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1. Introduction.

BIAS-ROBUST ESTIMATES OF REGRESSION BASED
ON PROJECTIONS!

By RicaArRDO A. MARONNA AND VICTOR J. YOHAI

University of La Plata and C.I1.C.P.B.A, and University of San Andrés,

University of Buenos Aires and CONICET

A new class of bias-robust estimates of multiple regression is intro-
duced. If y and x are two real random variables, let T'(y, x) be a univariate
robust estimate of regression of y on x through the origin. The regression
estimate T(y, x) of a random variable y on a random vector x = (x,...,x,)
is defined as the vector t € P which minimizes SUP|\|=1 | T(y —
t'x, Xx)|s(Nx), where s is a robust estimate of scale. These estimates,
which are called projection estimates, are regression, affine and scale
equivariant. When the univariate regression estimate is T(y, x) =
median(y/x), the resulting projection estimate is highly bias-robust. In
fact, we find an upper bound for its maximum bias in a contamination
neighborhood, which is approximately twice the minimum possible value of
this maximum bias for any regression and affine equivariant estimate. The
maximum bias of this estimate in a contamination neighborhood compares
favorably with those of Rousseeuw’s least median squares estimate and of
the most bias-robust GM-estimate. A modification of this projection esti-
mate, whose maximum bias for a multivariate normal with mass-point
contamination is very close to the minimax bound, is also given. Projection
estimates are shown to have a rate of consistency of n!/2. A computational
version of these estimates, based on subsampling, is given. A simulation
study shows that its small sample properties compare very favorably to
those of other robust regression estimates.

totic bias:

1.

The local approach which studies the bias caused by a small fraction & of
contamination. This approach is based on the concept of influence curve
introduced by Hampel (1974), which gives a linear approximation which is
valid for infinitesimal ¢, to the bias due to contamination.
. The global approach which takes into account the bias caused by both small
and large values of ¢. One important measure of global robustness is the
breakdown point introduced by Hampel (1971). In recent years several
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An important measure of the robustness of an estima-
tor is its maximum bias in a contamination neighborhood of a central model.
Two different approaches have been used to deal with the maximum asymp-
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proposals of high breakdown estimates for regression have been made. We
can cite among others: the least median of squares (LMS-estimate)
[Rousseeuw (1984)], the least trimmed squares (LTS) [Rousseeuw (1984)],
MM-estimates [Yohai (1987)] and tau-estimates [Yohai and Zamar (1988)].

Both the influence function and the breakdown point may be insufficient to
adequately describe the bias. It is more reliable to directly deal with the bias
under contamination, summarizing it through the maximum asymptotic bias
for fractions of contamination smaller than the breakdown point. In this
setting it seems natural to search for estimates which minimize the maximum
asymptotic bias in an e-contamination neighborhood (minimax-bias estimates).
Several authors have studied the robustness problem by using a minimax-bias
approach. Huber (1964) has shown that the median is the minimax-bias
estimate for location in the class of shift equivariant estimators. Martin and
Zamar (1989) have found minimax-bias estimators for scale in the class of
M-estimates. Riedel (1991) has shown the existence of minimax-bias equivari-
ant estimates for general models with a parameter space endowed with a group
structure. Donoho and Liu (1988) have shown that minimum distance esti-
mates are highly bias-robust for some parametric and semiparametric models.

Martin, Yohai and Zamar (1989) have found minimax-bias estimators for
two different classes of regression estimates: M-estimates with general scale
and GM-estimates. In particular, they show that for p = 1 and no intercept,
the median of the slopes, which is the minimax GM-estimate, is also minimax
in the class of all regression- and affine-equivariant estimates.

In this article we introduce a new class of regression estimators which are
highly bias-robust. They are based on (univariate) regressions of the response
variable with respect to all one-dimensional projections of the carriers; and will
be called projection estimators (or P-estimators for short).

These estimates have simultaneously good local and global robustness
properties, since they possess both bounded influence and high breakdown
point. Numerical computations of the asymptotic bias and Monte Carlo estima-
tions of the MSE under contamination for finite sample sizes, show that
P-estimates compare favorably with other robust estimates.

In Section 2 we define the target model and give formal definitions of the
robustness concepts used in the paper. In Section 3 we define P-estimators and
prove their robustness properties. We also find a lower bound for the maxi-
mum bias of any equivariant estimate, and prove that there exists a P-estimate
whose maximum bias is approximately twice this bound. In Section 4 we give a
new estimate which is obtained by modifying a P-estimate. The maximum
asymptotic bias of this estimate is computed numerically for a multivariate
normal central model with mass-point contamination, and shown to be very
close to the minimax bound obtained in Section 3. In Section 5 we give a
computable version of the P-estimates and deal with its finite-sample break-
down point. In Section 6 we prove that these estimators have a rate of
consistency n!/2 and we give a further result on minimax bias. In Section 7 we
compare the P-estimates with the LMS- and the minimax GM-estimates by
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computing the asymptotic maximum biases and by Monte Carlo simulation.
The Appendix contains some proofs.

2. Target model and robustness definitions. We assume the target
model is the linear model

(2.1) Yy =ayX + u,
where ' denotes transpose, x = (xy,...,x,) is a random vector in R? with
distribution G, ay = (@yg,...,a,,) is the vector of the true regression pa-

rameters, and the error u is a random variable with distribution F,, indepen-
dent of x. We shall call H, the joint distribution of (y, x) under this model, so
that

X1 Xp
(22) Hy(y,x) = [ oo+ [ "Fo(y - as) dGo(s).
Let T be an R? valued functional defined on the set of distributions H on
MRP*L Then, given a sample z; = (y,x,),...,2, = (¥,,X,), we define the
corresponding estimate of a, as T, = T(H,), where H, is the empirical
distribution of the sample. This estimate is Fisher consistent if T(H,) = «,.

As a general notation, if g and A are any functions defined respectively on
RP*1 and RP, then £(H, g(y,x), h(x)) will denote the joint distribution of
g(y,x) and h(x) when (y, x) have joint distribution H. The H will be dropped
when this causes no confusion.

An estimate T is regression, affine and scale equivariant, respectively,
if T(L(y + x't,x) = T(L(y,x) +t for all t € R?, T(A(y, Rx)) =
R "'T(A(y,x)) for all nonsingular p X p matrices R, and T(.Z(by,x)) =
bT(.A(y,x)) for all b € R.

In order to study the robustness of an estimate, we consider the &-con-
tamination neighborhood of H,,

Y, = {H: H= (1 —¢)H, + ¢H,, H, any distribution}.

Let V(G) be an affine-equivariant scatter matrix, that is, for each distribu-
tion G on R?, V(@) is a symmetric, nonnegative definite p X p-matrix satisfy-
ing

V(Z(Rx)) = RV(.Z(x))R'.
The bias of T, at H € 7;; , is defined by

(23) (T, H) = [(T(H) — ap)V(Go) {(T(H) - ap)]””.

Therefore if T is regression and affine equivariant, the bias will be regression
and affine invariant.

When T is an estimate of univariate regression through the origin, the bias
is defined by '

(2.4) b(T,H) =|T(H) — ay|.
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The robustness of an estimate can be measured by the maximum bias of T
for H € 7 ., that is, by
(2.5) B(T, Hy,¢) = sup{b(T, H):He VHO,E}.

