relation
being
(2.1) Vas(?t =TI/4,,
or, equivalently, using the expected information metric, by the lower
Christoffel symbols given by '

(22) 1—‘stu = 1—‘srtiru

In (2.1) and (2.2) summation over repeated indices is assumed, that is, here, as
throughout the paper, we adopt the Einstein summation convention.

If 6 is an alternative set of local coordinates for which generic components
are indicated by the letters p, o, 7. .., the upper Christoffel symbols satisfy the
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transformation law
(2.3) Iy, = {T£,69,07, + 05, }o7,.

Here and later on we suppress notationally the dependence of a quantity on a
particular coordinate system since the indices indicate the dependence.

We now review the definition of the expected a-connections on .# intro-
duced by Chentsov (1972) and Amari (1980, 1982); see also Amari (1985,
1987). The expected 0-connection % is the Riemannian connection or the
Levi-Civita connection, given by the lower Christoffel symbols

0

(24) l-‘rst = %{irt/s + ist/r - irs/t}’
and for a € R the expected a-connection V is defined by
o 0 a
(25) l—‘rst = l-‘rst - —2_Trst’
where T, is the expected skewness tensor, that is,
(26) Trst =E {l/rl/sl/t}
For later use note that, as seen from (2.5) and (2.6),
0 1
(27) Trst = 2(Frst - Iﬂrst)
and
(2.8) r,=(1- a)rm +al,,
The a-Riemannian curvature tensor R has components
(2 9) OL rstu Rvstiuw
where Rﬁs, is determined by

%a,%asat - %as%a,a Rrst‘9
The manifold .# is said to be a-flat if R =0.If # is aflat there gxists a
coordinate system in which the Christoffel symbols of the connection V are all

0 The parameter « of the model .# is said to be a-affine if I‘ =0 (or

l"’ = 0). The 1-connection V is often referred to as the exponential connection
due to the fact that the canonical parameter of an exponential model is 1-affine
(cf. Sections 3 and 5). We also note that the mean value parameter of .# is
— 1-affine. Thus exponential models are +1-flat.

In this paper we are interested in the situation where there exists a
parametrization of .# of the form o = (x, ¢), where y and ¢ are variation
independent. The domains of variation of xy and ¢ are denoted by X and ¥,
respectively, and the variation independence means that ( =X X ¥. The
dimensions of the subparameters x and ¢ are called d, and d,, respectlvely
Furthermore, generic coordinates of y and ¢ are 1nd1cated by x% x% x5 ...
and ', ¢/, ¢, ..., respectively. For fixed y we use .#, to denote the sub-
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model {P, ,: ¢ € ¥} and similarly we let .#, ={P, ,: x € X}. In these
circumstances the tangent space to .# at m = P, ,, is the direct sum of the
tangent spaces to .#, and .#, that is,

T, M=T,H, &T,H,

2.10
(2.10) = span{d,,,} ® span{d,,,}
and
(2.11) V,9, = T2g, + T19,.

The induced (or inherited) a-connection X% on ./Z, is obtained from v by
projection. More specifically, if p, denotes the orthogonal projection on 7.4,

with respect to the expected information metric i, one has
(2.12) VvZ =p,(VyZ)

for any pair of smooth vector fields (Y, Z) in T'.#,. Furthermore, the difference
between V and |V, that is,

(2.13) H(Y,Z2) =VyZ - VyZ

is the a-embedding curvature (or a-shape tensor or Euler-Schouten curva-
ture) of the submanifold .#,. In local coordinates formula (2.13), which is
often referred to as the Gauss formula [cf. Vos (1989)], becomes

(2.14) Xﬁ(aj,ak) = 103%(0,, —p,(3,))-

The a-embedding curvature XI:XI is determined by the components : 7 given
by

(2.15) JH(3;,0,) = H};o,
or, equivalently, by the quantities

(2.16) H, =H,..

J J

The submanifold .#, is said to be a-geodesic if %YZ is a smooth vector field
in T.#, for any pair of smooth vector fields (Y, Z) in T.Z, 0T, equivalently,
because of (2.12) and (2.13), if the a-embedding curvature  H is identically 0.
Furthermore, using (2.11) or (2.14), one has that .Z, is a-geodesic if and only
if
(2.17) e (x,) =0, forall y € V.

The submanifold .#, is called geodesic if .#, is a-geodesic for all « € R.

We conclude this section with some remarks concerning a special case which
is of particular interest in the present paper, namely the case where the sum in
(2.10) is a direct orthogonal sum with respect to the expected information
metric i, that is,

(2.18) ia;(X,¥) = 0.
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In this case we say that the subparameters y and ¢ are expected (or i-)
orthogonal and since p,(d,) = 0 it follows from (2.14) and (2.15) that

(2.19) He =14

and

(2.20) Hi,=0

or, equivalently, using (2.2), (2.16) and (2.18), that
(2.21) ﬁjkb = lq‘jkb

and

(2.22) Hy, = 0.

