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ON EQUIVARIANCE AND THE COMPOUND
DECISION PROBLEM

By MosTAFA MASHAYEKHI

University of Nebraska

This paper obtains some extensions of Gilliland and Hannan’s results
on equivariance and the compound decision problem.

Consider a compound decision problem with restricted component risk
and component distributions in a norm compact set of mutually absolutely
continuous probability measures. Then the method of proof of a theorem of
Gilliland and Hannan translates the results of Mashayekhi on symmetriza-
tion of product measures into uniform convergence to zero of the excess of
the simple envelope over the equivariant envelope.

Our envelope results strengthen, among other things, the results of
Datta who obtained admissible asymptotically optimal solutions to the
compound estimation problem for a large subclass of the real one parame-
ter exponential family under squared error loss.

Sufficient conditions for asymptotic optimality of ‘“‘delete bootstrap”
rules are given and, for squared error loss estimation of continuous func-
tions and for finite action space problems with continuous loss functions,
the problem of treating the asymptotic excess compound risk of Bayes
compound rules is reduced to the question of L,-consistency of certain
mixtures.

Examples of estimates satisfying the above consistency condition are
provided.

1. Introduction, notation and history. In the set version of the com-
pound decision problem, pioneered by Robbins (1951), simultaneous decisions
are to be made in n problems of the same generic structure, with this
structure being possessed by what is called the component problem.

Let & be a class of probability measures on a measurable space (2, %) and
consider a component problem with action space &/ and an observable Z‘val-
ued random element X with distribution P € &. Let 2 be a bounded risk
class of decision rules for the component problem and let M < « be such that
R, P)<MVte QandV P € &, where R(¢, P) denotes the risk of ¢ at P.

For an n-tuple x = (x,...,x,) let x; denote x with the ath component
deleted. Consider the class 2 of compound rules t = (¢,...,¢,) where each
x s-section of ¢, € 9. When 2 is the largest class of decision rules for the
component problem, the above compound problem is the usual compound
problem with 2 the largest class of compound decision rules. The compound
problem with restricted component risk was considered by Gilliland and
Hannan (1974, 1986) for finite & because of the generality it provided for
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their envelope results and the fact that it is the natural setting in which to
study ‘“delete bootstrap” procedures. Moreover, as they noted, it allows for
choice of 9 to control component risk behavior and the construction of
asymptotically best equivariant procedures in 2. ,

Let s be the function on 2 X ({1,...,n} X X 2" ! such that
s(t, @, P,X,) is the conditional on X, risk incurred by t in the component «
when the distribution of X, is P.

It is well known [see Section 2 of Hannan and Huang (1972a) or Section 1 of
Gilliland and Hannan (1974, 1986)] that the compound problem is invariant
under the group of n! permutations of coordinates, and that a compound rule
t is equivariant if and only if there exists a function y on 2'X 2"~ to &,
symmetric on 2"~ !, such that ¢ (x) = y(x,,x,) for all a. The latter implies
that if t is equivariant then s is constant in its second argument and
symmetric in its fourth argument. The implied property for s will be used as a
definition of equivariance when we bypass the consideration of a loss function
and identify each decision rule in 2 with its risk point in [0, M]?. For
equivariant procedures we will abbreviate s(t, a, P, - ) by using the affixes on t
and P. For example s({,1, P,, - ) will be abbreviated to §,,.

Let & and . denote the class of all equivariant rules in 2 and the class of
all simple rules in 2, respectively. Let R(t, P) denote the compound risk of t at
P. The equivariant envelope corresponding to 2 is defined by

(1) #(P) = infR(t,P)
te
and the simple envelope corresponding to 2 is defined by
2 P) = inf R(t,P).
(2) ¥ (P) = inf R(t, P)

Clearly ¢ is the infimum over a larger class and it follows from the
definition that (P) = R(G,), where R(w) is the component Bayes restricted
risk at w and G, denotes the empirical distribution of P.

Traditionally, a compound rule is called asymptotically optimal if, with the
modified regret at P defined by

(3) D,(t,P) = R(t,P) — R(G,),

supp D, (t,P) —» 0 as n — .