Since we are going to deal only with affine equivariant estimates, we will
henceforth assume, without loss of generality, that V(G,) = I.

Given a class of regression and affine equivariant estimates .7, a minimax
bias estimate for the target model H, is an estimate T* € .7 satisfying

T, H = inf B(T,H .
B( B 0’8) Tnelyﬁ( ’ 098)
Another robustness measure related to B(T, H,, ¢) is the asymptotic break-
down point introduced by Hampel (1971). It is defined here by
e*(T, Hy) = inf{e: B(T, Hy, ) = =},

which gives the smallest fraction of outliers which make the estimate un-
bounded.
As a measure of the bias for “infinitesimal” values of &, we shall use

ad
vy*(T, Hy) = EB(T’ Hy,¢) Y

In sufficiently regular cases y* coincides with Hampel’s (1974) definition of
gross error sensitivity.

3. Regression estimates based on projections.

3.1. Definition of projection estimates. Let T be an estimating functional
of univariate regression through the origin, which is regression, scale and
affine equivariant. Then, for any pair (y, x) of random variables

b
(3.1) T(Z(b(y + tx),ax)) =;(T(,/(y,x)) +t).
Let s be a scale estimating functional, so that for any random variable z

(3.2) s(-Z(az)) = lals(-£(2)).

The type 1 projection estimate (P1l-estimate) of multiple regression associ-
ated with T and s is defined as follows. Let H be the distribution of (y, x),
where y € R and x € R?. For a, A € R?, define

(3.3) A(a, ) =|T(/(y7a'x, Xx))[s(-£(Nx))
and
(3.4) C(a) = sup A(a,Rr),

IAll=1

where || || denotes Euclidean norm. The Pl-estimate T is defined by
(3.5) C(T(H)) = min C(a).
acsRP
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The heuristic motivation for the P1-estimates is simple. If (y, x) satisfies the
linear model (2.1), then y — a/yx = u is independent of the projection Nx for
all A. Therefore if T is Fisher-consistent as an estimate of univariate regres-
sion, then T(.Z(y — a{x,XXx)) = 0 for all A and therefore C(a,) = 0. When
the distribution H does not correspond to a perfect linear model, as will be the
case for example with the empirical distributions, the equation C(«) = 0 does
not have in general a solution. Therefore the estimate is defined by minimizing
C. The normalizing factor s(.#(Nx)) is necessary to guarantee the equivari-
ance of the estimate.

The type 2 projection estimates (P2-estimates) replace the scale estimate s
by a scatter matrix estimate S of x. Let S be a scatter matrix estimating
functional on R? which is affine equivariant. The P2-estimate is defined
similarly to the P1l-estimate, but replacing (3.3) by

(3.6) A(a,N) =|T(Z(y - a'x,Xx))|(NS(Z£(x))N) "2

Then the P2-estimate is defined by (3.6), (3.4) and (3.5). The P1- and P2-esti-
mates will generically be called P-estimates.

The idea of considering all the projections of the data was first proposed
independently by Stahel (1981) and Donoho (1982) in the context of multivari-
ate analysis.

REMARK 3.1. Because of the equivariance of T, s and S, we can take the
supremum over A € RP, A # 0, in (3.4), without the restriction ||A]| = 1.

REMARK 3.2. If the univariate regression estimate is the least squares (LS)
estimator, then it is immediate that the corresponding P-estimates coincide
with the LS-estimate.

Theorem 3.1 states the equivariance of P-estimates.

THEOREM 3.1. The P1- and P2-estimators are regression, affine and scale
equivariant.

The proof is straightforward and may be found in Maronna and Yohai
(1989).

Another property of the P-estimates is Fisher-consistency. Suppose that the
univariate regression estimate T is Fisher-consistent for the error distribution
F,, that is, if (y, x) have joint distribution Hy(y, x) = Fy(y)G(x), where G,
does not assign probability 1 to 0, then T'(H,) = 0. Then, Theorem 3.2 states
that the P-estimates are also Fisher-consistent.

THEOREM 3.2. Suppose that the univariate regression estimate T is Fisher-
consistent for the error distribution F, and that -£(y,x) = H, given by (2.2).

(a) If s(.Z(Xx)) > 0 for all A + 0, then the Pl-estimate defined by (3.3),
(3.4) and (3.5) is Fisher-consistent, that is, T(H,) = a,.
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(b) If S(G,) is positive definite, then the P2-estimate defined by (3.6), (3.4)
and (3.5) is also Fisher-consistent.

The proof is straightforward and may be found in Maronna and Yohai
(1989).

3.2. Robustness properties of projection estimates. Given a scale estimat-
ing functional s and a distribution G, on R?, define

d*(s,Gg,8) = sup {sups(-£(G,Xx)):G e 7 .},

lIAll=1

d (s,Gy,¢) = ”iﬁifl {infs(.,/(G,Xx)): Ge 7/00,5}-

If S is a scatter estimating functional on :? and G, a distribution function
on NP, define

d*(S,Gy,¢) = sup{s,(S(G)): G € 7, .},
d~(8,Gq,¢) = inf{8,(S(G)): G € 7.},

where 6,(S(G)) < --- < 6,(S(G)) are the eigenvalues of S(G). The following
theorem gives an upper bound for the maximum bias B(T, H,, ¢) of P-esti-
mates.

THEOREM 3.3. Let (y,x) have distribution H, given by (2.2). Assume that
the univariate regression estimate T is Fisher-consistent for H,. Let T be a P1-
(P2-)estimate, based on T with scale s (scatter matrix S). Then

d*(Go,¢)
Y T (Ge) )

where d *(G, e) means d*(s,G,¢) for Pl-estimates and d *(S, Gy, ¢) for
P2-estimates, and L, = .2 (H,, y, NX) when a, = 0.

B(T, Hy,¢) < sup(B(T, L,,¢): lIxll = 1}

Proor. We will prove the theorem only for Pl-estimates, the proof for
P2-estimates being completely similar.

Because of the regression equivariance of the univariate regression estimate
T, and of the Pl-estimate T, we can suppose that a, = 0.

Let H € 7y ., and put a = T(H). We have to prove that

d+(GO’ €) )
d—(GO’ 8) ‘

For any A € R? with |[All=1, we have |T(£(y,Nx))| <B(T, L,,¢), and
hence

(3.8) . C(0) < sup{B(T, Ly,&): IAll = 1}d* (G, ¢).

Take any « € R”, a # 0 and put A = a/||lall. Then, the regression equivariance

(3.7) lell < sup{B(T, L,,&): I\l = 1}(1 +
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of T implies

(3.9) T(#(y - «x,Xx)) = T(£(y,Xx)) — lal.
If
(3.10) lell < sup{B(T, Ly, e): Al = 1},

then (8.7) holds. Suppose that (3.10) does not hold, then from (3.9) we get
sup{|T(-£(y — «x,Xx)) |: Nl = 1} > [lell — sup{B(T, L,,¢): I\l = 1},

and then C(a) > (lall — sup{B(T, L,, &): Al = 1Dd~(G,, ¢). Using (3.8) and
(3.5) we get (3.7). O

The following theorem shows that, roughly speaking, if the univariate
estimate and the scale (or scatter) estimates have high breakdown point, so
has the P-estimate.

