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ADMISSIBILITY RESULTS IN LOSS ESTIMATION

By CHITRA LELE

Stanford University

In this paper we consider the problem of estimating the loss of point
estimators and study admissibility of such estimators of loss. We adapt and
extend the “unified admissibility proof” idea of Brown and Hwang to this
problem. We first present the result in the Gaussian setup. We then
generalize the procedure to general exponential family distributions and
apply it to the Poisson distribution. The result for the gamma distribution
is also stated. The role played by the “polydisc transform” (cf. Johnstone
and MacGibbon) in making explicit the relationship between the Gaussian
and Poisson cases is discussed.

1. Introduction. It is often of interest to assess the discrepancy between
an unknown (vector) parameter § € R? and its point estimator 8(X). This
discrepancy (or loss) being a function of both the parameter and the data is
itself unknown, but a data-dependent measure y(X) of this loss can serve as a
measure of the performance of §(X). In this paper we shall concentrate on
developing methods for proving admissibility of loss estimators in certain
situations. It would be interesting to see whether, as in the point estimation
setting, certain natural estimators are admissible for some dimensions and
inadmissible for others. In Lele (1990), inadmissibility of certain unbiased
estimators of loss is proved by construction of dominating estimators, and is
illustrated with some computational results and data examples.

To begin with, note that an unbiased estimator of risk is also unbiased for
estimating loss. Now let us formulate the problem in detail. Let X ~ p,(x),
where p,(x) is the density of X relative to a dominating measure v(dx) and
0 € O c RP. Let 6(X) € R? be an estimator of 8 and let the loss incurred be
L(8(X), 6). We now need another distance measure to study how well y(X)
behaves as an estimator of the loss L(8(X), 8); we use squared error for this
measure. Note that L does not have to be a squared error loss function. The
risk incurred by y(X)is R(y, 8) = E,[y(X) — L(8(X), ). Of course, this risk
depends also on the decision rule §(X), but § is assumed fixed and given.

This approach is both conditional and frequentist, but still all the conven-
tional definitions and methods can be used in studying the admissibility of loss
estimators. We present some here for completeness. We say that y(X) is
inadmissible if there exists another loss estimator ¥(X), such that R(7,8) <
R(y,6) for all 6 with strict inequality for some 6. The Bayes rule 1y,
corresponding to the prior G(d#8), is the minimizer of

r(y,G) = [R(,0)G(do)
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and
minr(y,G) = r(yq,G) = r(G).
Y

If r(G) < », then the Bayes rule y,; also minimizes the posterior expected
distance

Eg[(L(5(X),6) — 7)’1X = x|

and then, y; = EG[L(8(X), 0)|X]. If r(G) = o, this v, is called a formal or a
generalized Bayes rule. Note that §(X) can be arbitrary.

If g(8) is the density function corresponding to G(d#0), then we shall often
use the notation r(y, g) in place of r(vy, G).

This approach is similar to that of Johnstone (1988), who considered
(in)admissibility of unbiased loss estimators in the Gaussian setting for the
mle and the James—Stein point estimator.

The problem of estimated confidence has been studied rather extensively.
There has also been recent interest in the area of loss estimation. Rukhin
(1988) considered loss functions for the simultaneous estimation of 6 and
L(8(X), 6) and proved some admissibility results. Berger and Lu (1989) consid-
ered the problem of constructing improvements over y(X) = p (distinct from
the unbiased estimator of loss) for estimating the loss associated with the
posterior point estimator for the Strawderman prior and also for the James-
Stein positive part estimator. More recently, Brown and Hwang (1989) have
considered a variant of the present problem; they consider the unbiased
estimator of the coverage function in the Gaussian context and prove its
admissibility for p < 4, a result similar to that of Johnstone (1988). We also
refer to a related result in DasGupta (1989) later on.

2. Unified admissibility proof. Our goal is to develop a single method-
ology for proving admissibility of a variety of Bayes loss estimators in a variety
of distributions. We shall adapt the methods used by Brown and Hwang (1982)
in the point estimation situation towards this end. We shall present a detailed
application of the methodology in the Gaussian case and will state the results
in the Poisson and the gamma distributions which can be derived from a
generalization of the technique.

Johnstone [(1988), page 364] gives a version of Blyth’s lemma that is useful
in the loss estimation context. Let us recall that the difference in integrated
risks, occurring in the statement of Blyth’s lemma, can be written as

r(y,@G,) —r(G,)
(2.1) - ff[(y(x) —L)* = (vg,(%) - L)2]Po(x)Gn(d0)v(dx)

= [[¥(2) = v6(0)] ma(x) d(x).

