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R-ESTIMATION OF THE PARAMETERS
OF AUTOREGRESSIVE [AR(p)] MODELS

By Hira L. Kour! anp A. K. Mp. E. SALEH?
Michigan State University and Carleton University

In an AR(p) model, R-estimation of a subset of parameters is consid-
ered when the complementary subset is possibly redundant. Along with the
rank test of the full hypothesis and the subhypothesis of the parameters,
both preliminary test and shrinkage R-estimators are considered. In the
light of asymptotic distributional risks, the relative asymptotic risk-
efficiency results are given. Though, the shrinkage R-estimator may domi-
nate their classical versions, they do not in general dominate the prelimi-
nary test R-estimators.

1. Introduction. Let F be a df on &%, p>1 be an integer, and
€0)€ 11, E 49 --- beiid. Frv’s. Let Yy = (X, X_,,..., X;_,) be an observ-
able random vector independent of ¢, £y,... . Consider the pth order auto-
regressive, [AR(p)], model where the observations X;,..., X, satisfy the
relation

(1.1) X;=p1X; 1+ +p,X,_, &, l<i<n,px=1
and we assume that all roots of
(1.2) xP — pyxPl —p,xP 2 — .- —p =0, arein(-1,1).

Here, p' = (py,. .., pp) € #P is a vector of unknown autoregressive parame-
ters. Let 1 < p; < p and p, = p — p; and let p' = (p', p’,) where p, and p, are
p; and p, vectors, respectively. Our primary interest is to develop the theory
of R-estimation of p; when it is suspected that p, may be equal to 0. The
situation may arise when the experimentor has over-modelled up to order p
but suspects that the p,-vector p, may be negligible. Under this situation he
wants to estimate p,. To this end we first consider the theory of R-estimation
of p based on a class of rank statistics. To obtain the asymptotic properties of
these R-estimators, we prove the asymptotic uniform linearity (AUL) result
for the class of rank statistics. This result is then used to investigate the
R-estimates of p, when p, is suspected to be 0.

For the AR(p) model (1.1) let the R-estimator of p' = (p/,, p’,) be denoted by
#, = (p'1,, Pan,) SO that p,, is the unrestricted R-estimator (URE) of p,. When
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po = 0, we consider the restricted AR(p;) model, namely,

(183) X;=pX;_ 1+ +p, X;_, +&, 1l<i<n,p =1

—Dp1
Let p,, be the restricted R-estimator (RRE) of p,. This RRE performs better
than URE when p, = 0 holds. But, as soon as p, deviates from 0, the RRE
may be considerably biased, inefficient and even inconsistent, while URE
retains all the performance characteristics steadily for the variation of p,.

This paper considers the preliminary test R-estimators (PTRE) and the
shrinkage R-estimators (SRE) of p; when p, is suspected to be near 0 as a
compromise between URE and RRE. The relative merits of the estimators of
p, are studied in terms of the asymptotic distributional risk (ADR) as in Saleh
and Sen (1986) and Sen and Saleh (1987). It is shown that when p, is near 0,
both PTRE and SRE outperform URE, though RRE may still dominate either
of these. However, when p, is away from 0, RRE performs rather poorly, while
both PTRE and SRE are robust.

The proposed R-estimators of p along with their asymptotic properties are
discussed in Section 2. This section also contains the proof of an AUL result
for the class of rank statistics considered. Section 3 discusses the RRE, PTRE
and SRE with details. Section 4 contains the ADR and ADRE of various
R-estimators of p; with concluding remarks in Section 5. Some proofs of the
results in Section 2 appear in the Appendix.

2. R-estimation of p for the AR(p)-model. In this section, we intro-
duce a class of R-estimators of p for the AR(p)-model (1.1) and discuss their
large sample properties. Let Y/ = (X,,..., X;_,.1), 1 <i <n and define R,,
to be the rank of X; — w'Y,_; among {X;, —u'Y;_;, 1 <j<n},forl <i<n.
Set R;, = 0 for i < 0. Let ¢ be a nondecreasing function from [0, 1] to the real
line and define 8’ = (S,,..., S,), where

n
(2.1) S;(u) =n""? } X, ;o(R;,/(n+1)), 1<j<p,u€cR?
i=j+1

The class of rank statistics S, one for each ¢, is analogous to a class of similar
rank statistics in the linear regression model where one replaces the weights
{X,_;} by the appropriate design points as discussed in Hajek and Sidék (1967).
A test of the null hypothesis H,: p = p, may be based on a suitably standard-
ized S(p,), the large values of the statistic being significant. For an alternative
class of rank tests useful in testing one ARMA model against another, see
Hallin and Puri (1988).
It is thus natural to define R-estimator p, of p by the relationship

(2.2) inf IS(w)ll = IS(5,).