THEOREM 3.4. Let H be the distribution of (y,x) and G the distribution of
x and let T be a P1-, (P2-)estimate corresponding to an univariate regression
estimate T. Let € > 0 be such that sup{B(T, L,, ¢): I\l = 1} < =, and assume
that the scale s (scatter matrix S) satisfies d* (G, &) < © and d~(G, &) > 0.
Then *(T,H) > ¢.

The proof may be found in Maronna and Yohai (1989). A finite sample
breakdown point result is proved in Section 5.

3.3. The median of slopes as univariate regression estimate. We will study
in particular the P-estimates obtained when the univariate regression estimate
is given by

(3.11) Ty(H) = medianH[(%)

x#O].

Martin, Yohai and Zamar (1989) proved that if p =1 and F, has a
symmetric and unimodal density, then this estimate is minimax in the class of
all regression equivariant estimates. They also proved that in this case

3.12 Ty, Hy, &) =|J " ;
( ) B( 0 08) ’ (2(_3))’
where o is the distribution function of y/x under «, = 0.
The P1- or P2-estimates based on the univariate regression estimate T

given in (3.11) will be called median projection estimates (MP-estimates). For
a and A € R?, and a distribution function H on R?*! define

y—a'x
Nx

(3.13) I aa(t) = PH( < t‘):x * 0),
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and
(3.14) INE) = Pry apa(t)s

where H, is given by (2.2).
From Theorem 3.3 and (3.12) we get the following upper bound for the
maximum bias of an MP-estimate T, when _#(y,x) = H, given by (2.2),

a1 d* (G, )
- (2(1—e>) (” d-(Go,e>)‘

The following theorem gives a lower bound for B(T, H, ¢) for any estimate
T which is (i) regression and affine equivariant, and (i) Fisher-consistent.

(3.15) B(T,,Hy,e) < sup
[IAll=1

THEOREM 3.5. Assume that (y,x) has distribution H, given by (2.2), where
F, has a density f(w) which is symmetric and decreasing in |u|. Let T be any
estimate satisfying (i) and (ii) as above, then

o
(3.16) B(T, Hy, ) > H)sxllllfl Jx (2(1 —¢) )

Proor. Since T is regression and affine equivariant we can assume that
a, = 0. Since V(G,) =1 is invariant for orthogonal transformations it is

enough to show that
1
-1
g (2(1—e))”

where e; = (1,0,...,0).

The proof of (3.17) follows very closely the one given by Huber (1981) to
prove that the median is the minimax-bias estimate for location, and therefore
we omit details. Let ¢ = J_ (1/(2(1 — ¢)). In order to make the proof easier

we will assume that G, has a density g,, but this assumption is not necessary.
Then H, has density h, = fo(y)g,(x). Consider the following density of (y,x)

(1 —¢)fo(y)8o(x), if (y/x;) <q,
(1 —¢) foly — 2gx1) 8o(x), if(y/x1) >gq.

It is easy to prove that A* is a density function, and that the corresponding
distribution H'e 7} .. Let H~ be the distribution corresponding to
(y — 2¢x,,x), when (y,x) has distribution H™. Then, it may be proved that
also H™€ 7y .. Let T; be the first coordinate of T; then the regression equi-
variance of T yields T,(H") — T(H ™) = 2q and thus B(T, Hy,¢) > q. O

(3.17) B(T, Hy, €) >

h*(y,x) = {

Suppose that the scale s or the scatter matrix S used to define the
P-estimates is weakly continuous as it happens with robust estimates. Then

3.18 li 4(Go, e)
(3.18) e50 d(Gore)
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and hence for small ¢ the upper bound given in (3.15) will be approximately
twice the lower bound obtained in Theorem 3.5. A similar result was proved by
Donoho and Liu (1988) for minimum distance estimates. In fact they prove
that for some parametric and semiparametric models, the maximum bias of
these estimates is not larger than twice the minimax value.

Suppose that (3.18) holds, and that T, is an MP-estimate. Then, differenti-
ating (3.15) we get an upper bound for the value of y*:

o 1 )
(3.19) (Ty, Hy) < 23 ”i'lﬁpl Jy (2(1 ]Il
In the case that (y, x) is N(0, I), we have
(3.20) Jy(t) = —11_’-_arctan(t) + %,
which implies,
(3.21) J-l(——-l——) =tan(L)

21 -e) 2(1-¢))’

and therefore (3.19) and (3.21) yield
(3.22) y*(T,, Hy) < .

It turns out, as we will see in Theorem 4.1, that in the case that G, is
elliptical, this bound is equal to y*.

In Table 1, see subsection 7.1, we give the values of y* for the MP-esti-
mates (it is the same for the two versions P1 and P2) and for the minimax-bias
GM-estimate MGM when (y, x) is N(0, I). We observe that the MP-estimates
have smaller y* than the MGM-estimate for p > 6. In Section 4 we will derive
an estimate which has smaller y* than Tg,, for all p.

4. A modified P-estimate. In this section we define new estimates by
applying a correction to the MP-estimates defined in subsection 3.3, Let T, be
an MP-estimate and define A = A(H) € R as a vector such that [[A]| = 1 and

(4.1) C(To(H)) = A(To(H), ).

Then A may be considered as the direction “most correlated” with the
residuals y — T,(H) x.

The new estimate T; modifies T, precisely in the direction A by eliminating
its correlation with the residuals. It is defined by

(4.2) T(H) =Ty(H) + To(j(y - Ty(H), ')\\’x))A

Then To(.#(y — T,(H),Xx)) = 0, and _we may consider that the “correlation”
between the residuals y — T,(H) and X is 0. We shall call T, corrected median
projection estimate (CMP-estimate).

It seems difficult to compute the exact value of the maximum bias 8 for
MP- and CMP-estimates. To gain insight into the comparative behavior of
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these two estimates we start by computing 8 under the following simplifica-
tions.

(i) Only point mass contaminating distributions are considered. Hence the
maximum bias is defined by

B*(T,Hy,¢) = sup{b(T,H): H= (1 —-¢)H, + €5, ,,y € R, x € R?}.
Yy, X

(ii) The distribution G, of x is spherical. In this case the scale normalizing
factor in (3.3) and (3.6) is constant and can be omitted.

The MP-estimate T, and the CMP-estimate T, defined by omitting the scale
factor in A(a, A) will be henceforth referred to as the “nonaffine equivariant
versions.”’

When G, is spherical, J, given by (3.14) is the same for all |[A|| = 1. This
common distribution will be denoted by J*. Applying Theorem 3.5 to this case
yields for any regression and affine equivariant estimate T

(43) B(T’ H’S) ZKO,E’
where

4.4 Ky, =dJd*! _1
() 0,e — 2(1—8) .

On the other hand, for the nonaffine equivariant version of the MP-estimate
T,, the inequality (3.15) becomes

(4.5) B(Ty, Hy,e) < 2K, ,.

Theorem 4.1 shows that (4.5) is an equality, and that the lower bound (4.3)
is attained by the nonaffine equivariant version of the CMP-estimate T,.

THEOREM 4.1. Let H be given by (2.2), where F, has a density f,(y) which
is symmetric and decreasing in y for y > 0, and G spherical. Let T, and T,
the nonaffine equivariant versions of the MP- and the CMP-estimates, respec-
tively. Then:

(a) B*(To, Ho, E) = 2K0,e‘
(b) (T, Hyre) = Ko -

This theorem is proved in the Appendix.