[Here, L(8(x), ) is abbreviated by L and m,(x) is the marginal distribution
of X.]
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Consider an exponential family with density
fo(x) = exp{6 - x — ¢(0)}

relative to a o-finite Borel measure v on 2°C R?, and ® C R” is the natural
parameter space,

0= {0: Je#v(dx) < oo}.

Assume O is open in R”. The mean can be expressed as E,(X) = Vy(6).
First, using the exponential identities (derived via integration by parts) of
the following lemma, express the difference between posterior loss estimators
corresponding to different priors in terms of the derivatives of the priors. The
lemma follows from Hudson (1978).
We shall let ® = R?, unless stated otherwise.

LEmMMA 2.1. The following relation holds true for a continuously differen-
tiable function g: R? — R, for which all integrals exist:

JIX = vu(6)Ig(6) fo( X) do
(2.2)

= [122(6) +£(8)A¢(6)] fo( X) do.
In particular, if g(8) = 1, (2.2) simplifies to

JIX = V() I* £o(X) d6 = [ Ap(0) fo( X) db.

For L(8, X) = || X — Vy(0)||?, the posterior loss estimator corresponding to
the prior g is therefore

V(X)) = E,(L(6, X)IX)

_ J(Ag(8))(g(8)) " fo(X)g(0) do N JAY(0) fo(X)g(0) do
Jfe(X)g(6) dé If(X)g(6)de

Using (2.1),

By =r(vg:8n) ~1(8n) = [ (v = 75,) (L8,)v(dx),

where I .h = [h(0) f,(x) d6. Note that x will be used instead of X when it is a
variable of integration.
To prove admissibility using Blyth’s lemma, we need to prove that A, — 0
as n — o, for a sequence of priors g, — g.
Let us now consider the generalized Bayes point estimator [cf. Stein (1981)
and Brown and Hwang (1982)]
IxVg

=X+ .
Sg(X) Ixg
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X),
the difference between y, and v, is

Defining vy, as
2

IXVgn
IXgn

Yo, = Eg, X+ - Vy(0)

Ye, ~ Ve T

Ixg, Iyg, Ixg,
(2.3)

_ IxAg + Ix(gAd) _ IxVg 2
Iyg Ixg Ixg )

Now concentrate on the simplest case of the Gaussian distribution.

2.1. Normal distribution. In this case Ay¢ = constant, and the difference
in (2.3) depends only on terms involving derivatives of the priors. So,

I,chn”2
Lg, |

We assume that conditions of Lemma (2.1) also hold for g,. The integrand in
(2.4) converges to zero as n tends to infinity, and so we seek sufficient
conditions for application of the dominated convergence theorem to conclude
that the integral vanishes as n — .

We shall first state the theorem and its two corollaries and then present the
proof.

I.Ag, IAg
(2.4) An=f(1g -

x

1LVg|
Lg|

) (ngn)v(dx)

TueorEM 2.1. In case of the Gaussian distribution, y, = E (LX) is ad-
missible as an estimator of the loss

IVg 2

ILg

x

L=|X+ 0

if the prior g satisfies the following two conditions:

(Ag)® Ivel*
f p d0+f

(2.5) PE do < o,

(9)
'[R 8

2.6
(2.6) »—sli6ll* In2(Jl6ll v 2)

where S = {6: ||6]| < 1}.

We now apply this theorem to two different priors g(6) and derive admissi-
bility results for the corresponding loss estimators. This will also illustrate
that the conditions of the theorem are often easy to verify.
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() With g(8) =1, §,(X) =X and for L = |X — 6%, y,(X) = p = yymp(X).
The condition (2.5) holds trivially for this g, and condition (2.6) holds only for
p < 4. Hence we have Johnstone’s (1988) result:

COROLLARY 2.1. Y, (X) =p is admissible as an estimator of ”X - 0”2 107‘
unb
p <4

Johnstone (1988) has also constructed an improved loss estimator for
p>4.

(ii) Next consider the Strawderman prior and the point and loss estimators
that correspond to it. We examine admissibility of the posterior estimator of
the loss associated with the generalized Bayes point estimator. A simplified
version of the Strawderman prior [i.e., a special case of the general prior stated
in, e.g., Berger and Lu (1989)] is

£n(0) = [ et D)) exp{‘ g%)—e}”"”“’”da,

where D(A) = AM(1 — A)"! and I is the identity matrix. The point estimator
8,, which is Bayes for this prior, is admissible for m > (p — 2)/2 [cf. Berger
(1985)]; in particular, when m = (p — 2)/2 for p > 3.