An alternative way to define R-estimator of p is to adapt Jaeckel (1972) to
the AR(p) model. Accordingly, set a,(i) = ¢(i/(n + 1)), Z,(u) = the ith
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largest residual among {X, —u'Y,_;, 1<k <n},1<i <n,and
n

(2.3) T(u) = Y a,(i)Z,(u), u e Z°P.

i=1
Arguing as in Jaeckel (1972), if ¥7_,a,(i) = 0, then T(u) can be shown to be
convex on #P with its a.e. differential equal to —n'/2S. Thus, a minimizer p
of T(u) exists and has the property that makes [|S|| small. As is shown in
Jaeckel in connection with linear regression model, it will follow from the
linearity result given in Theorem 2.1 that p; and p, are asymptotically
equivalent.

THEOREM 2.1 (AUL of R-statistics). Assume that (1.1) and (1.2) hold. In
addition, assume that the following conditions hold.

(@ () Ee=0, 0 <Es* <. (ii) F has uniformly continuous density f,
f>0a.e.

(b) ¢ is nondecreasing and differentiable with its derivative ¢' being uni-
formly continuous on [0, 1].

Then for every 0 < b < o,

(2.4) sup IS(p + n~/?2A) — 8§ + ATyl = 0,(1),
llall<d

where 8' = (S,,.. ., §p) with

sj = n /2 i (Xi—j - Xj)[‘P(F(ei)) - 7], 1<j=<p,

i=j+1
_
% f()«p(t)dt,
(2.5) Xj =n"1 Y X 7’=/quo(F),
i=j+1
== ((B(i-j)), i=1,...p;j=1,...p;

B(k) = Cov(X,, X,), l1<k<p.

Note that the above theorem covers the Wilcoxon-type score but not the
normal score.

Before proceeding to prove the above result, we state two lemmas. Accord-
ingly, let g be a nonnegative measurable function on [0, 1], U denote a uniform
[0, 1] r.v. and define

Z(t) =n"17? Zn: X; ;lg(F(e;))I(F(e;) <t)—G(#)],0<t<1,1<j<p,
i=1

where G(¢) = Eg(U)I(U <t) = [{g(s)ds, 0 <t <1, and I(A) denotes the
indicator function of the event A.
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LemMma 2.1.  In addition to (1.1), (1.2) and (a)(i), assume that Eg*(U) < .
Then ¥V n > 0,

sup \Z;(t) — Z;(v)l > n) = 0.

lt—vl<d,1<j<p

lim lim supP(
300 ;450

A proof of this lemma is given in the Appendix.
In order to state the next lemma we need to define the empirical process of
the residuals

F(x,u) =n"" iI(Xi—u’Yi_lsx), x€ER,uec RP.
i=1
Note that F,(x, p) is the empirical process of {¢,;} and that
F(x,p+n"'?A) =n""1 i I(s; <x +n""?AY, ), zx€R,uecR’.
i=1
The next lemma gives the AUL result for F,.

LEmMA 2.2. Let (1.1) and (1.2) hold, Es? < « and (aXii) hold. Then for
every 0 < b < oo,

sup nl/Z[Fn(x,p + n—l/ZA) _ Fn(x,p)] —An-! Z Yi—lf(x)
|x|<oo, lAll<b i=1

(2.6)
=0,(1).
If, in addition, Ee, = 0, then
(2.7 sup n'?|F,(x,p +n"?A) — F,(x,p)l = 0,(1).

lxl<eo, lAll<b

Proor. The first claim of the lemma follows from Corollary 1.1 of Koul
(1991). The last claim follows because by the ergodic theorem n~'%Y,;_, —
EY,. But Ee = 0 implies EY, = 0. O

Proor orF THEOREM 2.1. Observe that with

Si(u) =n""2 L X, ;¢(R,,/(n+1)), ueR?1<j<p,

(2.8) i=1 3
sup IS;(u) — S;(u)l <p max [X,llelln™'? -0, as.
l<j<p,ueR#? 1-p<k<0

Thus, it suffices to prove the theorem with {S;} replaced by (S ). Let

S(u) =n 2 Y Y, 1p(Ria/(n + 1))
i=1



538 H. L. KOUL AND A. K. Mp. E. SALEH

Define for u € %7,

M(u) =2 £ Y, i[o(Riu/(n + 1)) - 3],
1—1

(2.9) n
M =0 B Yia[e(F(e) - 7.