Despite the fact that Theorem 4.1 refers to the nonaffine equivariant
versions of MP- and CMP-estimates, it suggests what the behavior of the
actual (affine equivariant) estimates may be. In Section 7.1 we present numeri-
cal computations of *(T;, H,, ¢), i = 0, 1, for the actual estimates when H,, is
the multivariate normal distribution.
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5. Computing algorithm.

5.1. Approximate P-estimates. Since the numerical calculation of P-esti-
mators for finite samples seems extremely complicated because of the two
extrema involved, we have tried an approximate method which is based on a
subsampling scheme similar to the one used by Rousseeuw (1984) to compute
the LMS-estimate, and which would yield an estimator which behaves simi-
larly to the P-estimate.

Let {(x;,y;), i = 1,...,n} be a sample of size n, D, C R? be a set (depend-
ing on the sample) of possible values of the estimator, and for each « € D,, let
Di(a)  {\ € RP: |I\|| = 1} be a set of possible projection directions. Define for
Pl-estimators s,(A) = s(.£(G,, Xx)) and for P2-estimates s,(\) =
(NS(G,)N)'2, where G, is the empirical distribution of the x,’s. Let

t,(a,\) =T(L(H,,y — «'x,NX)),

A, (a, M) = [t,(a, Mls, (M), Cy@) = max, ¢ px,, A,(a, N).
Finally define the approximate P-estimate by

(5.1) T, = argmin C,(a).

a€D,

The approximate MP-estimates T, are defined by (5.1) using for univariate
regression the estimate T, given by (3.11).
_ Similarly the approximate CMP-estimates are defined by finding a direction
A, € D} maximizing A,(A,T,,) and defining

(52) Tnl = TnO + tn(xn’TnO)xn

It is clear that when D, = R? and Dy = S, the estimates given by (5.1) are
the P-estimates defined in Section 3.
We propose to take for « € D,

(5.3) D}(a) = (A= (a* — a)/la* — al: a* € D,, a* # a}.

The rationale for this choice is that, if model (2.1) holds and «, is the true
parameter, then for each a, the direction A such that y — «’'x has the highest
correlation with a'x is A = (g — @)/llay — all. It is easy to show that if the
set D, is regression, affine and scale equivariant and D}(a) is given by (5.3),
the estimates defined by (5.1) are regression, affine and scale equivariant too.

For our computer approximations, D, will be the finite equivariant set
obtained as follows. Generate N subsamples of size p from the sample. For
the kth subsample (2 = 1,..., N) fit a hyperplane (y = &/, x) containing the p
points. Then D, = {a;,: k = 1,..., N}. The sets D*(«) are defined by (5.3).

Actually, not all N(N -1) values of A,(a;,\;) need to be computed For a
given a;, let C; = min, _ ; C,(«a,), which is a decreasmg function of J. Then if
for some #,

(5.4) An(aj_'_l,hh) > C
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we may drop «;,; as a candidate for the minimum, for in this case
(5.5) Coa;,q) > Cj,

and therefore we need not compute A,(e;,,\;) for i > h.

It is easy to show that the expected number of times that (5.5) does not
occur is asymptotically = In N. By conditioning on (5.4), it follows that the
expected waiting time for the first 2 such that (5.4) holds is also =In N.
Then the expected number of times that A(a;,A,) must be computed is
=NInN+(N-InN)nN=2NInN.

Summing up, the algorithm is as follows:

Fork=1,...,Ndo
Generate a random subsample of size p from the sample, and compute
the coefficient vector a, of the hyperplane y = a,x containing the
p points
End do
Let C = o [this is the current minimum of C,(a)]
For k=1,..., N do:
let A = 0 [this is the current minimum of A, ]
For j=1,...,N, j# k dowhile A <C:
Let A = max(A, A (ay,(a;, — a;)/lla;, — a;D}
End do
IfA<C,thenC=Aand T =,
End do

The breakdown behavior of the approximate MP-estimates is studied in
subsection 5.2. As it will be proved there, N may be chosen so as to guarantee
in some sense a high breakdown point with high probability. We think
however that N should be chosen so that the approximate estimator not only
has a high breakdown point, but also keeps the favorable features of the
‘“exact” P-estimator, that is, we want an estimator whose bias under contami-
nation in not only bounded, but as small as possible. Theorem 6.2 shows that
this can be attained at least for large n and N. In our simulation studies we
have chosen N = 200, and as it will be seen in subsection 7.2, the behavior of
the resulting estimator compares favorably with the other estimates consid-
ered there.

The computing time required for the algorithm for n = 50, p =5 and
N = 200 in a PC with the INTEL 80386 (33 MHz) processor and mathematical
co-processor is around 30 seconds. For N = 500, the computing time is around
90 seconds.

5.2. Breakdown point. The finite sample breakdown point was defined by
Donoho and Huber (1983). Let the sample be Z, = {z,,...,z,} € RP*!, with
z, = (x;,y;). Let Z, , be any contaminated sample of size n obtained by
replacing m observations of the original sample Z, by arbitrary outliers. Call
2 the set all these Z, ,’s.
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The regression estimator T, defined for samples of size n is said to break
down at Z,, for a given m, if sup |[T,(Z, ,,)ll = », where the supremum is over
allZ, ., € 9 Let m be the minimum m such that T, breaks down. Then the
finite sample breakdown point of T, at Z, is ¢*(T,Z ) =my/n.

Since the computational version of our estlmates contains a randomization,
the resulting value for a fixed sample will be random, and hence we have to
modify our treatment accordingly.

To simplify the exposition we consider the P1 version of the approximate
MP-estimate defined by (5.1) with initial estimator T', given by (3.11) and scale
s(ry,...,r,) = median{|r,[}. The set D, is defined in subsection 5.1 by taking
N random subsamples of size p from the contaminated sample Z,, ,,, and the
sets D¥(a) are defined by (5.3). Since now the set D, is random, we will write
T,o(z, D,) to indicate the dependence of the estimate on this set.

Call w(n, m, p, N) the probability that at least one subsample of size p
is contained in Z,,. Then 7(n, m, p, N) =1 — (1 — )V, where

(")) = o

The following theorem can be interpreted as stating that the approximate
MP-estimate T, ,, where the set D, is defined by using N random subsamples
of size p, does not break down for m <[n/2] — (p — 1) with probability at
least 7w(n, m, p, N). This probability can be taken as close to 1 as desired by
choosing N large enough.

THEOREM 5.1. Let Z, be such that every subset {xij, j=1,...,p} is
linearly independent. Let m < [n/2] — (p — 1), where [x] denotes integer part
of x. Then there exists K (depending only on Z,) such that for all Z, , € 2,
IT,o(Z,, ., DIl < K with probability larger than w(n, m, p, N).

Proor. Let Z, ={z,...,z,} and Z,, ={z},...,2}} € Q. Put z, =
(y;,x;) and z¥ = (y}¥,x¥). Let n; = n — m; we may assume that the elements
of Z, ,, are numbered so that z] € Z, for 1 <i < n,. Note that by hypothesis
ny>=n/2+p— 1. To each subset of size p from Z,, there corresponds a
vector a obtained by fitting a hyperplane. Call B the set of all such «’s. To
each subset of N subsamples from Z, ,,, there corresponds a set D,
{a,...,ay) obtained by fitting each subsample. Call 2 the set of all D s
which have a nonvoid intersection with B.