Consider the simplest case with m = (p — 2)/2. Then, letting v = | X ]IZ,
the point estimator is

: ’(p—2>/2(U)X

8(X)=X ;

and the prior with respect to which this é is Bayes is
o 1 A \P2 Ao69) 1 Ja
s =[] -7 ) e

0t0 —(p/2)+1
“r(B )%
2 2

Define u(v) so that v - u@) =r,_, /2(v) Then for estimating L =
I6(X) — 611, the posterior loss estimator is Ypost = 2 + vu(v) — vu*(v). Both
the conditions can be verified to hold for this prior and we have another
corollary of the theorem:

(2.7)

COROLLARY 2.2. v, is admissible as an estimator of L for all p > 3.
The result also holds true for a general m = (p — 2)/2 + 8, B > 0.
REMARK. Note that the prior yielding an admissible point estimator gives

an admissible loss estimator as well, that is, posterior mean and posterior
expected loss are both admissible.
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Let us now prove the theorem.

Proor or THEOREM 2.1. As indicated before, the task is of bounding the
integral in (2.4). To do this, we initially bound the integral by four different
terms, and then find conditions on the prior in order for these four terms to be
bounded.

Consider the sequence of priors {g,(6)} with g,(8) = £,(0)g(6) and ¢,(60) < 1
for all n. Substitute £,g for g, and separate out the terms involving the
derivatives of g alone using the inequality

(2.8) (a; + - +a,)” <q(a}+ - +dd)
for ¢ = 2 to give

2
I(gA¢&,) +21(Vé, - Vg) | L&,
A, < 2/( Tz, g (1:8,)v(dx)
(29) I(¢,48) LAg || LVg|
¥ 2f( Le, Le | Le| ) Loty ()
=2A, + 2B,.

Let us first deal with B,. Using the Cauchy-Schwarz inequality and the

fact that g, < g,
A IA ILVg|?
(2.10) B, < [I, [g( g _ 08 |18

I.g

z Ig ]V(dx).

Expanding the square and simplifying the integrand in (2.10),
2

Ag LA I1Vg|? Ag)? ILvgl*

I[(g_ g, |Lve Js[x(g)+ gl”

g ILg I.g g (Lg)°
Now, application of Holder’s inequality implies that B,, is bounded by
Ag)*® Ivell*
/ (28) 464 / 8 de.
g 8

Let us now consider A,. Use of (2.8) with ¢ = 3, along with repeated
application of the Cauchy—-Schwarz inequality, allows bounding A, by three
integrals as follows:

(Ag, (0 )) IVE,(0)I1 IVg(8)II?
A, =3[ gy 80 do+ 12 ] = e
(2.11) vsf Iv(g(0)¢, <e>)n
(8(0)£,(0))’

=3C, + 12D, + 3E,.
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To choose an appropriate sequence {¢,}, first define

1, loll < 1,
In||6|l
Inn

0, el > n,

for n =2,3,....
We encounter the same difficulty as in Johnstone (1988) in using £, = n2.
Hence, define

2k—1 k

0<n<1/2,
(2.13) ém = | ==l

— 2k l(1-n)*, 1/2<m <1,

b

for some integer £ > 1 and let £,(6) = &(n,(0)).

Compute the derivatives of ¢, and substitute them in the integrands of C,,,
D, and E,. It can then be seen that, provided & > 4, the growth condition
(2.6) implies finiteness of C,; the same condition is also sufficient for E, to be
finite and (2.6), in conjunction with the condition [(|Vgl*/g®)d8 < » in-
cluded in bounding B, also ensures the boundedness of D,,.

Thus the condition (2.5) takes care of finiteness of B,, and together with
condition (2.6), it also implies boundedness of C,, D,, E, and hence of A,.
See Lele (1990) for further details of this proof. O

2.2. Extension to other exponential family distributions. We now return to
the general exponential family setting, but restrict our attention to informa-
tion-normalized loss functions, that is, weighted loss functions

L(8,8) = L w;(6)(8; — Vay(8))”
with weights

. 92 -1
w;(0) a (V2y(6)) = (Ww(ﬁ?)) .

Going over the procedure of bounding the difference in integrated risks
appearing in Blyth’s condition as in the Gaussian case, and choosing an
appropriate sequence of priors {¢,}, we can write down sufficient conditions on
g that ensure admissibility of y, = Eg[L(ﬁ, 9)IX].

