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INADMISSIBILITY OF STUDENTIZED TESTS FOR NORMAL
ORDER RESTRICTED MODELS'

By ARTHUR COHEN AND H. B. SACKROWITZ

Rutgers University

Consider the model where X;;, i=1,...,k; j=1,2,...,n; n; > 2,
are observed. Here X;; are independent N(6,,0%), 6,02 unknown.
Let X, =X} 1X;;/n; X' =(Xy,...,X,), 00 =(0y,...,0,), V=
Z{LIZ};IX?J- —nXt X2 Let A, be a (k—m) Xk matrix of rank
(k —m) > 2 and test H: A0 = 0 versus K — H where K: A0 > 0.

Suppose we assume o2 known and consider a constant size a test
(@ < 1/2) which is admissible for H versus K — H based on X. Next
assume o2 is unknown. Consider the same test but now as a function of
X/V1/2 (i.e., Studentize the test). The resulting test is inadmissible. Exam-
ples are noted.

1. Introduction and summary. Consider the model where X;;, i =

1,2,...,k; j=1,2,...,n; are observed. Here X;; are independent normal
random variables with unknown means 6; and unknown variance o 2. For ease
of exposition only, we take n, = n and require n > 2. Let X, = Y7 _X,,/n,
X =(Xy,...,Xp), 0=(8,,...,0,), U=Xt v7 X} V=U-nXl X2
X = X*_ X, /k. Sufficient statistics are equivalently (X', U) and (X, V).
A
As
(k—m)XkandA,is m X k,0 <m <k — 1, with the rows of A, orthogonal
to the rows of A;. We wish to test H: A0 = 0 versus K — H where K:
A0 > 0. It will be convenient to regard H as the linear subspace of vectors {0:
0 € R*, A0 =0} and K as the polyhedral cone {6: 6 € R%, A0 > 0}. See
Cohen, Kemperman and Sackrowitz (1993) for a wide variety of problems in
which the above hypotheses are appropriate.

Now suppose a constant size a test (o < 1/2), that depends on X, is given
for the problem of testing H versus K — H when o? is known. Assume the
given test is admissible when o2 is known. For o2 unknown, consider the
same test function but now as a function of X/V'/2, We call this Studentizing.
For (k — m) > 2, the resulting test is then inadmissible. Examples of some
popular tests which are inadmissible by virtue of the above finding appear in
Hayter (1990), Marcus (1976), Williams (1977), Robertson and Wright (1985),
where Dunnett’s test is discussed, and Mukerjee, Robertson and Wright
(1985). Cohen and Sacrkowitz (1992) discuss improved tests for some specific
problems and offer better tests, new tests, and do a Monte Carlo study of

Let A be a k2 X k nonsingular matrix partitioned as , where A is

Received August 1992.

'Research supported by NSF Grant DMS-90-23172.

AMS 1991 subject classifications. Primary 62F083; secondary 62C15.

Key words and phrases. Inadmissibility, order restricted alternatives, complete class, Dunnett’s
test.

746

&S fv;
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr )2
The Annals of Statistics. RINGRY

WWw.jstor.org



STUDENTIZED TESTS 747

amounts of improvement. In specific problems, the likelihood ratio test (LRT)
does not divide X by V1/2, but by (U knX?)'/2, In specific examples the LRT
is admissible.

We prove the result in the next section.

2. Inadmissibility of Studentized tests. Let ¢(x', u) be a test func-
tion. Let w be a £ X 1 vector.

DEFINITION. A test ¢(x', u) is said to be monotone as a function of (x, u)
with respect to (w.r.t.) w (in the direction w) if

(2.1) o(x,u) <d(x +Aaw',u) forall A > 0,all u.

Let w/, i =1,2,...,k — m, be the rows of A,. Then K = {8 € R*: w/6 > 0,
i=1,2,...,k — m}. Also let I denote the space spanned by wy,...,w,_,..
Finally, let Y(X) = B(X) with B = A~!, Let e, be the ith unit vector, i =
1,2,...,k —m.

LEmMA 2.1. Let 1 <i <k — m be fixed. Then a test function is monotone
as a function ¢ of (xX,u) w.r.t. w, (in the direction w;) if and only if as a
function ¢y, u) it is monotone w.r.t. e; (in the direction e;).

Proor. Note that Y(X + Aw;) = Y(X) + Ae;. Hence the lemma follows. O

The transformation to Y is handy in establishing the following complete
class result. Let Y = (Y, Y®) where Y® is (£ — m) X 1.

THEOREM 2.2. A complete class of tests for H versus K — H are those tests
Y(y', u) such that

Y(y', u) is monotone as a function of (y,u) w.r.t. e,,

2.2
(2:2) 1=1,2,...,k —m,

and

(2.8) For fixed (y®, u), the acceptance sections of the tests are convex.