In order to prove the theorem it is enough to show that

(56) sup Sup ”TnO(Zn m> D )” =K <.
zZ, .9 D, 9
For a given D, € 9 and A€ R?, let I, = {i < n;: Nx,; # 0}, ny(A) = #I,
and p,(N) = n; — ny(A). Since every set of p x,’s is linearly independent, we
have p,(N) < p. Call, respectively, g,(a, ) and ¢,(a, A) the (p — p,(N)) and
the (n; — p + 1) smallest values of (y;, — &'x,)/(XNx,), i € I,. By hypothesis
p<n/2<n,—p+1, and this implies that ¢,(a,A) € [g,(\, @), ¢;(A, a)].
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Since q, and q, are continuous functions of A we have that for any a,
sup=1/9:(e, M| < », i = 1,2, and therefore since the set B is finite

(5.7) sup (e, N)| =ty < .
Zn,meg): acsG, IAll=1

At the same time, it follows from the fact that n, > n/2 that s,(A\) =
median{[Nx¥|,..., INx%|} < max,_;_, IIx;ll = sq < ». This and (5.7) imply that

(5.8) min C,(a) < Cy, VZ,,<2.VD, €9,
acD,

where C, = t,s,.

We shall now prove that there exists K such that
(5.9) inf Cy(a)>C, VZ,,b€Q2VD,c9,

aeD,, lal>K ’

where C, is defined below (5.8).

Given A € R with [[All =1, call [Xx|, the pth smallest value of INx,],
1 < i < n. Since this is a continuous function of A which is positive for A # 0,
we have inf, _; INx|,) =6 > 0, and hence s,(A) >3 for all |IA|=1 and
Zn m

Given any D, € 2, let @ and a* be two different elements of D,,
with o* € B; then A = (a* — a)/|la* — all € D¥(a). Put r = |l — a*||. Then
a=a* —r\, and hence ¢,(a, )= median{(y} — o'x})/Nx}: Nx} # 0} =
t(a*,N) + r > |lall — v, where v =sup,«cg, n=1090(N, @®)| + lle*|). Then
(5.9) holds if K = v + C,/é. Finally (5.8), (5.9) and (5.1) imply (5.6). O

6. Asymptotic theory.

6.1. Rate of convergence. To show that P estimators have a rate of
convergence of n'/2, three previous technical results are needed.

Given a closed set A in a Euclidean space, define L*(A) as the set of all
bounded and measurable real functions on A metrized with the supremum
norm. Let . = {A € R ||A]l = 1). Let H be adistribution on 9 letz,,...,z,
be i.i.d. random vectors in ¢ with distribution H, and call H, the respective
empirical distribution. Define for y € ., the process U,(y) = n'/*(Py (y'z <
0) — Py(y'z < 0)). Then it is proved in Proposition 1 of Section 4 of Beran and
Millar (1986), that U, converges weakly as a random element of L*(#) to a
Gaussian process. Define now, for y; and vy, in %7, with (y;,v,) in 4, the
process

V.(v1:v2) = nl/z(PHn('y’lz < 0,452 <0) — Py(v12 < 0,v5z < O))

Then, using exactly the same method of proof of Beran and Millar, the
following lemma may be proved.

LEMMA 6.1. V, converges weakly as random elements of L™(#,,) to a
Gaussian process.
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Let now H, be the distribution on R7*! given by (2.2). To simplify the
proofs, it will be assumed in this section that Py (Nx = 0) = 0 for all A € /.
Let (y1,%x7),...,(,,Xx,) be iid. random vectors in %P+ with distribution
H,, and let H be the corresponding empirical distribution. Define the pro-
cesses

Wn(‘x’A’t) = \/;l_(JHn,u,)\(t) - JHo,a,h(t))’

where Jy ,, , is defined in (3.13). Then we have the following lemma.

LEmMMA 6.2. The sequence of empirical processes W, converges weakly as
random elements of L"(RP X ./, X R) to a Gaussian process.

Proor. Note that
P((y —a'x)/Nx<t) =P(y —a'x —tNx <0, Nx > 0)
+P(y —a'x —tXx > 0, Nx < 0).
Put g =p + 1, H = H, and z = (y,x). Then the first term above is dealt with

by applying Lemma 6.1 with v; = (1, —a — t)\)/a and y, = —a/a, where
a =1+ lla+ A2 + |lall®)!/2. The second term is dealt with likewise. O

LemMMA 6.3. Suppose H, = F,G as in (2.2). Assume also that:

(i) F, has a continuous and bounded density f,.
(i) Eglxl) < .

Recall the definitions (3.13) and (3.14). Then

(@ Jyu) exists for all A € #, and u €(0,1), and is differentiable in u
with a continuous derivative.

(b) For each c there exist constants vy, vy, and vy5 (depending on c) such
that if llell <y, and 18] < y,, then for all A€ 4, Jy ,\t)<c+38 im-
plies t < JyHe) + yylllell + 16D, and Iy o (&) =c — 8 mehes t>dJile) -
ya(llell + 181).

Proor. We begin by calculating the partial derivatives dJy , \(¢)/d¢ and
0y, o, \(t)/da. Conditioning on x yields

P (y_“,x t‘ ) Fy(o'x + ENx)I(Nx > 0)
- <tx| = o'x + INX ‘X >
(6.1) ol Xx °

+(1 - Fy(a'x + tNX))I(Xx < 0).
Hence given ¢ € R, the mean value theorem implies
Tty a(t') = g an(t) = E[(I(Xx > 0) = E(Xx < 0)) fo(n)Xx(¢ - )],

where 7 is such that |n — tNx — o&'x| < |(# — t)Nx|. Hence the dominated
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convergence theorem implies

a']HO, a, )t(t)

(6.2) -

= E[ fo(tNx)INx]],
which, by the assumption that Pg (Nx = 0) = 0, is everywhere positive and
continuous.

In particular for a = 0, all assertions in (a) follow immediately.

Proceeding as in the proof of (6.2), we can show that

aJHO, a, )\( t)
o

= E[ fo(tXx)(I(Xx > 0) — I(Nx < 0))x].

Then (ii) implies that dJy_, \(#)/da is bounded and continuous. Hence there
exists A such that

(63) | Jry,an(t) = Tay 0a(2)| < Allall forall (A, e,t) € /4 x R? x R.
To prove (b), (6.3) implies that Jp , \(#) = Jy_ ¢ \(#) — Allall. Hence
(6.4) JHya,n(f) <c + 8 implies Jy o ,\(2) <c + 8 + Allall.

This implies ¢ < J; (¢ + 8 + Allal) = J; (c) + (Allall + 6)(J5 Y (n), where
In — ¢l < Allall + 8. This proves the first implication in (b). The second one is
proved likewise. O

In the next theorem we prove the n'/? consistency of the MP-estimates T,
and T, as well as of their computational versions defined in Section 5. Let T,
and T, be as defined in (5.1) and (5.2), respectively, with D, an equivariant
set, D) given by (5.3) and the univariate regression estimate 7' given by (3.11).
To s1mp11fy notation define sy(A) as s(.£(G,, Nx)) for Pl-estimators and as
(XS(Gy)M)'/? for P2-estimators.