In particular, let us see what the conditions are in the Poisson distribution
case. Consider X; ~ Poisson(A;), i=1,...,p, X=(X,,..., X)", A=
Ay .ayA P)T. Here the results can be conveniently stated in terms of A, so we
shall not refer to the canonical parameter 6. The information-normalized loss
is L_,(8,0) = XA, %(8,(X) — ;)% Let 8_(X) denote the Bayes estimator cor-
responding to the prior 7(A) and consider the sequence of priors {m,} converg-
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ing to 7. The sequence is of the form m, = £,7, wherein

ok 1pk, 0<n,<1/2,
/\ =
gn( ) 1_2k_1(1_nn)k’ 1/2S77nﬁ 17
and 7,, is defined as
1, A<1,
InA
M(A) ={l- 71—, l<A<n,
Inn
0, =n,

for n =2,3,..., and A = LPA,.
After performing the necessary calculations [cf. Lele (1990)] we get the
following theorem:

THEOREM 2.2. In the context of the Poisson distribution,y, = E_[L_,|X]is
admissible as an estimator of L_; = A5, (X) — A))? if 7 satisfies the two
conditions

(A V2 + V)’ (A - (Vm)?)’
(214) [ dr + [ S—dA <o
R® T R T
and
()
(2.19) Joo s miA v 7y <

where S = {A: A < 1} and
82

5T
oA

9 d z
, Vem=Eoom(h), (V)= ((Rw(,\)) )

V27T=(

pX1

Once again, we apply this theorem to two different point estimators to yield
two corollaries.

() For m(A) =1, 8(X) = X and E[X)A; M(X; — A,)%|X] = p. The integrands
in condition (2.14) are identically equal to zero and condition (2.15) holds only
for p < 2. Hence we have the result:

COROLLARY 2.3. v,,,(X) = p is admissible as an estimator of

An improvement for p > 2 is constructed in Lele (1990).
(i) Now let us consider the Clevenson-Zidek point estimator, estimating A
under L_, loss. The estimator is

p—1+8

- XX, +p—-1+p X

Ocz = 6cz(X) =|1
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This estimator is proved to be admissible for p > 1 andB > 0 [cf. Clevenson
and Zidek (1975)]. Consider the simplest case of B = 0. Then the prior
corresponding to which the Clevenson-Zidek estimator is Bayes, is

I'(p—-1)
(Zr)

Both the conditions can easily be seen to hold for this prior.

(2.16) 7Tez(A) =

COROLLARY 2.4. The posterior loss estimator
(-1
EXi +p-1
of the loss ¥A; '8¢z ; — A;)? is admissible for all p > 1.

(Note that the C-Z point estimator reduces to the mle when p = 1.)

REMARK. As in the Gaussian case, here too, the prior that produces an
admissible point estimator also yields an admissible loss estimator.

There also exists an extension of the admissibility theorem for the situation
where ® = RP. Once again we restrict to information-normalized loss func-
tions, and the sequence {{,} is the same as defined above in the Poisson case,
but in the definition of 7,,, A is defined by the relation A? = ¥ 1n?6,|.

The following theorem can be proved.

THEOREM 2.3. For an exponential family distribution with © + RP, the

posterior estimator with respect to the prior g, of the loss L[8(X), 0] is
admissible if g satisfies the two conditions

(2.17) fREL;%“gﬂ& de + fm 7

and

do <

r———

[(wg) ]° )

(2.18)

2
w.
]’ i g( ) d0<00’
RP

L 5T (A v 2)
where S = {6: A < 1} and

2

Ii] d
(wig)iza_oi(wig)’ (wig)izﬁ(wig)~

Let us first note that the above theorem can be further extended to include
other conjugate priors and priors associated with conjugate priors. Consider
prior densities of the form g*(0) = g(6)exp{a - 6 — nY(6)}, fora € R?, n > —1
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and consider the corresponding generalized Bayes point and loss estimators.
Conditions on g(8) which are sufficient for the admissibility of the posterior
Bayes loss estimator corresponding to the prior g*(6) are minor modifications
of conditions (2.17) and (2.18): The integrands in (2.17) and (2.18) get multi-
plied by the factor exp{a - 8 — ny(6)}.

Using this modification, we can establish a result for the Gamma distribu-
tion with the scale parameter unknown. Consider the following setup:

X exp{ —X;/a;} X{P 7V
T

where B> 1 is known and «; >0, X;>0, X=(X,,...,X,)" and a=
(ag, ..., ap)T. Here, 6, = a; ! and the information-normalized loss function is

ofs B
L(8,0) = Y 6; (3i ~ W) :

The best invariant point estimator 8(X) = BX/(B + 1) is generalized Bayes
for the prior g*(8) o I17_,|6,|~*. The following corollary is now easily verifi-
able.