For the sake of convenience we write M(A), F,(-, A) and so on for M(p +
n~12A), F(-,p + n~1/2A) and so on. Thus, for example, F,(-,0) now stands
for the empirical of ¢;, 1 <i < n. Write F,(-) for F,(-,0). The index i in the
summation or maximum will vary from 1 to n, unless specified otherwise. The
supremum with respect to A will be always over the ball {A; [|A|| < b}. We shall
sometimes write U, for F(¢;), 1 <i <n.

Now, let

enin = n'%[(R;a/(n + 1)) —F(e;))], 1<i<n,AeRP
We shall first show that

(2.10) supn~'?le,;al = 0,(1).

i A
Observe that with ¢, =¢; —n '?AY,_,, n7'R,, = F(¢;4,A), 1 <i <n.
Hence by (2.7), and the fact [}/ n(n + 1)~ — 1]| - 0, it follows that

enin = n'?[F(g,4) — F(g;)] +0,(1)

(2.11) _

= D,(F(&;a)) + n'*[F(e,a) — F(5;)] + 0,(1),
where
(2.12) D,(t) =n'?[F,(F~Y(t))-t], O0<t<]1,

and 0,(1) is an array of processes in (i, A) that converge to zero, uniformly in
(i, A), in probability.

Next, Ee? <o and the stationarity of the sequence {[[Y;_,l} implies
E|Y,_,II? = E|IY,ll* < » and hence

(2.13) n=1/2 max|[Y,_ |l = 0,(1).

This, together with the continuity of F, implies that
(2.14) suplF(e;a) — F(e;)l = 0,(1).
i A
From (2.11), (2.14), the asymptotic uniform continuity of the D,-process [see,

e.g., Billingsley (1968), page 105] and the assumption (a)(ii) of Theorem 2.1,
one readily concludes that

(2.15) enin = D,(F(e;)) — XY, i f(&;) +6,(1).
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Now (2.10) follows from (2.15), (2.13) and the fact that sup{|D,(#)|,0 <t < 1}
= 0,(1) and the assumption (a)(ii) that ensures || f |l < c.
Next define
T(A) = n_IEiYi—leniAgo/(F(gi)), A e P,
Note that
M(A) = n_l/zzLYi—l[‘P(F(Ei) +n 1 %,,,) - 5]-

Therefore, from the uniform continuity of ¢', the facts that n~'X.|IY,_,ll =
0p(1) =n"YZ,Y,_,Y/_,l which follow from the ergodic theorem and the

132

assumption Eg? < o, and from (2.10) and (2.15) one readily concludes that

sup|M(A) — M — T(A)]|
A
(2.16) = sgp [n=22Y; _{o(U; + n="%,;4)

_¢(IJL) - n_l/zeniA¢,(l]i)}l| = Op(]')'

Next, we approximate T(A). Again, by the ergodic theorem, Es = 0 implies
that n='2Y,_,¢'(U)) f(¢;) = 0, a.s. Hence

T(A) = n ?2Y, [{F.(e;) = F(e:)} — n 7 2AY, 1 f(e)] @' (Up) +5,(1)
=V, —-L,A+0,(1),

where now 6p(1) is a sequence of stochastic processes converging to zero
uniformly over A in probability and where

V., =n"V2EY, |[F(¢;) — F(e)]¢'(U),
L, =n"'3Y,_ Y, ,f(&)¢ (V).
Note that EL, = E(n"'XY,_,Y/_)y =Xy, v = [fdeo(F). By the ergodic
theorem, L, — Xv, a.s.
Our next goal is to approximate V,. To that effect, let V,,; denote the jth

component of V,,. Define

Unj(x) = n_l/zziXi—j‘P’(F(gi))I(gi <x),
v (x) =n VPR X [T (R (9)) dF(9) = V25 X, e(F(x)),

Knj(x)zUnj(x)_VnJ(x)7 xe‘@,ls.] SP
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Observe that

V.= f_:[Fn - F]dU,; = f_ww[Fn -~ FldK,; = f:o[Fn ~Fldy,

nj

—fol[z"J.(F(F,;l(t))) Z,(t)] dt - f ,d[F, - F],
where Z; = K, (F~1). Thus

vnjd(Fn—F)'

< sup Z(F(F;Y(t))) — Z;(t) = 0,(1),

0<t<l,1<j<p

by Lemma 2.1 applied with g = ¢’ and by using the well known fact that
supg <, <1 [(F(F,; '(#)) — ¢| = 0,(1). A
Now, observe that with X =n 27X, ;, T =n""2Z[eU,) - @],

i—j~i

j v,;d(F, —F) =n~%?%.X, S[e(U)-3] =X;-T, 1<j<p,
so that from the above we have V, = — X7 + 0,(1) and also
(217)  T(A) = -XT - Ay +5,(1), withX =(X,,...,X%,).
From (2.16), (2.17) and direct algebra one now readily concludes that
M(A) =n~1/2 Z (Yo — X)[e(U;) — 8] — =Ay +5,(1).