The formulas for the submanifold .#, analogous to (2.19)-(2.22) are
(2.23) H;, = T,,
(2.24) He =0,

(2.25) fIbcj = lq‘bcj
and
(2.26) H,,,=0.

F(‘xor the a-Riemannian curvature tensor Xloé of the induced connection
v on .Z , one has the Gauss equation [cf. Vos (1989)]

J

(2.27) xBirim = Rjpim + ( H;,,Hy,,—Hy, Hkmb)iab‘

Note finally the convenient fact that if the subparameters y and
are expected orthogonal, then the Christoffel symbols of the a-connection
for the submodel .7, considered as a model on its own, are equal to those
a-Christoffel symbols from the full model whose indices correspond to the
submodel, that is, the a-connection on #, is given by I}ik.

3. Orthogeodesic models: definition and examples.
DerFINITION 3.1. The model .# is said to be orthogeodesic if there exists a

parametrization o = (y, ¢) such that the following conditions are satisfied:

(o) x and ¢ are variation independent.
(i) x and ¢ are expected orthogonal, that is,

ibj = 0.
(ii) The y-part of the information matrix i depends on ¢ only, that is,

ijk(X:‘l’) = ijk(‘p)'
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(iii) For every value of x the submanifold .#, is expected 1-geodesic,
that is,

L a
Jk = 0.
(iv) For every value of x the submanifold .7, is expected 1-flat and ¢ is a
1-affine coordinate, that is,

L
In this case the parametrization (y, ) is said to be ortho-affine.

Definition 3.1 is formulated in terms of local coordinates since this is the
most convenient from an application point of view. However, the concept of an
orthogeodesic model is a geometric concept. To emphasize this, we give in
Definition 3.1 an equivalent formulation of the concept without reference to
local coordinates.

DEeFINITION 3.1. The model .# is orthogeodesic if the following conditions
are satisfied:

(o) # is a product manifold of the form .#= X X ¥, where X and ¥ are
differentiable manifolds.

(iY The factorization of .# is orthogonal with respect to the expected
information metric i on .#Z.

(ii) For every value of y the restriction of the metric i to the submanifold
-#, does not depend on y.

(iiiy For every value of x and for some value a # 0, the submanifold e//X is
expected a-geodesic, that is, the a-embedding curvature  (H vanishes identi-
cally.

(ivY For every value of y the sulbmanifold #, is expected 1-flat, that is,
the Riemannian curvature tensor | R vanishes identically.

The equivalence of the two definitions is established after the proof of
Theorem 4.2 in Section 4 below.

REMARK 3.1. Since a one-dimensional manifold is automatically (1-)flat,
condition (iv) [or (iv)'] is fulfilled if ¢ is one dimensional. In the beginning of
Section 4 we show that condition (iv) is also redundant if .# is an exponential
model.

ExampLE 3.1. In this example we consider a location-scale model .# on R
with model function of the form

(3.1) p(x;x,0) =07 f((x = x) /o),

with x and y in R and with o > 0. We assume that [ is positive and
symmetric around 0. Furthermore, if g = log f we suppose that g is at least
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twice continuously differentiable and satisfies the conditions
(3.2) &' ) F(y) dy = 1
and
(33)  L=L(f)=[(1+y) fy)dy <=, =25
Since the variation independent subparameters y and o are both one

dimensional, we use in this case the parameters themselves rather than indices
of the parameter components to indicate differentiation, and so on. Setting

y=(x—-x)/o,
the log-likelihood function and its first derivatives become
(x,0) = —logo +g(y),
l/x = _U'_Ig’(y)
and
(34) L= -0 Y(1+y8'(y)).

The conditions stated previously ensure that E, ,{l/, .} =0 and that
ix s, 0)=E .l 4} =E, {—1, 4.} [In fact, (3.2) is just a special
case of E, .l .} = 0.] Noticing that /, and [, are, respectively, odd and
even as functions of y, it follows that

X

(3.5) ive = Eguoll /il /o) = 0
and

(3.6) Toox = B ol sol sol 11} = 0.
Furthermore, using (3.3) and (3.4), we get that

(3.7) i, =02,

Consequently, as seen from (3.5) and (3.7), the parametrization (y, o) satisfies
conditions (i) and (ii) in Definition 3.1.
Using (2.4), (3.5) and (3.7), we obtain

0

Loy =0,
which together with (2.5) and (3.6) imply that

1

L, =0
and using (8.5) we find that

11:;\/0 =0,

that is, the submanifold .#Z, is expected 1-geodesic.
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The formulas (2.4) and (3.7) imply that
0

(38) F(rmr = %iaa/a = _0-_312
and from (2.6), (3.3) and (3.4) it follows that
(3.9) T —=—0%,.

Using (2.5), (3.8) and (3.9), we obtain
1
Looy = =07%[1, = 315]

agoo

from which we may conclude that the submanifold .#, is expected 1-flat with
o as l-affine coordinate if and only if 21, = I; which is generally not the case.
Since the submanifold .#, is one dimensional, it follows from Remark 3.1 that
#, is expected 1-flat. Consequently, if 21, # I; it is possible to find an
alternative 1-affine parametrization of .#,.