COROLLARY 2.5. In the above gamma setting, the posterior loss estimator
pB2/(B + 1) is admissible for p < 2.

DasGupta (1989) considers the squared error loss function for the gamma
distribution and has an inadmissibility result for p > 3 for the best unbiased
loss estimator.

It is also possible to derive a result for a loss function which is not
information-normalized. The admissibility theorem for the Poisson distribu-
tion with squared error loss is stated below, along with a corollary. Refer to
Lele (1990) for the proof which involves some manipulation in order to
transform the problem to a familiar form, after which we can resort to the
methodology of Theorem 2.1.

We consider the same Poisson setting as before, but look at the loss

L(3(X),1) = L (8:(X) — ;).

The maximum likelihood point estimator 6(X) = X is formal Bayes with
respect to the prior 7(1) o (ITA;)~" and the corresponding posterior estimator
of L is y,,(X) = LX;. On transformation to the canonical parameter 6 such
that 6, = In(A,), i = 1,..., p, and defining ¢(8) = m(A) we have the theorem
stated below.

THEOREM 2.4. Let ¢(0) be a prior satisfying the regularity conditions of
Hudson (1978). Then the posterior expected loss y,(X) is admissible for
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estimating the squared error loss L if ¢(8) satisfies the following conditions:

Ap(6))? V(o) I
(2.19) pr%jD(—(o))—) o f”_:%;l e
V- o(0))°
(2.20) fRP(—é%a()_))_ o<
®(0)
(2.21) pr—sllellzlnz(”B” Vv 2)

Here S = {6: ]|6]| < 1}.

The unbiased loss estimator ¥ X; corresponds to the prior ¢(6) = 1. So, the
first two conditions above hold trivially, and the last condition holds only for
p < 2. Thus follows the result:

COROLLARY 2.6. In the p-dimensional Poisson situation, ¥X; is admissible
as an estimator of L = Y(X; — A;)® when p < 2.

The problem of finding improvements for p > 2 is still unresolved.

3. Role of the polydisc transform. We will now employ the polydisc
transform to explore the relation between the Gaussian and the Poisson cases
in the context of admissibility. The transform is described in detail, along with
its properties, in Johnstone and MacGibbon (1992). The definition and some
fundamental aspects are reproduced here. Define a many-to-one mapping
7: R?P > RP as

(3.1) T (@100, Wgp_1, Wg,) (w% + 03, .., 05, g+ wgp).

The set Q = 7~ X(T) is called the polydisc transform of T. A function v(7)
defined on T induces a function u(w) = v(7(w)) on Q. We apply the transform
to the parameter space, and in our context, 7 will be replaced by A. Define
B(w) = m(Mw)). The following identities can be verified to hold:

(3.2) 1VB(@) I* = 4 L A,(mi(V))* = 41 - (Vm)’,
(3.3) AB(w) = 4[A - m(A) + A - V2xr],

where (V7)? = (((3/3/\i)77()\))2)px1 and V27 (1) = (3% /XD w(A)) 1.

We can now see, in the context of loss estimation, how a Poisson problem in
p dimensions can be transformed to a corresponding Gaussian problem in 2p
dimensions with this transformation. The transformation is applied in the
point estimation context in Lele (1990).

Consider the conditions for admissibility of the posterior loss estimator in
the Gaussian setting (as derived in Section 2.1) and the corresponding ones for
the Poisson with L_; loss (as in Section 2.2). So we have to compare
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conditions (2.5) and (2.6) with conditions (2.14) and (2.15). It is not hard to
verify [see Lele (1990)] that after application of the polydisc transformation,
the left-hand side expressions of (2.14) and (2.15) transform to the 2p dimen-
sional versions of the left-hand side expressions of (2.5) and (2.6) respectively.

Moreover, the Clevenson-Zidek prior (2.16) is equivalent to the Strawder-
man prior (2.7) after the transformation, and the same holds true even if we
do not restrict to the special values of the parameters m and B in the priors.

Brown (1979) first suggested that admissibility considerations for point
estimators in the Poisson distribution in p dimensions correspond to those in
the Gaussian distribution in 2p dimensions. The polydisc transform provides
some insight into how this phenomenon occurs, and we find that the equiva-
lence also carries over to the loss estimation setting.

4. Concluding remarks. A necessary condition for admissibility of loss
estimators, namely, “if a loss estimator is admissible, then it is generalized
Bayes” can be proved to hold in the case of exponential families [cf. Lele
(1990)]. The point estimation analog of this result is extremely familiar [cf.
Brown (1986)]. The proof in the point estimation framework extends naturally
to yield this result for loss estimators.
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