Now argue as for (2.8) to conclude that [|n~/2L?_(Y,;_; — X)[e(U,) - 7] — S|
= 0,(1), thereby completing the proof of (2.4). O

REMARK 2.1. Note that the same proof shows that under (a) and (b), for
every 0 < b < o,

sup

P S(p + n"1/2A) — S(p) + AEffdzp(F)N = 0,(1).

REMARK 2.2. Argue either as in Koul [(1985), Lemma 3.1] or as in Jaeckel
(1972) to conclude that ||n/%(p,, — p)ll = 0,(1). Consequently by Theorem 2.1,

(2.18) n%(p, = p) =y '8 +0,(1), v = [fde(F).

'Observe that S is a vector of square integrable mean zero martingales with
ESS' = 0%, 07 = Var(o(U)). Thus, by the routine Cramér-Wold device and
Corollary 3.1 of Hall and Heyde (1980), one readily obtains

(2.19) 8§ = N,(0,02%); and hence n'/%(j, — p) = N,(0,y %02X71).
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3. The proposed PTRE and SRE. lLet 1 <p, <p and p,=p — p;.
Partition p into two subsets, namely, p' = (p’, p) where p; isa p,, i = 1,2,
vector. We are primarily interested in the R-estimation of p, when it is
suspected but not sure that, H,: p, = 0 holds. For this we partition 8§’ =
(81,85 and Y;_; = (Y]}, Y] ,), where

81 =(81--,8,), 8 =(Sp41--4,5,),

Yi,,1= (Xi—l""’Xi—pl)’ Yi,,2= (Xl ’Xi—p)’ 1 SlSn.

_Pl_l’ oo
Similarly, partition the matrix X as

2:11 E12]

3.2 s =
( ) 2"21 E22

where X,;, ¥,, and X,, are p; X p;, p; X p, and p, X p, matrices, respec-
tively, with 2, = X,,.
Further, we consider the estimator X, of X, where

n—max(i, j)

X, = ((O'nij)) with o,,;; = > (Xk—i_Xi)(Xk—j_Xj), 1<i,j<n.
k=1

Partitioning ¥, similar to X we let X,,,.., =%, , - %, 313 r+s=

1,2. Define X,,., analogously, r # s = 1,2 using (8.2). Note that Ee? < « and

the ergodic theorem implies that n~ !X, > ¥ and n7'%,,,.., > X,,.,, a.s. as
n — ». Since 7! exists, ;! and X} .  also exist, for sufficiently large n.

nrr-s

Now, write p, of (2.2) as p, = (', Po,) and call p,, the URE of p,. The
restricted R-estimator (RRE) p,,, of p,, is defined to be a solution of

(3.3) inf18,(w, 0)ll = I18,(py,, 0)1l

For the PTRE and SRE, we need to introduce a suitable rank test for
testing the null hypothesis H: p, = 0. For this define S, = S;(p,,,, 0), and let
the test statistic be

(3.4) "'/;l = n(T‘P_zg,zz;zlz.lgz.

It can be shown that under H,,, .#, has asymptotically the central chi-square
distribution with p, degrees of freedom (DF). Let ng,a be the upper 100a%
point of the central chi-squared distribution with p, DF. The preliminary test
R-estimator (PTRE) of p, is defined by

(35) ﬁfnT = ﬁln + I("/; = X}%z,a)(ﬁln - ﬁln)'

The shrinkage R-estimator (SRE) is defined following Berger, Bock, Brown,
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Casella and Gleser (1977) as
(36) ﬁ‘fn = ﬁln + (Ipl - Cdnn_lzt_lw_lznll'z)(ﬁln - ﬁln)’

where d,, = ch,(nWZX[}',) = smallest characteristic root of nWZX,},.,, and ¢
is a positive shrinkage factor. If one chooses W = n™'X |, .,, then we get the
simpler form of (3.6), viz.,