However, since almost all of the compound rules in the literature are
equivariant, the equivariant envelope [cf. Hannan and Huang (1972a), page
104] is considered a more appropriate yardstick of performance than the
simple one. ,

Hannan and Robbins (1955) introduced the class of equivariant procedures
for the compound 2 X 2 & X & problem and showed (Theorem 5) that the
difference between the simple and equivariant envelopes converges to zero
uniformly in P. Hannan and Huang (1972a) considered the compound problem
for finite & under a certain class of loss functions and provided an upper
bound on the difference of the simple and equivariant envelopes which is
O(n~1/2), Gilliland and Hannan [(1974, 1986), Theorems 1 and 2] extended
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those results to arbitrary bounded risk components for finite &2. They also
showed (Theorems 3 and 4) that for equivariant ‘“delete bootstrap” proce-
dures, the excess compound risk over the simple envelope is bounded in terms
of the L, error of estimation and thus established a large class of asymptotic
solutions to the compound decision problem with restricted risk and finite
state component. Their proof depended heavily on the Hannan and Huang
(1972b) results on the stability of symmetrization of product measures (Theo-
rem 3) which was a strengthened generalization of Theorem II.1 of Hannan
(1953).

In this paper we consider the compound decision problem in which the set
of component distributions & is compact in the topology induced by the total
variation norm and has pairwise mutually absolutely continuous elements.

Section 3 deals with the difference of the two envelopes and asymptotic
optimality. In Proposition 1 we observe that the method of proof of Theorem 1
of Gilliland and Hannan (1974, 1986) provides a setting for a straightforward
application of the results of Mashayekhi (1990) to obtain asymptotic equiva-
lence of the simple and equivariant envelopes.

Theorem 1 provides sufficient conditions for asymptotic optimality of ““‘delete
bootstrap” rules. Examples 1 and 2 show that for squared error loss estima-
tion of continuous functions and for finite &7 problems with continuous loss
functions Theorem 1 reduces the problem of treating the asymptotic excess
compound risk of Bayes compound rules to the question of L,-consistency of
certain mixtures. The reduction is analogous to Theorem 3 of Gilliland and
Hannan (1974, 1986) and, combined with the results of Datta (1991a), pro-
vides the first solution to the compound problem in the most general compact
parameter case.

Section 4 provides, as examples, two classes of mixtures those satisfy the
required consistency condition. The first example is the class of mixtures based
on hyperpriors obtained in Datta (1991a), thus showing that his results for
empirical Bayes problems are extended to the corresponding compound prob-
lems under appropriate loss functions. A mixture in the second class is
obtained by minimizing an L,-distance.

2. Notation and conventions. Let n be a positive integer. An n-tuple
(xq,...,x,) is denoted by x,, (the subscript n will not be exhibited if it is clear
from the context). If the components of P are probability measures, then P
denotes the product probability measure P; X --- X P, and P; denotes P with
the ath factor deleted.

We use u(f) or uf to denote the integral of a function f with respect to
(wrt hereafter) a signed measure u. We sometimes use expressions such as
Jf(x) du(x) to exhibit dummy variables. The same notation is used for a set
and its indicator function when the distinction is clear from the context. In
particular [ ] is used to denote an indicator function.

For any signed measure u on %", u* denotes symmetrization of u with
respect to the group of transformations on (£, #)" induced by the group of
permutations on n objects. ’
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If 7 is a signed measure, then ||7|| will denote the total variation norm of 7.
The absolute supremum of a real function f is denoted by || f|l. whatever be
its domain.

All incompletely described limits are as n — o through positive integers.

3. Asymptotically optimal ‘“delete bootstrap’ rules. Proposition 1,
to follow, shows how Theorems 1 and 2 of Mashayekhi (1990) can be trans-
lated into the convergence to zero of the excess of the simple envelope over the
equivariant envelope. This new infinite state case strengthens many previous
compound results by implying that, for all asymptotically optimal decision
rules, the modified regret defined by the more stringent equivariant envelope
converges to zero, uniformly on compact cubes.

Theorem 1 of Mashayekhi (1990) which is used in the proof of Theorem 1 of
this paper is restated below:

THEOREM [Mashayekhi (1990)]. Let & be a norm-compact class of mutu-
ally absolutely continuous probability measures and let P = X!_| P;, where
each P, € &. Let 1= R — Swith Rand S € &. Then

(4) sup{[(7 X P)*||: (R, S, Py, ..., P,) € P"*%} = 0(1).
Rates of convergence of the lhs of (4), for the case where & is an exponen-

tial family with its parameter space a compact subset of the interior of the
natural parameter space, were obtained in Theorem 2 of Mashayekshi (1990).