Proor. Consider the joint density of (x, u). For n¥X*_x? < u, it is

1 k
fo o2 =K(0,0%)h(u)exp — 50 2[n(x— 0)(x—0)+u—ny x? ]

i=1

Lo 202

- K*(6,0'2)h(u)exp:(nx'i2) - —u—]

24  _ K*(O,crz)h(u)exp—(nx’BA—o—z) - 2—2]

g

u
= K*(0,02)h ————}
(0,0%)h(u) exp yv 507

u
=K*(0,0%)h(u) exp y(l)'v(l) + y@p® — 52 |
A o
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where v = nA0/02 Note that under H, (y®’,u) are sufficient complete
statistics and now the theorem follows from Eaton (1970). O

ReEMARK 2.3. Condition (2.2) could also be described as ¢*(x', u) is mono-
tone as a function of (x', u) w.r.t. w,,i = 1,2,..., k — m. Here u is kept fixed.
Also observe that there is an important distinction between the expressions of
a test function as a function ¢(x’, v) of the variables (x,v) and as a function
¢'(x', u) of the variables (X', u) since v is a function of both © and x.

ReMARK 2.4. For the same model discussed above (0? unknown), if o2 is
known the complete class theorem version of Theorem 2.2 is the same as
Theorem 2.2 save u is erased whenever it appears.

Now we proceed with the result on Studentizing. To avoid confusion in
what follows, we call attention to the fact that sets such as H, K and T,
defined earlier, that were viewed as subsets of the parameter space are subsets
of R*. As such, they can be (and often will be) viewed as subsets of the sample
space. We begin with consideration of the variance known (¢? = 1) case for
size @ < 1/2. Say we decide to use the test ¢5(x) which we may assume has
the form

0, ifxeR,
$r(X) = {1, ifx ¢ R,

where R is a closed subset of R*. We will study the behavior of ¢ z(x) when it
is restricted to subspaces where A,x is fixed. Since the rows of A; are
orthogonal to those of A,,
k—m
{x: A,x =b} = {x: x=b*+ ) /\iwi} =T,, say,
k=1
where b* € H is uniquely determined by A,b* = b.

For notational simplicity, we will take b = 0 (and so b* = 0). This is done
without loss of generality as the results we are seeking concerning acceptance
sections can be obtained by considering the projection of an acceptance section
on I'y =T and the fact that this projection will have the same geometric
properties as the original section.

We will say that, on section I'), ¢ has:

PropErTY 1. E, {¢r(®)IAX = 0} = q, for 0, € H;
ProPErRTY 2. R, = R N T, is convex;

ProPERTY 3. x € R°N T, implies x + Aw, € R° NI, for all A >0, i =
1,....,k —m.

Before going through the details of our argument, we will describe the basic
ideas in words. Recall that knowledge of Y® is equivalent to knowledge of
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A,X. Thus A,X and (A,X, U), respectively, are complete sufficient statistics,
under H, when the variance is known and unknown. The complete class
results, Theorem 2.2 and Remark 2.4, require that any admissible test be
monotone and convex on almost all sections. That is, they have Properties 2
and 3 above for almost all (A,X) or (A,X, U), respectively, in the variance
known or unknown case. Also, if a test has size a, completeness of the
sufficient statistic implies conditional size «, that is, Property 1. The thrust of
the proof of the main result of this section is to demonstrate that if the test
¢(x) has Properties 1, 2 and 3 on some section A,x = 0, then the test
¢(x/v'/?) will not be monotone on the sections (A,x, U) = (0,u). Thus ¢(x)
and ¢(x/ Vv) cannot both be admissible in their respective problems.

LemMA 2.5. If ¢y has Properties 1 and 2 on section Iy, then there exists
an & > 0 such that {x: |x|* < &} N T, C R,.

Proor. The lemma asserts that 0 is an interior point of R. If this is not
the case, then since R, is convex there exists a hyperplane y'x = 0 through 0
such that R, is on one side of this hyperplane. That is, y'x > 0, say, all
x € R,,. Recall that 0 € H so that, by Property 1,

a = Ey(¢pp(X)|A,X =0} = Py(R°|A,X = 0)
Py(R°NT,) Py(yx=<0,T,) 1

T P(Ty)  © . Pyl 2

by symmetry of the normal distribution. This contradicts the assumption that
a<1l/2. 0

LEMMA 2.6. Assume ¢y has Properties 1 and 2 on section T'. For any
boundary point § of R, there exists a y € I' such that () x € Ry = y'x <c,,
(i) y'x > ¢, = x € R{ and (iii) ¢, = v'§ > |lylle, where ¢ is defined by Lemma
2.5.