THEOREM 6.1. Let (y,,Xxy),...,(y,,x,) be i.i.d. (p + 1)-dimensional ran-
dom vectors with distribution H, given by (2.2), where F, is symmetric.
Assume also that:

(i) The assumptions of the Lemma 6.3 are satisfied.
@) 0 < infyc . so(A) < sup,c . so()\) < o,
(iii) plim, sn()\) =5o(A) unzformly in A €./,
(iv) n'?inf, c p lla — all = Op(1).

Then:
(@) nY*T,, — ay) = 0p(1).
(b) nA(T,; — ay) = 0p(D).

Proor. Because of the equivariance of the estimate we can assume «, = 0.
Put U, = n'/2 SUD e ez, tenldH,, o\ (8) = Jp, o A(D)]. Then, Lemma 6.2,
implies that U, = Op(1). By assumption (1v) we can choose a sequence a, € D,
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such that n'/2a, = Op(1). By the definition of ¢, in subsection 5.1,
JIu, a, &N, @,)) = 0.5, and this together with the definition of U,, imply
that 0.5 — U,n™"? < dy ., (¢, a,) <05+ U,n~'/% Hence Lemma
6.3(b) implies that

(6.5) |t,(A,a,)|can be bounded independently of A by Op(n~2U, + lla,,ll),

and therefore (ii) and (iii) imply that n!/2C,(a,) = Op(1).
Put now A, = (e, — T, ) /lla, — T,,ll. Then

JHn,TnO,)\n(tn()‘n’TnO)) = JH,,,an,)‘n(tn(An’TnO)) - ”an - TnO” = 057
which implies
(66) ”an - TnO” = tn(hn’TnO) - tn()‘rw an)'

Since a, = Op(n~1/?), to prove (a) it suffices to show that both terms in the
right-hand side of (6.6) are Op(n~'/2). According to the definition of T,,,
s (AN, T, o) < C,(a,), which was proved to be Op(n~'/2). Since (ii) and
(iii) imply that s, is bounded away from 0, we have ¢,(\,,T,,) = Op(n~?).
The bound on the other terms follows from (6.5).

Assertion (b) follows immediately from (a) and the fact that

n2t,(X,,T,) = Op(1). 0

ReEMaRK 6.1. For P2-estimators (ii) holds if S(G,) is positive definite, and
(iii) holds if S(G,) converges in probability to S(G,). For Pl-estimators, (ii)
and (iii) hold when s(u,...,u,) = median (|u,l,...,l«,]) and P;(Xx) > 0.5
for all A # 0. As to the validity of (iv): If D, is chosen as in the algorithm in
Section 5, namely, the set of hyperplane coefficients which fit subsamples of
size p, then (iv) requires N to be at least of order n”/% which would yield
impractically large numbers. This difficulty can be avoided by including in D,
an estimator known to possess n!/?-consistency at the model H,, as the
LS-estimator, or an M- or GM-estimator.

REMARK 6.2. Maronna and Yohai (1989) give heuristic arguments to show
that n'/*(T,, — «,) has a nonnormal limit distribution.

6.2. Asymptotic bias of approximate MP-estimates. The following theorem
shows that the maximum asymptotic bias of the approximate MP-estimates
T, . is bounded by the right-hand side of (3.15) in a stronger sense that the one
defined in Section 1.

THEOREM 6.2. Let z, = (y;,X),...,2, = (¥,,X,),... be i.i.d. random
vectors with distribution H = (1 — ¢)H, + ¢H,, where H, is given by (2.2),
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with F, symmetric. Assume also the following:

(i) All the assumptions of Lemma 6.3 hold.

(ii) p limsup sup s,(A) <d¥(Gy, &) < .
n—o  AES
(iii) p liminf inf s, (A) >d (Gy,¢) > 0.
now e
(iv) p lim inf{lla — ayll: @ € D,} = 0.
n—o
Then

i ”T ” J—l( 1 )(1+ d"’(G(pS))
imsup||T,q — ayll < sup — .
PRI e m @l = Z0 9 et —o) d~(Go,e)

Proor. By equivariance we assume again a, = 0. Let z* = (y*, x¥) be the
ith element of the sample corresponding to H,, m, the number of such
elements found in the first » observations and ¢, = 1 — (m,/n). Let H;} and
H, be the empirical distributions of {z¥, 1 <i <m,} and {z;, 1 <i <n},
respectively.

By assumption (iv) we can choose a, € D, such that lim, ,,a, =0 in
probability. By definition Jy_ , \(¢,(A,e,)) = 0.5, and this implies

1
6. 11— ——— < Jy« L. (N, < =
( 7) 2(1 _ Sn) = H,‘,a,‘,k( n( an)) = 2(1 _ En)
Since z7, ...,z}, areiid. with distribution H,, by Lemma 6.2 we have
(68) U, = (mn)l/z sup |JH,‘§,a,x(t) - JHo,a,x(t)l = 0p(1).

)\e‘/;, acsRP, teR

Using (6.7), (6.8) and the fact that p lim, ¢, = ¢, forall § > 0

1

- 2(1 — &)

-8 <pliminfdy ., \(t.(N «,))
n—o

<p limsup Jy,_ , AEa(N ay))

n—o

e a— VA .
S2(1_£)+6 E.,;/;

Application of both implications in Lemma 6.3(b) and the symmetry of F,
yield

1
(6.9) p limsup|t,(N,a,)| < sup J;l(—).
oo A ey
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Put now A, = (a, — T,o)/lla, — T,,ll. Using (6.6), (6.9) and the fact that,
by the definition of T,,, s, (A )¢, (N, T =A,(\,,T,,) < C(a,), we get

p limsuplla,, — T,,ll

n—o

(6.10) » 1 Supxc.., Sa(A)
< ( sup J, (2—(—1—_—8—)‘))(1 +

AeS infyc _~ s.(N) ’

and since p lim, ,, «, = 0, the theorem follows. O

REMARK 6.3. For P2-estimators, (ii) means that the matrix S has an
asymptotic breakdown point smaller than ¢ at G, and (iii) holds if S(G,) —
S(G) in probability for all G € 7 .. For Pl-estimators, (ii) and (iii) hold
when s(uy,...,u,) = median(jul,...,lu,D) and P;(Nx#0)>0.5/(1 — &)
for all A # 0. If D, is chosen as in the algorithm in Section 5 based on
resampling, the validity of (iv) requires that N tends to « with n.