ProrosiTiON 1.

(5) ‘p_‘pSMS‘;P“(Pi_Pﬁ)*”-

The proof is essentially the proof of Theorem 1 of Gilliland and Hannan
(1974, 1986). If t € &,

(6) Pise — Pgs, < M"(P& - Pﬁ)*“

because of the boundedness and symmetry of s,. Therefore
I]j’,vl(n‘1 Zsa) —n~ 1Y Pgs, < therhsof (5).

Since n7'L,s, = ¢(P),
(7) ¥(P) — R(t,P) < the rhs of (5).
We obtain (5), since (7) holds for every t € &. O

Consider & with the topology induced by the total variation norm and let ()
be the set of all probability measures on Borels of . For each w € Q the
mixture &, is the measure on £ defined by

#(B) =w(P(B)), Bea.
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For each w € Q, let ¢, be a Bayes solution versus o in the component
problem. Considered as a function on Q into 92 [ef. Hannan (1957), page 101],
t is called a Bayes response.

THEOREM 1. Let t be a Bayes response, wa symmetric mapping on 2!
into Q. Let t be the compound rule with

ta(X) = 50 ,)(%,)

and let t be an equivariant rule with its components Bayes versus G, . Then t
is asymptotically optimal if:

(i) For each € > 0,3 6 > 0 such that V n
(19 — P | < 8) = (G,(5 - 5) <&)
and
(i) supl{P;[|Z~ - Il: P € 2} = o(1).
Proor. ga is symmetric by symmetry of . Therefore, as in Proposition 1,
(8) P,s, — Pss, < the rhs of (5).

Subtracting (P) from both sides of (8) and averaging over the components
give

(9) R(t,P) — ¢(P) < P,G,(s — §) + the rhs of (5).
A triangulation about §(P) together with (5) give
(10) R(t,P) — §(P) < P;G,(s — §) + 2[the rhs of (5)].

The rhs of (5) converges to zero by (4). In order to show uniform convergence
to zero of the first term on the rhs of (10), let ¢ > 0. Choose § with the
property assumed in (i). Since

G (s—58) <e+M[lP;— 2 |l = 8],
the first term on the rhs of (10) is bounded by & + M lhs of (ii)/8 by the
Markov inequality. Since ¢ is arbitrary, the conclusion follows by (ii). O

Observe that, by Theorem 116.4 of Parthasarathy (1967), Q with the
topology of weak convergence inherits the compact metricity of .

Lemma 1 to follow is used in Examples 1 and 2 to show that condition (i) of
Theorem 1 is satisfied for a large class of decision problems.

LEMMA 1. Let ¢ be a real continuous function on &. For each w let v, be
the signed measure defined by

v, (B) = f¢(P)P(B)dw(P), Be @.
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Let d be a metric of weak convergence. Then w € (Q,d) ~ v,, with the
norm-topology on the range, is uniformly continuous.

Proor. Let w, be a sequence in ) converging to w. Since & is a compact
metric space, it is complete and separable. By the Skorohod representation
theorem [Theorem 3.3 of Billingsley (1971)] there exist & valued random
elements 7, and 7 on the Lebesgue unit interval with respective A-induced
distributions w, and o such that 7, converges to n pointwise.

Since v, is the w-mixture of the v, = ¢(P)P,

(11) Vy, ~ Vo = (0, —0)v. =AMy, —v,).
Triangulation about ¢(7,)n and simple norm properties give
(12) vy, = vl < Igllin, — nll +]6(m,) = S(m)] < 4l

Since variations of a positive mixture are bounded by the mixture of the
variations, continuity of v at o follows from (11) and (12) by bounded
convergence theorem application to the rhs of (11). Uniform continuity follows
by compactness of Q. O

In the rest of this paper we assume

(13) Q is identifiable: @ ~» £, is1 - 1,
and let p denote the metric on Q thereby induced by || || on the range
(14) plw,o) =Z£ — 2.

REMARK 1. If d metrizes weak convergence in ), then d is equivalent
to p:

By the ¢ = 1 case of Lemma 1, w € (Q,d) ~» &, is uniformly continuous
on (). By the identifiability assumption and compactness of () and metric
range [cf. Proposition 9.5 of Royden (1968)] it is a homeomorphism. So is the
isometry with d replaced by p. Thus d and p are equivalent.