(3~7) f’fn = f’ln + (1 - c"/;:l)(ﬁln - f’ln)» 0<c< 2(1’2 - 2)~

The formula (3.7) is justified when we evaluate the risk using Mahalanobis
distance

(38) L(an’pl) = n(an - pl)l2n11‘2(p>i<n - pl)‘y20-|[;_2'

A further improvement over (3.7) is obtained by defining the positive-rule
shrinkage R-estimator (PRSRE) due to Sclove, Morris and Radhakrishnan
(1972)

(3‘9) ﬁfn+= ﬁln + (1 - c“/;L_l)I(“/;‘L > c)(ﬁln - ‘A)ln)'

Note that p¥7 and p7*+ are convex combinations of p,, and p,, while p3, is
not. The asymptotic relative optimality of these estimators is discussed in
Section 4 in terms of ADR.

4. ADR and ADRE. In order to obtain the expressions for the ADR of
the above estimators, we follow Saleh and Sen (1986) and Sen and Saleh
(1987) and use the sequence of alternatives K,): py,) = n~ /%€, £ € RP2 In
addition, we need the following assumption:

(a)*(ii) The error d.f. F' has an absolutely continuous density f with its a.e.
derivative f’ satisfying 0 < I(f) = [(f'/f)*dF < .

In what follows, H,( ;) stands for the cdf of a noncentral chi-square r.v.
with m DF and the noncentrality parameter § and E(x,27(8)) =
Jox~"dH,(x,8), r> 1. Finally, for any estimator p}, of p,;, for which
Vn (p*, — p,) converges in distribution under K, () t0 @ p;-variate-normal with
mean 0 and a positive definite dispersion matrix V*, define the ADR with
respect to the loss n(p%, — p;) W(p?%, — py) to be

(4.1) R(p1,: W) = tr(WV¥),

where W is a positive definite matrix and tr stands for the trace operator.

Akritas and Johnson (1982) have shown that under (a)(i), (b) and (a)*(ii),
K, is contiguous to H,. Using this and an argument similar to the one
appearing in the proof of Theorem 3.2 of Sen and Saleh (1987), one obtains the
following.
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THEOREM 4.1. Under (1.1), (1.2), (a)i), (b) and (a)*(ii) the ADR’s of the
four estimators are given by

(4.2) R(py,: W) = d? tr(WET1,),

(4.3) R(py,: W) =d? tr(WE) + £ Mg,
R(pET: W) = d2{tr(WED,)[1 - H(x2, . 0)]

(4.4) +tr(WE3)) p2+2(xf,2,a;5)}

+(EME)[2H,,, 5(X2, 43 8) — Hypra(X2,030)]
R(p5,: W) = d*{tr(WEil,) — ¢ tr(MEZL,)[2E (1,2 2(9))
(4.5) —cE( X;;Z(s))]}
+c(c + 4)(§ME) E(x,4 4(8)),

where
(4~6) M= 2;2121_11“721_11212~

We shall now discuss the asymptotic distribution risk efficiency (ADRE)

results.

First note that the risk of p,, does not depend on & and if we consider the
Mahalanobis distance (loss) then W = d~2%,,.,, and R(p,,: W) reduces to p,.
Now, let

(4.7) M* =3, 31'%,,.,2'2;; and M°=3,3'3, 3"
THEOREM 4.2. Under the conditions of Theorem 4.1, we have:
(4.8) (i) R($p1: W) ZR(py.: W) according as d~2(£ M*E) < tr(M°).
(i) R(py,: W) 2 R(p1]; W) according as
@ () H,, o1 0i)
2HP2+2(XP2:C“; 5) - HP2+4(XI%21»C“; 6)
(i) Ifc = (py, — 2) and W is an arbitrary positive definite matrix, then
R(p,;W) < R(py,,W) VWe Zandte R,

where
tr(ME;zl,l) py+ 2
ho(MZ5,) = 2

(4.9) ¥= {Wp.d.:

with M given by (4.6) and ch . (A) = maximum of the characteristic roots
of A.
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The proof of (i) and (ii) is straightforward. We prove (iii). Use the identity
(4.10)  E(x,22(8)) = (p2 — 2)E(x;,42(8)) = 0E(x,,44(8))
in Theorem 4.1 to obtain
R({)fn;W) = R(f’miw)
—(py — 2)d? tr(MZ3;,)

(4.11) ><{(Pz - 2)E(Xp2+2(5))

(P2 + 2)(§M§)a, %y

- ztr(Mzzz.l)

20E (x4 4(8)) -

From (4.11), it follows that R(p5 ;W) < R(p,,; W) for all & e RP2 if
tr(ME5;L,)/ch,  (M251) > (py + 2)/2, that is, if W € .