For the cases where I, # 0 and I; # 0, we now demonstrate that replacing

the subparameter o by ¢, given by

(3.10) Y(o) =o'/,
where
(3.11) c=2L(f)/I5(f),

that is, a quantity depending on the model, we obtain a parametrization (y, ¢)
which is ortho-affine. Because of the facts stated previously it suffices to show
that

1

(3.12) Ly =0.
Since o(y) = ¢ one has ¢,, = cy°~' and formulas (3.7) and (3.9) imply that

i(/u// = ia'a'(o-/l//)2 = ¢_202[2
and

T¢¢¢ = Taaa(o'/.p)3 = _¢_30313

from which we find, using (2.4) and (2.5), that

1 .

Lysw = 3tuusw = 3Tppu

= g2y 3( =21, + cly),

and formula (8.12) follows from (3.11).

If f denotes the probability density function of the standard normal distri-
bution, that is,

T2
- 2
ey/,

fly) = 2n

it is easily seen that I, = 2 and I; = —8. From (3.10) and (3.11) we find that
the location-scale model (3.1) with normal errors is orthogeodesic with ortho-
affine parameter (y, o~ 2).
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As a final illustration suppose that f is the probability density function of
the ¢ distribution with »(> 0) degrees of freedom, that is,

1
1+
»/53(1/2,1/2;/)( v
where B denotes the beta function. From formula 8.380.3 in Gradshteyn and
Ryzhik (1965) it follows that
-B
y¥dy =v**V2B(a + 1/2,8 — (a + 1/2))

(3.13) f(y) =

)

9\ ~w+1)/2
; )

2

3.14) [ (1 + %—

for « > —1/2 and B > a + 1/2. Using (3.14), one finds after some calcula-
tions that

2v
v+ 3

I,=

and
I -8v(v — 1)
8 v+ 5B)(v+3)’

Consequently, unless » = 1, which corresponds to the Cauchy distribution,
the location-scale model based on the distribution (38.13) is orthogeodesic with
ortho-affine parameter (y, o'/¢), where

—(v + 5)
C2v—1)

The location-scale model corresponding to the Cauchy distribution is easily

seen to be orthogeodesic with ortho-affine parameter (y, log o).

Finally, note that the results for the normal location-scale model may be
obtained as limiting cases of those for the ¢ distribution by letting v — .

The rest of the examples we will consider here are concerned with exponen-
tial models. The model function (w.r.t. some dominating measure) for such a
model .7 is of the form

(3.15) exp{0°t,(x) — k(0) — @(x)}.
We assume that the order of .# is d and, as indicated in (3.15), we use the
letters p,o,... to denote generic coordinates of the canonical parameter

6 = (6%, ...,0% and of the canonical statistic #(x) = (¢,(x),..., ¢,(x)). Further-
more, in the terminology of Barndorff-Nielsen (1988), we suppose that .# is a
core exponential model, that is, the parameter domain of .# equals int 0, the
interior of thé canonical parameter domain ® of the full exponential model
generated by .#, and that the full model is steep. The mean value mapping
defined on int ® is denoted by 7, that is, 7= (7,...,75) = (E,¢},...,
E{t;}) = E,{t}, and we let .= r(int O). ’
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In Section 5 we prove a theorem characterizing the structure of exponential
orthogeodesic models and using this theorem it is easily established, as shown
in Section 5, that the models in Examples 3.2 and 3.3 are indeed orthogeodesic.

ExamMPLE 3.2 (7-parallel models and #-parallel models). These two types of
models were introduced and studied in Barndorff-Nielsen and Blzesild (1983a,
b). In both cases a partition (6;), 6, of the canonical parameter 6 is consid-
ered, the dimensions of 6, and 6, being denoted by d ;, and d,, respec-
tively. Letting (7Y, 7®) denote a similar partition of the mean value 7, it is
shown in Barndorff-Nielsen and Bleesild (1983a) that the components of the
mixed parameter (r(",6,)) are variation independent and similarly for the
other mixed parameter (6, 7®). These mixed parameters play for the two
model types the role of the parameter (y, ) in Definition 3.1. Consequently,
we use the letters a,b,c,... and ¢, j, k,... to denote generic coordinates of,
respectively, the first and second components in the mixed parameters. With
@ we denote the domain of variation of 7 and for fixed 7" € I® we
let 77q) denote the set of 7 values whose first component is 7,, that is,
Tow =A{r: 1@ = 7{P}. In a similar way we define @, and (int 0y,

An exponential model .# possessing a r-parallel foliation or briefly a
T-parallel model is orthogeodesic with the mixed parameter (r", §,) being
ortho-affine and the model (3.15) is 7-parallel if and only if 6,(r", §5)) is of
the form