Proor. Since R, is convex, the supporting hyperplane theorem guarantees
the existence of such a hyperplane, through &, for some y € I'. To establish
¢, = llvlle, note that by Lemma 2.5, (¢/llyIDy € R, and so v'((s/IlyIDy) < c,,
which completes the proof. O

LEmma 2.7. Assume ¢y has Properties 1, 2 and 3 on section T. Then
—Aaw; €R,, forall A >0,i=1,...,k -~ m.

Proor. Immediate since ¢, is monotone w.r.t. w; and 0 € R,. O

LEmMMA 2.8. Assume ¢y has Properties 1, 2 and 3 on section T. If x € R,
then Ax € R§ for all A > 1.

Proor. Follows from Lemma 2.6 as y'(Ax) = Ay'’x > ¢, for A > 1. O
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LEmMA 2.9. Assume ¢y has Properties 1, 2 and 3 on section T'. There
exists a point § € R{ such that w§ < 0 for some w=wy,...,W,_,..

Proor. Ifnot,w;§>0Oforalli=1,...,2 — m and all £ € R§. This would
imply R K and so K°C R,. But R, is convex and (in two or more
dimensions) the convex hull of the complement of a polyhedral cone is the
entire space. Therefore, R*~™ C R, and the size of the test would be 0 which
is a contradiction. O

Now let £ € R{ be a reject point and w one of the vectors wy,...,w,_,,
such that (as guaranteed by Lemma 2.9)

(2.5) wg < 0.
By Lemma 2.8, A € R{ for all A > 1 and by Lemma 2.7, —Aw € R, for all
A > 0. Thus, for each A > 1, there exists a 0 < 7, < 1 such that

(2.6) £, =M1 -1)E-1wW)

is a boundary point of R,. By Lemma 2.6, there exists a y, € I such that
(2.7) XE€R, = vXx<w,,

(2.8) x> g, = xeR;,

(2.9) Vi€ = lly,lle.

We can now consider the variance unknown problem with sufficient statistics
Xy, ..., X,, U. We will study the test ¢*(x,u) = ¢p5(x'/ Vv) where v =u —
nIIxII Consider the section where A, X = 0 and U = u. We begin with the
points (x,, u) whlch map into the pomts g,. That is, x,/ ‘/;,\— g, where
v, = u — n|x,||>. The points (x,, %) are boundary points of the acceptance
region of ¢*. Next we look at points of the form (x, ,, u) where x, , = x, —
aw, a > 0. All such points must be in the acceptance region of ¢* if d)* is to be
monotone w.r.t. w. Equivalently, §, , = x, ,/v,, where v, ,=u —
nlx, oI, must be in R,. We will show that, for sufficiently large A and small
a, this is not the case. Figures 1 and 2 reflect the situation.

Yy x= Yi“’x
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[ v ﬁ Xy, a

Fic. 2. {x:A,x=0, nlkl? < u).

Lemma 2.10. Assume ¢y has Properties 1, 2 and 3 on section T. There
exists A > 1 and a > 0 such that §, , € Rg.

Proor. By (2.8), we only need show that &, , > vj&, for some A > 1,
a > 0. Note

Yi(X, —aw)  yix,

Yi€ro ~ VaE) = RN
1 1 . ay\w
(2.10) = (ﬁ - W)‘YAXA - ﬁ
a_|[Vor = Voe) iz,
Now

\/;): ~—VUa Uy — U, (—2x\w + aw'w)
= = ‘n
a a(‘/;,\— + ,/v,\,a) \/Z T VUia

—-2x'\w ,
a0 2@ n=—§w-n.
Thus, (2.10) will be greater than 0 for some small a > 0 if
(2.11) n(—&w)(v,€,) — viw > 0.
Using (2.9) and the Cauchy—Schwarz inequality we have

n(=EwW)(1:€)) — viw 2 n(—&w)llvlle — Iyl lwll.

The result now follows as (2.5) and (2.6) imply that —&,w — « (uniformly in
Ty)as A - o O
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THEOREM 2.11.  If ¢x(X') is admissible size a test, where 0 < a < 1/2, for
the variance known case, then ¢%(X',U) = ¢p(X'/VV) is inadmissible in the
unknown variance case.

Proor. As discussed earlier, the results obtained for R, also hold for all
R, = R N T,. By Remark 2.4, ¢ has Properties 1, 2 and 3 almost everywhere
A,X (i.e., on almost all sections R,). But by Lemma 2.10, this means that ¢%
is not monotone on almost all sections (A,X, U). Thus, use of Theorem 2.2
completes the proof. O

REMARK 2.12. The result of Theorem 2.11 holds even if ¢ is not exact but
is of level a.
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