In particular, if W = d 2%, ., then the risk expression (4.11) is the same
with M replaced by M* of (4.7). In this case the condition (4.9) reduces to

tr(M?) Ds +
>
Chmax(MO) 2

(4.12) 7= {W d.: 2} since tr(M*2z,',) = tr(M°).
We note that tr(M°) = tr(I, — 2;;'2,,) < min(p,, p,) = p* > 3 since p, > 3.
Also, if the rank of M° < 2, then (4.12) does not hold with M = M*. However,
if p, > 3 and 2tr(M°) > Chmax(MO) then (4.12) holds. Thus, for the Maha-
lanobis loss, (iii) holds. Fortunately, the condition (4.12) is verifiable for a
given ¥ for any AR(p) model. For an arbitrary W not belonging to ¥, (iii)
may not hold for all M. In that case one may use the SRE given in (3.7).

Now, we assume c is an arbitrary positive integer and that W = d 2%, ,.
The following theorem gives a sufficient condition on ¢ for which SRE
dominates URE under ADR.

THEOREM 4.3. A sufficient condition for the asymptotic dominance of SRE
over URE [i.e., R(,,: W) > R(p5 : W)V & € RP2] is that the shrinkage factor
¢ is positive and it satisfies the inequality

(413) 2B(x;2(9)) - cE(xp4(9)) = (¢ + DhOE(x;42(8)) 20 V5,
which in turn, requires that

Py =3, 0<c<2(py—2) and h(c+4) <2,
where h = ch ,,,(M®)/tr(M°) so that 0 < h < 1.

Proor. Details of the proof are similar to Sen and Saleh (1987) and are left
out. O
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Similarly, one has the following theorem.

THEOREM 4.4. Under the conditions of Theorem 4.1, the PTRE fails to
dominate SRE. Also, if for an a(0 < a < 1), the level of significance of the PT,
we have

Hp2+2(/\/§2,a;0) > (I{z(Pz -2) - (I}/Pz(Pz -2),
(4.14)
q=(pz—2) A(2/h - 4),

then, the SRE fails to dominate the PTRE.

However, one may verify that under H, the ordering of the ADR of the four
estimators is as follows:

(4.15) R(p1; W) < R(PLT; W) < R(p5,; W) < R(p1,; W).

The general behavior of these risks is similar to those discussed in Sen and
Saleh (1987) in connection with linear regression models.

5. Concluding remarks. It follows from the discussions of Section 4
that both PTRE and SRE are robust from the risk-efficiency point of view. Of
the two SRE possesses asymptotic minimax character in terms of ADR charac-
teristics, while PTRE does not have this character. However, PTRE is attrac-
tive for any p, > 1, while SRE needs p, > 3 in such a case, that is, for p, < 2,
PTRE is the only course left. However, for p, > 3, SRE in general is the choice
while PTRE needs the appropriate choice of «, the level of significance of the
PT. However, one can develop a maximum rule to select appropriate a to get
the optimum PTRE for p; but still SRE is preferable since, the interval (0, §,)
in which PTRE is at best not known generally.

APPENDIX

Proor oF LEMMA 2.1. The proof of Lemma 2.1 will follow at the end of the
following two lemmas.

LEmMA A.1. In addition to (1.1), (1.2) and (aXi) of Theorem 2.1, assume
that the following hold:

(bl) The d.f. F is continuous and strictly increasing.
(b2) The function g on [0,1] to R satisfies [Ig(t)|* dt < c.

Then the following holds:
Forany 0 <u<v<w<landforalll <j<p,

(1) lim sup E{Z;(v) — Z;(v)}{Z,(w) - Z,(v)}* < Cmm,,

n—o

where m, = ['g*(t)dt, m, = [“g%(t)dt, C is a constant given in (19).
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Proor. Since u,v,w are fixed, we shall suppress these entities in the
notation. Further, to simplify writing let x = F~ (), y = F~'(v) and z =
F~Yw) and define

@ p1=G(v) — G(u), p; = G(w) — G(v), q;=1-p;;j=12,

o; =g(F(z~:i))I(x <& <y)— P, Bi =g(F(8i))I(y <g; <2z) =P
Then
(3) {Z,(v) - Z;(w))*{Z;(w) - Z;(v))" = n (% X,;a)" - (B X,B))"