(3.16) 03)(7(1)’0(2)) = —0ht(1D) + k(D)
or, equivalently, if and only if 7®(7, ) is of the form
(3.17) (70, 0)) = Hy(7®) + m,(6,)

for certain (vector) functions 4, k, H and m. The quantity 4 in (3.16) is
obtainable from H in (3.17) by differentiation, that is, A%(r®) = dH,/dr<V.
Thus for a r-parallel model the foliation of 7~ with parallel leaves {7,
™ e D} corresponds to a foliation of int ® into affine subspaces. The
subclass of 7-parallel models for which £ = 0 and the statistic #(x) is of the
form (x, H(x)) possesses some particularly nice properties. If x,,...,x, is a
sample from such a model and if ¥ =n ' (x; + -+ +x,), it is shown in
Barndorff-Nielsen and Blzsild (1983a) that the components 7 and §,, of the
maximum likelihood estimator of the mixed parameter (v, f,)) are stochasti-
cally independent, that is, 7 16, or, equivalently, that x 1(H — H(x)),
where H = n"Y(H(x,) + - -+ + H(x,)). Furthermore, one has that the distri-
bution of x is given by (3.15) with 6 replaced by n6.If d = 2 and d, = 1it is
proved in Bleesild and Jensen (1985) that the only such models are those
corresponding to the normal distribution, the gamma distribution and the
inverse Gaussian distribution, the function H(x) being x2, logx and x~ 1,
respectively. However, as explained in Barndorff-Nielsen and Bleesild (1988)
these models may be combined according to a certain scheme to give models of
the kind in question for higher-dimensional variates.
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As a side remark, note that for the normal distribution with mean y and
variance o? the mixed parameter (7", 6,) corresponding to the canonical
statistic (x, x2) is (x, —1/202) in agreement with the results in Example 3.1.

The 0-parallel models are orthogeodesic with the mixed parameter (6, 7®)
being ortho-affine and the model (3.15) is 6-parallel if and only if 7(6,,, 7®)
is of the form

(3.18) 7800y, @) = —7PhI(81)) + ka(81))
or, equivalently, if and only if 6,6y, 7®) is of the form
(3.19) %)(0(1), T(z)) = H/(64)) + mi(+®),

where hi(6,)) = dH’(6;))/868,. Hence for a 6-parallel model the foliation of
int ® with parallel leaves {(int ©), : 6, € int O} corresponds to a foliation of
" into affine subspaces.

The existence of a 6-parallel foliation is equivalent to the existence of a
proper cut in .# and thus this concept is intimately related to the kind of
likelihood independence known as S-ancillarity and S-sufficiency. [For details,
see Barndorff-Nielsen (1978) and Barndorff-Nielsen and Bleesild (1983a).]

ExamPLE 3.3. Suppose that the exponential model (3.15) is also a transfor-
mation model, that is, there exists a group G acting on the sample space 2~
and gP € .# for every P € .# and every g € G. Here gP denotes the measure
P lifted by the transformation corresponding to g, that is, (gP) A) = P(g~'A)
for every measurable set A.

Assuming that the model function (3.15) is w.r.t. some invariant measure
on &, the group G induces, as discussed in Barndorff-Nielsen, Bleesild, Jensen
and Jgrgensen (1982), an affine action on 7 as well as on int ®. More
specifically, considering ¢ and 6 as, respectively, a column vector and a row
vector, there exist matrices A(g), column vectors B(g) and row vectors D(g)
such that the mappings from G into GA(d), the general affine group, given by,
respectively,

(3.20) g~ [A(g), B(g)]
and

(3.21) g~ [C(g),D(g)],
where ‘

(3.22) C(g) =A(g) ' =A(g™)

are both representations of G. The affine actions on J and int ® are given by,
respectively,

GX 9> T,

(3.23) (g.t) > gt = A(g)t + B(g)
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and
G X int® — int O,

(g,0) > g6 =0C(g) +D(g).
Furthermore, the model function (3.15) may be rewritten as

(8.25) p(x;g0) = exp{(g0)t(x) — [a(0) + 8(g) + (g0) B(&)] — o(x)}

[ef. Barndorff-Nielsen, Bleesild, Jensen and Jgrgensen (1982)].

Here we consider composite transformation models, that is, models for
which the action (3.24) is not transitive. We assume that .# has constant orbit
type or, equivalently, that there exist a subset ¥ of int ® and a subgroup K of
G such that

(3.26) G,={gcGlgy=y} =K, Vyevy,

(3.24)

that is, the isotropy group at ¢ is K for all ¢ € ¥. Furthermore, we suppose
that .# has affine orbit representation, that is, the set ¥ of orbit representa-
tives is the intersection of int ® and an affine subspace. Without loss of
generality we may assume that V¥ is of the form

v = {¢eint®lz/1= (J/,O),er\if}

for some open subset ¢ of R% and from now on we identify the sets ¥ and ¥.
Letting gK denote the left coset {gk: &k € K}, it follows, using (3.24) and
(3.26), that the equation