ExampLE 1. Consider the compound decision problem whose component
problem is estimation of ¢(P) under squared error loss for a real continuous
¢. Under the hypothesis of Theorem 1, t satisfies condition (i) of Theorem 1.

ProOF. Since (s — §XP) = P(#* — #2) — 26(P)P( — #) and ¢ and 7 inherit
the bound on ¢,

~ o~ 2 ~
(15) (Gu = 0)(s —§) = (Pa, — o)t — ) = 2(vg, — va) (2~ F)
<lgl2 Py — 23l + 4| pllellvg, — vall.
Observe that (s — 3) is nonpositive; equivalently

G,(s — 5) < thelhs of (15).
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The conclusion now follows by the uniform p continuity of Lemma 1 with the
choice d = p justified by Remark 1. O

ExampLE 2 (Finite & and continuous loss functions). Such decision prob-
lems satisfy a much stronger property than (i). Note that, the risk of an
arbitrary randomized decision rule ¢ assigning probability ¢, to action a, is
given by

s(P) =Py t,L(P),

where L_(P) is the value of the loss function at (a, P). Then, with ¢(P) =
L(P)P,

(Gu — @)s = L (G, — @)(Pty) Lo( P)
= Z(VG" - v;)ta < Z”VG" - vyl

But by Lemma 1 and Remark 1, V ¢ > 0 3 6 > 0 such that p(Gn,a) >4 or
lvg —vdl <e.

(16)

Theorem 3 of Gilliland and Hannan (1974, 1986) reduced the problem of
treating the asymptotic excess compound risk of equivariant “delete bootstrap”
rules to the question of L;-consistency of |lw, — G, || for finite &. Datta (1988)
considered the compound estimation problem under squared error loss for real
one parameter exponential families with compact parameter space and reduced
that problem to the question of L,;-consistency of IIl@A — ‘@G |, under a
domination assumption on translates of w that 1mp11es our 1dent1ﬁab111ty
assumption. His proof however, depended heavily on the particular shape of
the densities for that family and the functional form of the Bayes estimator
under squared error loss.

4. Examples of L,-consistent posterior mixtures. In Theorem 1 we
listed two conditions under which ‘“delete bootstrap’’ rules are asymptotically
optimal. In Examples 1 and 2 we considered situations where condition (i) was
satisfied and the problem of finding asymptotically optimal solutions was
reduced to the problem of obtaining estimates of G, that satisfy the L;-con-
sistency requirement of Theorem 1. Below we consider two classes of estima-
tors of G, that satisfy the requirement.

A. Consistent posterior mixtures based on a hyperprior. Consistent mix-
tures based on a hyperprior were introduced in Section 1.4 of Datta (1988), for
a subclass of one dimensional real exponential families and were extended to a
much larger class of probability distributions in Theorem 3.1 of Datta (1991a).

More specifically, let u be a measure and let & be the class of proba-
bility distributions with densities {p,:6 € ®} wrt u, where ©® is a com-
pact metric space. Suppose p,(x) is continuous for each x and, with h, =
Supyc o 1l0g(p,/pe)| and x*= max(x,0), supyce [(hy — M)*p,du — 0 as

—> 00,
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Observe that as pointed out in Remark 3.2 of Datta (1991a), the second part
of the above assumption forces P,’s to be pairwise mutually absolutely contin-
uous. By the Scheffé theorem, continuity of p,(x) for each x implies the
norm-continuity of P,. The latter implies that & inherits the compactness
of O.

Consider Q) with the topology of weak convergence and let A be a probabil-
ity measure on the Borel subsets of (). Let A be the posterior distribution of w
given X = x. Then A is the probability measure on () with density propor-
tional to T17_, p,(x,) with respect to A. Let w, denote the A-mix of w’s. Now,
Theorem 3.1 of Datta (1991a) asserts that if A has full support then

(17) sup{Pl#; — Z; I:P e Z"} =o(1).

Since (n + I, — P, ,) = Pg, — P%,,, its norm does not exceed 2.
Thus, by triangulation about @G ,dnis equlvalent to (17) with G, replaced

by G, ., or, equivalently, with , replaced by o, _;.