Let & = o-field {Y,, ,...,¢;}, i > 1; &, = o-field {Y,}. In carrying out the
computations that follow we have repeatedly used the following facts: «;, B,
are centered; «;,8; are &,_; measurable for all i <k and X;_  is &_;
measurable and independent of ¢;, i > 1. Thus, one has

Ea;=0=EB, foralli, k.
EX; ;X _jo;Bpr = E[Xi—ij—jaiE(Bk‘g_l)]
(4) =E[X~_-Xk_J l]E(Bk) =0, i <k.
EX,_;X, ; X} a,0,B} = E[X,_; X, ;X[ ;Bia; E(a,| F,_,)] =0, i, 1<k,
Using facts like these one can write
E(%X;_a;) (Ele—,]Bl)
=3, EX} ja7B? + } ZEX? X! alB}

fal?
i#l
+4 ) XEX? X} ja;B;a;,B,
i<k

+ 2 Z EEEXi_ij_lez_j(aiakBlz + Bzﬁkalz)

i<k<l

4( Y =2+ ) EE)(EXi_le FjaiBiayBy)

i<l<k I<i<k

(5)

— T, + T, + 4T, + 2(T, + T5) + 4(Ts + T;), say.

We shall now show that n 2T, - 0, for j =1,4,56,7, and that
limsup n=%(T, + 4T;) < Cm m,. The basic idea of the proof is to exploit the
iterative nature of the process.

The details of the proof of n‘sz tending to zero for each j = 4,5,6,7 are
elementary and cumbersome but similar. So we shall give the details only for
n~2T; — 0. The assumption that {¢,} are i.i.d. mean 0 r.v.’s will be used
repeatedly and without mention. Observe that

E(Xi—JXl —J zBlakBk) EX Xl —J LBIE(akﬁk“?~ 1)
EX,_ X, X} ,0,=0, 1<ik—j<i-1
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and
E(akBk|9;e—1) = —P1P2, k>1.
Therefore,
n=?T; = n_2P1P2{ Y 3EX; X, ;X}aB
1<i
(6) +YE ) EXi—le—ijZ—jaiBl}

I<i k—j=i+1
— -2
= —ppon” Ty + Tqp}, say.
Now, it is well known that the AR(p) process given by (1.1) and (1.2) satisfy

(7) X;= X b 4&, P21,

k= —o
where {5,} are real numbers satisfying 8, = 1, d; < o, with d, = X5_,l8,/,
r > 1. See, for example, Ash and Gardner [(1976), Sections 2.3.4-2.3.7] and
Lukacs [(1968), Theorem 4.2.1]. Note that sup,|§,] < d; and hence d, <
implies that

(8) d.<di<w, forallr>1.
Next, define
n n
A,,= X 8, .6, H:,=23Y58, ., 0s<n<m<wxk<n.
r=—c k

(9) a,=E(ac”), b.=E(Be"), 1<r <4,where a,p are copies of a, B;.
o = Var(a), a3 = Var(B).
Observe that

E=An n —Apk-1s ki<n<m,

(10) X,=A,;=A,, ,+HiL, +e=A,  +e, forali,

i,i—J i,i—j+

g2 <m,, wherem, areasin(1),k=1,2.
Moreover, (8) implies that for all n < m < o,

(11) EA%, .= L 82uy<p,di<w,

r=m-—-n

(12) EA‘tn,n = Y &ugt3 Y Y 8387y < (my + py)di < o,
k=m-n k=m—-nl=m-n

l+k

where u, = Ee”, 1 <r < 4.
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From (10), we obtain E{X/a,|%_}} = 24;,_,a, + a,, for all i. Use this
and argue as for (6) to obtain
Ty = Z,EX,_jB{2a,L,,; + a, X,} + )y XEX, ;B{2a:L;,; + a,X;_;}

I<i;i—j=zl+1
711 + T712, say, where L, =X, A, ; ;.

Now, the Cauchy—-Schwarz (C-S) inequality, the stationarity of the process
{X,} and (11) imply that E|X, ;8,L,,,| <{E(X,_;B,)*EL} }/* < D,C, < =,
E\X,_;B,X)| < D,C, < », where D, is a constant depending on the kth mo-
ment of g(U) and C, is a constant depending on the kth moment of ¢ and d,,
1 < k < 4. These facts imply that

(13) n=2 Tl = O(n1) =o(1).
Next, to handle T';,,, use (11) to get that
L;,= {Ai—j,l—l +6; i85+ Hii—_Jj,l+1}{Ai,l—1 +8;, ;5 + Hi7l},

i1—j=>1+1.
The above type of conditioning argument yields that for i —j > + 1,
EX,_;B,L; = EXl—j{[éi—lAi—j,l—l + 5i—l—in,1—1]bl + 5i—j—l6i—lb2}’
where b, as in (9), r = 1,2, 3, 4. Similarly,
EX, ;B,X, ;=EX, ;{82 ; by + 26, ; A, ;, 1b:}, i—-j=1+1

Use these facts together with (11) and an argument like the one that led to
(13) to conclude that n~2|T;;,] = O(n~2). This and (13) yield that
(14) n~ 3T, =0(n"1') =0(1).