(3.27) 0=y¢C(g) +D(g)

establishes a one-to-one correspondence between 0 and (gK, ¢). Finally, as-
suming that the set of left cosets {gK: g € G} may be parametrized by a
parameter y varying in an open subset X of R%, where d =d—d,, onehas
that y and ¢ are variation independent and, furthermore, that

(3.28) 0°(x,¥) = ¢/CP(x) + D*(x)

as seen from (3.27). Without loss of generality we suppose that 0 € X and that
0 corresponds to the coset eK, where e denotes the identity element in G.
Inserting (3.28) in (3.25), it follows that

(3.29) p(x;x,9) = exp{(47CP(x) + D?(x))t,(x) — k(x,¥) — @(%)},
where

(3.30) k(x,¥) = a(y) + v(x) + ¢/Cf(x) B,(x)

and
(3.31) y(x) =8(x) + D?(x)B,(x)-

The identity
E(t} = E,{st}
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implies that

(3.32) T(x,¥) = A(x)7(0,¢) + B(x).

Let (61, 65) be a partition of 6 such that 6, is d,-dimensional and let
(r™,7®) be a similar partition of 7. Since C2(0) = 52 = (A%(0)), B,(0) = 0 and
D?(0) = 0, it follows from (3.28) that 6,/(0,¢) = ¢ and, in addition, from
(8.29) and (3.30) that

(3.33) T(0,¢) = a ()
and
(3.34) dim aff{z®(0, ¢): y € ¥} = d,,.

By Theorem 4.2 in Section 4 below, for an orthogeodesic model the subman-
ifold .#, is geodesic and thus in particular — 1-geodesic. A necessary condition
for the model (3.29) to be orthogeodesic with (x, ¢) as ortho-affine parameter
is therefore that 7 = {r(x, ¥): ¢ € ¥} is an affine subspace of J” of dimension
d, or, consequently, using (3.34), that 7®(0, ¢) is a constant, which without
loss of generality may be assumed to be 0. With this condition it follows from
(3.32) and (3.33) that

(3.35) T, ¥) = a,;($) Al(x) + B,(x)-

The formulas (3.28), (3.35) and (3.30) are identical to the formulas (5.7)-(5.9)
in Theorem 5.1 of Section 5 below and formula (3.22) implies (5.2). Thus a
transformation model possessing a dual affine foliation given by (3.28) and
(3.35) is orthogeodesic if and only if the conditions (5.3)-(5.6) are fulfilled.

In most of the examples of such models, the leaves of the foliation
are contained in linear rather than affine subspaces, that is, B,(x)=0=
D?(x). For such models it is shown in Barndorff-Nielsen, Bleesild, Jensen and
Jgrgensen (1982) that

(3.36) 5(x) = 0.

From (3.24) it follows that y(y) = 0 and so the conditions (5.4)-(5.6) are
fulfilled, that is, the property of orthogeodesicity is equivalent to condition
(5.3) for such models.

ExampLE 3.4. Suppose the exponential model (3.15) may be written in the
form
(3.37) exp{UR,(x; x) — a(¥) — o(x))},

‘

where y and ¢ are variation independent and where
(3.38) Rj(x;x) = ri(x) +sf(x)t,(x).
From (3.37) it follows that

(3.39) Lya=¥'R;,0(x;x),

(3.40) l,;=—a,(¥) +R;(x;x)
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and

l/aj = Rj/a(x;X)'

Thus the parameters y and ¢ are expected orthogonal if and only if
(3.41) E, »(R; o(x;x)} = 0.

If  is one dimensional Barndorff-Nielsen and Jgrgensen (1991) refer to the
model (3.37) as a proper exponential dispersion model and in that case (3.41)
follows from (3.39) and the condition E, ,fI .} = 0. If dimaff ¥ =d, > 1,
formula (3.41) is equivalent, as seen from (3.39), to the condition that
E, 4{R;, .(x; x)} depends on x only.

Formula (3.40) implies that

ijk(X,‘/’) = a/jk(‘f’),
that is, condition (ii) of Definition 3.1 is fulfilled. It follows from (3.15), (3.37)
and (3.38) that
0°(x,¥) = ¥’s?(x)
and, consequently, that
(3.42) 6%, = 0.

Using (2.3), (3.42) and the fact that .# is 1-flat in 6, one finds that Il‘fk = 0.

Thus, in conclusion, the model (3.37) is orthogeodesic with (x, ) as ortho-
affine parameter if and only if the condition (3.41) is fulfilled and this is the
case for a proper exponential dispersion model.