7. Numerical evaluation of P-estimates.

7.1. Asymptotic bias. We computed numerically g*(T, H,, ¢), when T is
an MP-estimator T, or a CMP-estimator T; and H, is the multivariate
normal. Due to the equivariance properties, these computations were done
without loss of generality assuming that H, is (p + 1)-dimensional N(0, I).
We considered P2-versions of the MP- and CMP-estimators, and the scatter
matrix S used was the one given in Maronna, Stahel and Yohai (1992). This
scatter matrix is defined using ideas similar to those used here to introduce the
P-estimates, and is highly bias-robust. In Table 1 we show the values of g* for
£ = 0.05,0.10, 0.15 and 0.20, and of y*. In this table we also reproduce part of
Table 1 of Martin, Yohai and Zamar (1989), showing the values of 8 for the
bias-minimax M-estimator, the LMS-estimator and the bias-minimax GM-
estimate. The minimax-bias M-estimate corresponds to minimizing the §-
quantile of the residual squares. When ¢ — 0.5 then § — 0.5 and the mini-
max-bias M-estimate approaches the LMS. The minimax GM-estimator is the
weighted L;-estimate given by
(7.1) T(F) = ar minE( ly ~ o'xl )

& @ (X'E_lx)1/2 ’

where 2 is the covariance matrix of x. Since 3 is not known, it was replaced
by the robust scatter estimate proposed by Tyler (1987). The values of the first
row of this table (the value of 8* for the minimax GM-estimates when p = 1)
coincides with K . defined by (4.4). Therefore we observe that the values of
B*(T,, H,, ¢) are the same as those given by Theorem 4.1 for the nonaffine
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TasBLE 1
Maximum biases of M-, GM- and P-estimates

P v e = 0.05 e =0.10 e = 0.15 e = 0.20
GM-estimates
1 1.57 0.083 0.18 0.28 041
2 2.00 0.11 0.25 0.42 0.68
3 2.35 0.12 0.29 0.60 1.39
4 2.67 0.15 0.39 0.95 ©
5 2.94 0.19 0.49 2.85 o
6 3.20 0.21 0.62 o o
10 4.06 0.31 © o ©
15 494 0.62 o o o
S-estimates (all p)
Minimax LS 0.49 0.77 1.05 1.37
LMS o 0.53 0.83 1.07 1.52
P-estimates (all p)
MP 3.14 0.163 0.36 0.56 0.82
CMP 1.57 0.085 0.19 0.31 0.50

equivariant version. We also observe that the values of g*(T,, H, ) are very
close to those given by Theorem 4.1.

We verified numerically that the Pl-version of the estimate T, using as
scale s(u) = median|u,| behaves similarly to the P2-version. The P1-version of
T, behaves similarly to the P2-version too, except when the contamination
point has a very high leverage. In the latter case the bias of the P1-version is
larger than that of the P2-version.

The reason for this difference in behavior of the two versions of the
CMP-estimate is the following. Suppose that we contaminate the distribution
G, of x with the point mass 8, , where x, = xoA,, with [[Agll = 1. Then if |x,|
is very large, this contamination will have a significant increasing effect on
s(.Z(Xx)) even when \ is almost orthogonal to A, that is, when X A is very
close to 0. This will significantly influence the direction A used to define T;. On
the other hand, when we use a robust scatter matrix S, the contamination will
have only an increasing effect along the direction A, of S(G). Since this effect
is bounded, the effect of the contamination on NS(H)A will be very small
when NgA is small. In view of these results we omit the values for the
Pl-versions. In Table 1 we also observe that the minimax GM-estimate
behaves well for ¢ and p small. The CMP-estimate T, behaves uniformly in &
better than the minimax GM-estimate for p > 2 and than T, for p > 6. Both
T, and T, are always much better than the LMS and minimax M-estimates in
terms of maximum bias.

7.2. Monte Carlo finite sample size results. In order to understand and
compare the behavior of the P-estimators for finite sample size, we have run a
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small simulation experiment. The estimates included were:

1. LS: the least-squares estimator.

2. LMS: the least median of squares estimator, computed by subsampling,
with 200 subsamples.

3. MP: The Pl-version of the approximate MP-estimate computed by the
algorithm described in subsection 5.1, with scale s(u) = median|u;|. The
number of subsamples N was taken as 200.

4. CMP: The Pl-version of the approximate CMP-estimate computed as de-
scribed in subsection 5.1.

5. GM: The minimax-bias GM-estimator which is the weighted L, estimate
given in (7.1)

Besides, we have included the ‘“one-step reweighted estimators’™ starting

from each of the estimates 2-5. These one-step estimates are obtained as a

weighted LS-estimator, where each observation (y,, x,) is weighted by w((y; —

T'x,;)/5), where T is the starting estimate, ¢ is the scale estimate of residual

error given by

(7.2) ¢ = 1.481 median|y; — T'x,|

and w is a weight function.

Here, as proposed by Rousseeuw and Leroy (1987), we use the ‘“hard
rejection’’ weight function, which is defined by w(#) = I(|¢| < a), with a = 2.5.
The one-step estimator based on LMS will be called 1-LMS, and so on. The
purpose of using these one-step reweighted estimates is to gain efficiency
under a perfectly observed regression model with normal errors while keeping
most of the robustness of the starting estimate.

One-step Newton—-Raphson M-estimates were studied by Bickel (1975). He
showed that they behave asymptotically with the same efficiency as the fully
iterated M-estimates. However a Monte Carlo study by Rousseeuw and Leroy
(1987) showed that, at least for sample size 40, if the starting value is the
LMS-estimate, then one-step Newton—-Raphson M-estimates have larger mean
square error than one step reweighted least square estimates; both under
normal errors and under outlier contamination. Some preliminary Monte
Carlo experiments confirmed that the same happens when the starting values
are the MP- and CMP-estimates. For this reason we did not include one-step
Newton-Raphson estimates in our Monte Carlo study.

In spite of their better asymptotic bias (see subsection 7.1) P2-estimates
were not included because of the computational complexity of the scatter
matrix involved, which would have required too much computer time.

In order to control the computer time, we had to choose a restricted set of
sampling situations. We took two values of p, the number of independent
variables: 2 and 5. In both cases we considered regression models without
intercept. The sample size n was chosen equal to 50. We consider 50(1 — &)
observations (y,x) sampled from a (p + 1)-multivariate normal distribution
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TABLE 2
Maximum Total Square Errors

Estimates
p € LS LMS MP CMP GM 1-LMS 1-MP 1-CMP 1-GM

0.00 0.04 023 0.10 0.12 0.09 0.07 0.05 0.05 0.05
0.10 198 0.52 0.22 0.24 0.17 0.37 0.17 0.16 0.18
020 8.70 1.81 0.60 0.61 0.85 1.55 0.51 0.49 0.63
5 0.00 011 0.60 0.39 0.42 0.18 0.17 0.14 0.13 0.13
0.10 2.26 1.66  0.82 0.94 0.67 0.94 0.50 0.36 0.51

0.20 9.38 6.25 291 2.21 10.80 5.02 2.32 0.64 10.31

N(0, I) and the remaining 50¢ observations are fixed at a value of the form
z = (§,%(1,0...,0Y). Therefore the true parameter a, = 0. Because of the
equivariance properties of the estimates considered, the results that we obtain
apply when the central observations come from a N(0, %), with arbitrary 3
and the contamination is taken in an arbitrary direction. The contamination
model used here takes a fixed number (n(1 — ¢)) of contaminated observa-
tions, and therefore it is a little different from taking i.i.d. observations with
underlying distribution F = (1 — ¢)F, + £5,. However the two contamination
models give the same asymptotic values when n — .

We chose ¢ = 0, 0.10 and 0.20. The contaminating value £ was chosen as 10
and the contaminating slopes sl = 7/% were taken between 0.25 and 1.50 for
¢ = 0.10, and between 0.25 and 3 for ¢ = 0.20; in both cases with increments
of 0.25.