Now we turn to T,,. Use (10) to write X, ;=A, ;, | +8, ;_ ;& +

Hk_J v BR—J =1 + 1, and use arguments like those above to get that

E(X? ja|Fi_ ) =8F_j_jas+2A,_;; 16, j_;a;, k —j =i+ 1, so that
T72 = ZZZ EXl—jBlXL—j{ k—j— Qg + 2Ak—] i— 16k—1 a }
(15) I<i<k;k—j=i+1

=T + 2a,T,,, say.
Arguing as above obtains
EX, B,X; ; =EX, BA; ;1 +8 ;5 +HF,,,})=0, i-j=l+1
Thus,
Tl < aydy ) YIEX, ;8,X; ;I =0.

I<i
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Similar arguments show that |n =27y, = 0(1) thereby completing the proof of
n~2T,,| = o(1). This together with (14) shows that n~2|T,| = o(1).
We shall now consider T,: Rewrite

T, = (ZZ + ZZ)(EXiZ—jXIZ—jaiZBlZ) =Ty + Ty, say.
i<l i>1
Again, by a conditioning argument,
Ty = 0'22' ZZEXiZ—lez—ja?
i<l
(16) ot LL + EE)(Exz,x2e)
i<l;l—i<j i<ljl—-izj+1
=03 - {Touy + Ta1a}, say.

Again, the C-S inequality, the stationarity of the process {X,}, the assump-
tions (a)(i) and (b2) imply that 0 < T,,, <j - n - EX; = O(n), by (8) and (10),
so that

(17) n"2Ty, =0(n"1) =0(1).
Next, arguing as for (15) we obtain
Typ = Z ZEX{?—JXI{J‘“?

i<l;l—izj+1

_ 2 2 I 2
= Z EX; “‘{Al—m—l + 5l—j—i£i + Hl—JJv“l}

i—y™ti
i<ljl—izj+1

(18) ¥
=l h ZEXi2—j Al + X 512—j—mE52
i<l;l—izj+1 m=i+1
+ 2c ) Y EX? A ;i 1815

i<lil—izj+1
=02 B, + 2¢- By, say, wherec = E(sa)’.
The C-S inequality and (12) yield that
(19) n?B,<C<w, forallnz>1,

where C is a constant depending on u, and d;. A similar argument shows
that |By| = O(n~1). This together with (19) and (18) yield that

(20) lim sup n~2|Ty;,| < Cof.

Hence, from (18)-(20) one readily sees that limsup n™2|Ty| < Cof - 02 <
Cm m,, by (10).
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Similarly, one concludes a similar result for Ty, thereby enabling one to
conclude

(21) lim sup n~2|T,| < Cm,m,, where C is asin (19).
Finally consider n~2T,. An exactly similar argument gives the inequality
lim sup|n 2T, < C(p,p,)° < Cm,m,, where C is asin (19),

because p? = {[’g(¢)dt}* < (v — u)[’g*(¢t) dt < m, and because a similar in-
equality holds for p,. The proof is now terminated. O

LEMMA A.2. In addition to (1.1) and (1.2) assume that Ec = 0, E¢? < »
and Eg*(U) < «. Then the finite dimensional distribution of Z,, for every
1 <j < p, converges weakly to that of (E(X)?}*/?B(-), where B is the Brown-
ian motion in C[0, 1] with the covariance function G(min(u,v)) — G(u)G(),
O<u,v<l.

Proor. The proof uses Corollary 3.1 of Hall and Heyde [(1980), page 58]
and the Cramér-Wold device. Details are left out for the sake of brevity. O

THE ProoF oF LEMMA 2.1. Use the indirect method of Billingsley [(1968),
Section 12], the right continuity of {Z j} and Lemmas A.1 and A.2 to conclude
Lemma 2.1. For the nature of details see Billingsley [(1986), page 107]. The
details are left out for the sake of brevity. O
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