Finally, note that for an exponential transformation model with a dual
linear foliation, that is, a transformation model of the kind considered in
Example 3.3 for which B,(x) = 0 = D*(x), the model function is of the form
(3.37) with

rj(X) =0
and
sf(x) = Cf(x),
as seen from (3.29)-(3.31) and (8.36). In this case one has, using (3.35), that
E(X:'//){Rj/a(x; X)} = ij/a(X)Tp(X7 ‘ﬁ)
= Jp/a(X)Ai:(X)Ti(O, ¥)

and since dim aff{r®(0, y): ¢ € ¥} = d, it follows that the conditions (3.41)
and (5.3) are equivalent. ‘

4. Orthogeodesic models: properties. In this section we discuss vari-
ous implications of the five conditions in Definition 3.1.

Some implications of condition (i) have already been considered at the end of
Section 2. Recall that cc&ndition (i) implies that the Christoffel symbols for the
induced a-connection ,V on the submanifold .#, and the components of the
a-embedding curvature , H are both equal to those Christoffel symbols of
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the a-connection V from the full model .# whose indices are those correspond-
ing to the submodel. Furthermore, one has the following result.

LEMMA 4b1' Under condition (i) the Christoffel symbols of the Riemannian
connection V corresponding to the expected information i are given by

0
(4.1) Tpeq = %{ibd/c +ica/p — lpesals
0 0
(4.2) Dive = —Tyer, = %ibc/k’
0 0
(4.3) chk = _ijc = %ijk/c,
0
(4.4) Do =i + ihiyj = Lin i)
and
IQ& = Otub’:aLb’
(4.5) o. o .
Ftlu = Ftujiu'

Proor. Condition (i) implies that i, , =0 and the formulas (4.1)~(4.4)
follow immediately from (2.4). The formulas (4.5) are obtained from (2.2) by
noticing that for the expected formation i ™! = {i"*} one has i% = 0. O

The implications of the orthogonality of the subparameters y and ¢ con-
cerning the induced connections and the embedding curvatures related to the
0-connection may be summarized as follows.

0
COROLLARB( 4.1. Under condition () the Chroisto/fel symbols ,T' of the
connection \V on .#, induced by the 0-connection V are

0 0 0. o
(4.6) Xijl = ijz, erk =1k
and the components of the 0-embedding curvature of A, are
0 0 )
(4.7) ijc = ijc = _chk = _%ljk/c'

Similar formulas hold for the submanifold My,

Proor. Formula (4.7) is a consequence of (2.21) and (4.3), and (4.6) is a
special case of the first remark in this section. O

THEOREM 4.1.  Suppose condition (i) is fulfilled. Then the following condi-
tions are equivalent:

(iia) For every value of x the submanifold #, is 0-geodesic (with respect
toi). 0
(iib) I}, = 0 or, equivalently, I, = 0.
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Note that conditions (ii) and (iia) are concerned with the metric and the
embedding curvature, which are geometric quantities often referred to as the
first and second fundamental forms, respectively, whereas condition (iib) is
expressed in terms of local coordinates and is important from the application
point of view.

Proor. The equivalences follow easily from Lemma 4.1 and formula (4.7).
O

Condition (ii) is equivalent to the condition stating that {.Z} . x is a
collection of isometric manifolds, the isometry between .#, and .#,, being the
map (x, ¥) = (x, ¥). Thus under (ii) one has, in particular, that a curve in .#,
of the form q(¢) = (x, y(t)), t € [0, 7], where y is a curve in ¥, has a length
L., which does not depend on x, and the submanifolds {.#,}, . y are parallel
in the sense that L, = L, . for all values of x and x’ and for all curves y in
¥. Conversely, it is easily seen that if the submanifolds {.#,}, . y are parallel,
then condition (ii) is fulfilled.

THEOREM 4.2. Suppose that conditions (i) and (ii) are satisfied. Then the
following conditions are equivalent:

(iii) The submanifolds .#, are 1-geodesic for every x € X.
(iiia) The submanifolds e,l are 0Lgeodeszc for every y € X.
(iiib) F =0 or, equwalently, % =0 forall « €R.

(iiic) T = 0.

Proor. According to Lauritzen (1987), Proposition 3.12, a submanifold is
geodesic if and only if it is «;-geodesic, i = 1,2, for some a,, a, € R with
a; # ay. By Theorem 4.1, .#, is 0-geodesic and, consequently, the equivalence
of (iii) and (iiia) is established. The rest of the theorem follows from the
formulas (2.7) and (2.17). O

PROOF OF THE EQUIVALENCE OF DEFINITIONS 3.1 aND 3.1". Con(litions (0)-({v)
clearly imply (o)-(iiY. Furthermore, (i), (iii) and (iv) imply that I}, = 9 and it
followls, using (2.21) and the remark at the end of Section 2, that H;, = 0
and , I}, = 0. Conditions (iii) and (iv) are now consequences of Theorem 4.2
and formula (2.9) (for , R), respectively:

Suppose conversely that (o)-(iv) are fulﬁlled These conditions clearly
imply (0)-(ii). Let x be a fixed value in X Since R = 0 we may choose a local
coordinate system ¢ on ¥ such that T,,(x, (//) = 0 from which (iv) follows.
According to (iii), one has H, ke =0 for some a # 0 or, equivalently, by
(2.21), T}, = 0. Since (i) and (11)’ [or (ii)] implies that I, = 0, it follows from
(2.8) that T, = 0 which, because of (i), is equivalent to (iii). O
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COROLLARY 4.2. Under ordinary repeated sampling from an orthogeodesic
model with (x, ) as ortho-affine parameter, not only are the score components
l,, and l ,; asymptotically independent to error 0(n~12) [as follows immedi-
ately from condition (i)] but we have the stronger result that to order O(n~1)
the score component 1 ,, is asymptotically independent of

(4.8) l/] - %T}Gbiacibd(l/cl/d - icd)‘

Proor. This follows from a general result concerning asymptotic indepen-
dence, given in Barndorff-Nielsen and Bleesild (1992). O

ExaMpPLE 4.1. As discussed in Example 3.1, the univariate normal distribu-
tion N(u, 02) determines an orthogeodesic model, the ortho-affine coordinates
being x = u, ¢ = 0~ 2. The score components [ su and I, -2 are orthogonal
but, unlike /i and ¢2, not independent. However, in this case (4.8) turns out to
be not only asymptotically independent of ,, to order O(n~") but in fact
independent of / .

It might be guessed that a similar complete independence result would hold
for the inverse Gaussian distribution, but that is not the case.

For details, see Barndorff-Nielsen and Bleesild (1992).

5. Exponential orthogeodesic models. Throughout this section we
consider a d-dimensional exponential model .# with model function of the
form

(5.1) exp{optp(x) - k(0) — qo(x)}.

We assume that the exponential model is steep [in the terminology of
Barndorft-Nielsen (1978)] and let ® denote the canonical parameter domain.
As in (5.1) we use the letters p, o, ... to indicate arbitrary components of the
canonical parameter 6 as well as of the canonical statistic ¢, and we restrict the
parameter domain of .# to int ®, the interior of ®. The mean value mapping
defined on int ® will, as previously, be denoted by 7, that is, 7,(8) = E,{z,}.

For an exponential model we first note that condition (iv) in Definition 3.1,
or, equivalently, condition (iv) in Definition 3.1, is redundant. An exponential
model is 1-flat (in the canonical parameter) so R = 0. Thus if the submalnifold
#, is 1-geodesic [conditions (iii) and (iii)'], that is, if the components Hj,, of
the 1-embedd1ing curvature of .# all vanish, it follows from (2.27) (with
a =1 that R =0.

With the notation introduced previously we have the following theorem
concerning the structure of an exponential orthogeodesic model.

THEOREM 5.1. Let w = (x,¢) be a parametrization of the exponential
model (5.1) such that x and  are variation independent. Then the model (5.1)
is orthogeodesic with o as ortho-affine parameter if and only if there exist
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scalars a(y) and y(x), vectors B Ax) and D*(x) and matrices A’ '(x) and
C?(x) satisfying the conditions

(5.2) AL(X)CP(x) = 5‘:,

(5.3) AL(X)Cla(x) =

(5.4) . AL (X)D2u(x) =

(5.5) B,,(X)Cf(x) =0

and

(5.6) ¥/(X) = B,(X) D%l ),
such that

(5.7) 0°(x,¥) = ¢'Cf(x) + D*(x),
(5.8) (X, ¥) = a,;(¥) A)(x) + B,(x)
and

(5.9) k(x,¥) = a(¥) + ¢'CP(x)B,(x) + v(x).

ProoF. Suppose that the model (5.1) is orthogeodesic with » as ortho-
affine parameter. Then (iii) and (iv) in Definition 8.1 imply that

1 1

0= T = {267,607 + 07,4},
§ince an exponential model is 1-flat in the canonical parameter 6, that is,
I, =0, it follows that

0 = 07 jkw‘;a

or, equivalently, that

0=07,,07),07s = 07,05 = 07
from which we obtain that there exist a vector D*(x) and a matrix Cf(x) such

that (5.7) is fulfilled.
Inserting 6%, = 0 into

K/jk = K/p0a07i070 + K07 51,
we find, using (ii) in Definition (3.1), that
K/jk = K/ps07;07%
= 1p0(0)67,67)
=iu(x,¥)
= i(¥).
Consequently, there exists a scalar a(y) satisfying

(5.11) a, () = 1(4),

(5.10)



1036 O. E. BARNDORFF-NIELSEN AND P. BLAESILD

and a scalar y and a vector 8, both depending on y only such that

(5.12) k(x,¥) = a(¥) + ¥'B(x) +v(x).