For each estimator and sampling situation, we computed the total mean
square error MSE = average(L?_ 1Tj2), where the averages are taken over all
Monte Carlo trials. For reason of space we only report, for each p and ¢ > 0,
the maximum of the MSE’s corresponding to all values of si. The results
together with the MSE’s for ¢ = 0 are given in Table 2. The complete tables
can be requested from the authors.

The number of replications of the Monte Carlo study was 500 for p = 2 and
200 for p = 5.

We observe that the P-estimates, especially the CMP-estimates, behave
clearly more robustly than the LMS- and the GM-estimates. The one-step
versions of these estimates keep most of their robustness properties, while
showing important gains in efficiency under the noncontaminated Gaussian
model. For p = 2 and ¢ = 0.10 the GM-estimate and its one-step version have
a behavior similar to the MP- and CMP-estimates. However for p = 5 the MP-
and CMP-estimates are clearly more robust. For p = 5 the results are clearly
favorable to the P-estimates, especially to T, even for ¢ = 0.1. We remark that
these results were obtained using a rather low value of N. It seems quite
plausible to expect improvements in the robustness properties of these esti-
mates if larger values of N are used.
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APPENDIX

In this section we will give a proof of Theorem 4.1. Since the MP-estimate
T, and the CMP-estimate T, are regression equivariant we will assume from
now on that a, = 0.

Note that since G, is spherical, the normalizing factor s(_£(Xx)) in (3.3) is
constant. Hence it will be omitted throughout the proof.

LemMa A.1l. Let M (2) be a distribution function on R such that q, =
M1 - 26)/(2(1 — ¢)) and q, =My (1/(2(1 — ¢))) are uniquely deter-
mined. Define M = (1 — e)M, + €3, . Then median (2) = q; if 29 < g1, = 2
if g1 <29 < qq, and =q, if 2y > q,.

The proof of this lemma is immediate, and therefore we omit it.

Assume .Z(y,x) = H, with ay = 0 and G, = -£(x) spherical. Let Jy , ()
as defined in (3.13). For any r <0 call JF(¢) =dJy , () with &'A =0,
Il =1 and [lall = r. Note that J§ coincides with the function J* used in
(4.4). We prove the following lemma.

LemMa A.2. Suppose F, has a density fo(u) symmetric and strictly de-
creasing for u > 0. Then:

(@) For any u > 0.5, J* u) is increasing in r; and J* (1 —u) =
—J* Yu) forany 0 <u < 1.
(b) If a and N € RP with |I\|| = 1, then

It an(#) =i (1) — Ne,
where v(a, ) = (|al* — (Na)?)!/2

The proof of this lemma is also straightforward and may be found in
Maronna and Yohai (1989).

LEMMA A.3. Let Hy(y,x) = Fy(y)Gy(X) be the distribution of (y,x). Sup-
pose that F, has a density f,(y) symmetric and strictly decreasing for y > 0
and that G, is spherical. Let H =(1—&)H,+ €8, . o) Where e; =

(1,0,...,0), xo > 0 and y, > 0. Let T, and T, be the nonaffine equivariant
versions of the MP- and CMP-estimates, respectively, and z, = y,/%,, then:

(@) If zy <K, , then (3.5) defining T\(H) has infinite solutions. These

solutions are all the vectors & = (&,, ..., &,) such that &, = z, and |l&ll < K, ,.
Besides T,(H) = T (H).

) If Ky, <2y <2K,,, then Ty(H)=(25,0,...,0) and T, =
(K ,,0,...,0). '

(© Ifzy> 2K, ,, then T(H) = 0 and T(H) = K, A, where |All = 1.
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ProOF. Put K, =J (1/(2(1 - ¢))) [observe that K, coincides with
the definition given in (4. 4)] Take a = (a;,...,@,) and A = ()\1, ...y A,) with
IN| = 1; then Lemmas A.1 and A.2 and (3.11) 1mply that for A, # O

To(£(H,y — o/x,NX))
_Kv(a,)\),s — XNa, if(zo —ay) /A < -—Ku(a,)\),s - Na,
(A1) (20 — a1) /Ay, if _Ku(a,)\),e —Na < (29— ap)/A
< K,o ), — Na,
Ku(a,)\),s —XNa, if (29 — a;) /A, >Kv(a,)\),e - XNa.

For A, = 0, the conditioning in (3.11) implies

' —o'x

To(L(H,y — o/x,XX)) = medianHo(—x———) =Jp_101,a,;\(0-5) = -

by Lemma A.2. Hence sup_1, »,—ol To(-Z(H,y — &/%, XX))| = lal? — a2
We will first show that

(A.2) lall>0 and a; #2z, imply C(a) > C(0).

Note that if we put Cola) = sup_1, ,,-0 Ala, A), then C(a) =
max(Cy(a), llall® — a?), and hence C(0) = C,(0). Thus we only need to consider
Ay # 0 to prove (A.2).

Suppose first that «a; < z,. Take a sequence A, =(A, ;,...,1, ) € R?,
with (A, ll=1, A, ,>0, lim, ,,A,, =0 and lim,_,&'X, <0. Put %=
—lim, ,,&A, >0 and u = lim,_, v(a, \,) = llall®> — k2. Then since
(z0 a)/A, 1 — o, using (A1) we get lim,_, To(A(H,y — «'x,X,X)) =

K, +k. If,u, =0, then k= IIaII and hence K, , + k£ > K, .. If u > 0, then by
part (b) of Lemma A2, K, 0,e- Thus we conclude that

(A.3) C(a) > K, ..
In the case that a; > z,, (A.3) is proved similarly by taking a sequence A, with
A1 <0.

On the other hand, for any [|All = 1, (A.1) implies |To(-Z(H,y, Xx))| < K, ,
and hence
(A4) C(0) <K,,.

Since by part (b) of Lemma A.2 K, . > K, ,, (A.3) and (A.4) imply (A.2).

Then according to (A.2), in order to find the minimum of C(a), we have to
compare a = 0 with the a’s having a, = z,. Take a with a; = z,; then (A.1)
yields

if Koo n).e — Nal >0,

A5 A(a,N) =) , ,
(A-5) (1) Na = Ky n,er 1 Koo, — Wal < 0.

Since K, is an increasing function of r, it is easy to see that K, ,,. — Nal
takes 1ts minimum value as a function of A when A = A = a/||all. Therefore it
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follows from (A.5) and the fact that K, 3, . — Na = K, . — llall that

0, if lall < K, ,,

lall — K, ., if llall> K, ..

On the other hand, (A.1) implies A(0, M) < K, , for any A € R? with [[A[l = 1.

Besides, by taking a sequence A, with A, ; > 0 and lim,_,, A, ; = 0 we get,
again from (A.1), lim, _,, A(0,\,) = K, .. Hence

(A.6) C(a) =

(A7) C0) =K,..
If zy < K, ,, then comparing (A.6) and (A.7) it results that C(a) is mini-
mized by taking any &= (&,,...,4,) with 4, =2, and llall < K,,. This

implies part (a) of the lemma.
Parts (b) and (c) are proved similarly. Details can be found in Maronna and
Yohai (1989). O

ProOF OF THEOREM 4.1. Let y, € R and x, € R*. Define H = (1 — ¢)H, +
€8x, Then the symmetry of F, and the sphericity of G, imply that

ITo(EDIl and [IT,(H )|l depend only on |y,| and [x,ll. Then Theorem 4.1 follows
from Lemma A.3. O
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