Observe that w,_, is symmetric on 2"~ !. Therefore wn 1
example of estimators that satisfy assumption (11) of Theorem 1.

The estimators considered by Datta are particularly important because
compound Bayes rules against certain hierarchical priors turn out to be Bayes
versus w, _(X,) in the ath component [cf. Datta (1988), Section 1.2.1]. There-
fore if the Bayes rules versus a given prior have unique risk, the compound
rule that is obtained by playing Bayes versus o, _(X;) in the ath component,
will be admissible for each n. The uniqueness of the compound risk of Bayes
rules versus a prior { in an estimation problem under squared error loss was
shown in Section 4 of the Appendix in Datta (1988), under the condition that
P, is dominated by P, for every 0.

provides an

B. L,-consistent mixtures based on a minimum distance. L-consistent
estimators of the mixing distribution for a normal mean were obtained, in
Edelman (1988), by minimizing an L,(A)-distance where A denotes Lebesgue
measure on R. His proof depended heavily on the properties of the normal
distribution, especially the functional form of the normal characteristic func-
tion.

Instead of L,(A) we consider minimum distance in Ly(n) with n a probabil-
ity with support R* and obtain estimators for the case where & is a class of
distributions on R*. Theorem 2, to follow, proves L,-consistency of minimum

L,(n)-distance estimators of 3% In what follows we will use F, with or
without affixes, to denote the distribution function of a probability distribution
P and || II,, to denote the norm on Ly(n).

Observe that if n is a probability measure on R*, any distribution function

Hisin Ly(n) and d: P ~ ||F; — H||, satisfies

(18) ld(P)_d(P')lS”FGn—FG;”n5”9%”_90,.”'

Therefore, d is continuous on compact #” and hence attains a minimum.
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LEMMA 2. Let 2 be R* and let n be a probability measure with support
R*. Let r be the pseudo-metric on ) induced by the L,(n) norm on the range of
w ~> F,. Then r is a metric equivalent to p and w € (Q, p) ~» 0 € (Q,1) and
its inverse are uniformly continuous.

Proor. If r(w, ') =0, then F, = F,, a.e. () and therefore, by continuity
from above, everywhere. Thus &, = &, and by identifiability v = «'. Since
r < p, the identity function on (Q, p) to (©,r) is continuous. Therefore by
compactness, as in Remark 1, its inverse is uniformly continuous. O

THEOREM 2. Let 2" be R* and let n be a _probability measure with support
R*. Let G, be the empirical distribution of P, a measurable minimizer of d ,:
P ~ ||F; — H,ll, with H, the empirical distribution of X. Then

(19) sup{Pl P — P |I:P € P} = o(1).

Proor. H, as average of P-independent Bernoulli processes, has mean F_
and variance

, 1 1
(20) P(Fg, ~ H,)' = ~G,(F(1-F)) < .

By the Fubini theorem P||F; — H I has the same bound. By a triangulation
about H, and using the minimizing property of G, we get

(21) r(G,,G,) = IFs, — Fg I3 < 4llF;, — H,|5.
Let ¢ > 0. By Lemma 2, take § > 0 such that p <& or r > 6. Then
(22) PP, — Py ll < & + PlPs, — P l[r(G,, G,) = 8].

By the Markov inequality and that p < 2, the last term in (22) is bounded by
2 2
(23) zPlthelhs of (21)] < <5

by (21) and the bound (20) for its P expectation.
The resulting bound for the lhs of (22) proves (19) for the equivalent [as for
(17) in A] form with G, replaced by G, ;. O

Observe that én can be taken to depend on X only through H, and
therefore is an example of w of Theorem 1.

Unlike the mixtures based on a hyperprior, the mixtures based on a
minimum distance do not produce admissible rules. However minimum dis-
tance procedures provide asymptotically optimal rules for a larger class of
compound problems when 2= R*. It also seems to be easier to explore rates
of convergence for the modified regret of the minimum distance procedures. In
order to establish rates of convergence in our examples it is necessary to have
the moduli of continuity of @ ~> v, of Lemma 1 and w € (Q,7) ~» » € (Q, p)
of Lemma 2. Our assumptions (compactness of & and identifiability) are not
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sufficient for deriving these moduli of continuity. For some discussion of the
identifiability condition see Datta (1991a).
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