Formula (5.7) implies that 6, = C#(x) so from the calculations in (5.10)
one gets

(5.13) Lip(¥) =1,.(0)CH(X)CF (X)-
Let A’(x) denote the matrix
(5.14) AL(x) =i,,(0)CT(x)i**(¥)

and observe, using (5.13), that
A (X)CP(X) = i,(0)CT(x)i™($)CP(x)
= ijk(‘/f)iik(lﬁ)
= 3;1,
which is (5.2). Applying the formulas (5.11) and (5.14), we find that
Tosk = Tos0072
= Tp/a'Clg(X)
= ipa(a)Cia(X)iij(‘ﬁ)ijk(‘/f)
= a () AJ(X)
and it follows that there exists a vector B,(x) such that (5.8) is fulfilled.
It remains to prove (5.3)-(5.6) and (5.9). Inserting (5.7) and (5.12) into (5.1)
the log-likelihood function becomes
(5.15) 1(x,¥) = —a(¥) —¥'Bi(x) — v(x) + (¥°Cf(x) + D*(x))t,(x)-

From (5.15) it is easily seen that the conditions
EO{_l/aj} = iaj = 0,

Eo{l/a} =0
and

Ee{l/j} =0
imply
(5.16) Bisa(X) = CLalx) (X, ¥),
(5.17) Y,a(X) = D5a(X)7,(x, ¥)
and
(5.18) a,;(¢) + B;i(x) = CL(xX)T(x, ¥).

Differentiating (5.18) with respect to x°, one obtains, using (5.16), that
(5.19) Cr(x)(X>¥) /a = 0.
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Inserting (5.8) into (5.16) and (5.17), respectively, we find

(5.20) Bisa(X) = Cra(x)(@,(¥) AL(x) + B,(x))

and

(5.21) Y/a(X) = Do(x)(a,:($) AL(x) + B,(x)).

Hence, using that y and ¢ are variation independent, one has for Yo #* ¢ that
(5.22) 0= Cf/a(X)Ai)(X)(a/i(‘/’) - a/,-(([/o))

and

(5.23) 0 =D2(x)A,(x) (@, (¥) = a,i(¥)).

From (5.2) it is seen that the rank of the matrix Ai,( x) is d, the dimension of
the subparameter ¢, and hence it follows from (5.8) that there exist $ioes g,
such that {a ,(y,) —a,(yp): k=1,..., d,} is a set of linearly independent
vectors. The formulas (5.22) and (5.23) now imply that (5.3) and (5.4) are
fulfilled and formula (5.6) follows from (5.4) and (5.21).

From (5.2), (5.3) and (5.20) we find that

(5.24) Cr(x) A} /a(x) =0
and
(5.25) Bjsa(x) = Cfu(x)B,(x).

Formulas (5.8), (5.19) and (5.24) now imply (5.5). Using (5.5) and (5.25), it
follows that there exists a constant %; such that

Bi(x) = Cf(x)B,(x) +k;.
Rewriting (5.12), we get
k(x,¥) = a(P) + ¢ (Cr(x)B,(x) + k;) + ¥(x)
= (a(¥) + ¥'k;) + ¢'CP(x) B,(x) + v(x)
=a(y) +¢'Cr(x)B,(x) + v(x),

which is (5.9) and the proof of the necessity of the conditions (5.2)-(5.9) is
complete.

Conversely, suppose that the conditions (5.2)~(5.9) are fulfilled. Using (5.1),
(5.7) and (5.9), the log-likelihood function becomes

L, ¥) = —a(¥) = ¢'CL(xX)B,(x) = v(x) + (¥'CP(x) + D?(x))t,(x)

and, using (5.2)-(5.6) and (5.8), it is easily seen that E,{I sad =0=Ejl, }.
Furthermore, one has

Li(X,¥) = Eo{~1 )}
= (CJP(X)BP(X))/b - ij/b(X)Tp(X’ ‘l’)
and, using (5.3), (5.5) and (5.8), it is easily established that i 5, (x> ¥) = 0, that
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is, that condition (i) in Definition 3.1 is fulfilled. Condition (ii) is a consequence
of the fact that [ ,;, = —a ,;,(¢). Finally, from (5.7) it follows that

07 =0

and since the model is 1-flat in @ this implies that conditions (iii) and (iv) in
Definition 3.1 are fulfilled because

1 1
k= {Ffvo'/’ﬂ;k + "Z‘k}"’?p
= 0. O

CoroLLARY 5.1. If the model (5.1) is orthogeodesic, then the quantity
P(x; x) with components

Pi(x;x) = CP(x)(t,(x) — B,(x))
has Laplace transform

(5.26) E,{exp({'P,)} = exp(a(y + ¢) — a(¥)).

Consequently, the distribution of P depends on i only, that is, P is a pivot
provided ¢ is known.

Proor. Using (5.7) and (5.9), the density (5.1) may be rewritten as
exp{—a(¢) = ¢'CL(x) B,(x) = v(x) + ($'CP(x) + D*(x))t,(x)}
= exp{—a(¥) = y(x) + D*(x)t,(x) + ¥'P(x; X))
from which (5.26) follows. O

In conclusion it may be noted that, denoting the mean value of P = {P,} by
7 = {m;}, we have, as may be shown by means of the results of this section,
that for exponential models, as considered here, conditions (iii) and (iv) of

-1
Definition 3.1 are jointly equivalent to T'}; (x,7) = 0.
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