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LOWER BOUNDS FOR CONTAMINATION BIAS:
GLOBALLY MINIMAX VERSUS LOCALLY
LINEAR ESTIMATION'

By XuMING HE AND DouGLAas G. SIMPSON

National University of Singapore and University of Illinois

We study how robust estimators can be in parametric families, obtain-
ing a lower bound on the contamination bias of an estimator that holds for
a wide class of parametric families. This lower bound includes as a special
case the bound used to establish that the median is bias minimax among
location equivariant estimators, and it is tight or nearly tight in a variety of
other settings such as scale estimation, discrete exponential families and
multiple linear regression. The minimum variation distance estimator has
contamination bias within a dimension-free factor of this bound. A second
lower bound applies to locally linear estimates and implies that such
estimates cannot be bias minimax among all Fisher-consistent estimates in
higher dimensions. In linear regression this class of estimates includes the
familiar M-estimates, GM-estimates and S-estimates. In discrete exponen-
tial families, yet another lower bound implies that the ‘proportion of
zeros”’ estimate has minimax bias if the median of the distribution is zero,
a common situation in some fields. This bound also implies that the
information-standardized sensitivity of every Fisher consistent estimate of
the Poisson mean and of the Binomial proportion is unbounded.

1. Introduction. Huber (1964) established that the median is the most
robust estimate of the center of a symmetric distribution in the following
sense. Suppose Fy(x) = F(x — 60), where the distribution F is absolutely con-
tinuous and has a density f symmetric about zero and decreasing on (0, «). Let
T denote an estimating functional of 6, that is, T' is a mapping from the space
of distributions to the parameter space ®. Define the bias function

(1.1) br(e; Fy) = sup|T((1 — &) F, + ¢G) — 4|,
G

where ¢ € [0, 1]. This is the maximum deviation of T from 6 that can be
induced by contamination of F,. Then the median functional T'(F) = F~1(1/2)
minimizes b,(e; F,) among location equivariant estimators. It is remarkable
that this result holds for each &, and no conditions beyond equivariance are
imposed on the estimators.

In other settings, optimality results about contamination bias have usually
restricted to smaller classes of estimators, and the earlier work focused
primarily on infinitesimal point mass contaminations. Hampel (1974) consid-
ered general one-parameter models, and studied the trade-off between asymp-
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totic efficiency and local stability within the class of M-estimators, introducing
the gross error sensitivity,

|IT((1 - e)F, +¢4,) - 6]

(1.2) y$¥8 == sup lim sup
x el0 2

where A, denotes a point mass at x. Hampel (1978), Krasker (1980), Krasker
and Welsch (1982) and Ruppert (1985) considered extensions of Hampel’s
(1974) theory to linear regression, concentrating on GM-estimators (gener-
alized M-estimators); see Hampel, Ronchetti, Rousseeuw and Stahel (1986) for
a review. Stefanski, Carroll and Ruppert (1986) and Kiinsch, Stefanski and
Carroll (1989) considered GM-estimates in generalized linear models. The
emphasis in their work has been on constructing estimates with optimal
asymptotic efficiency subject to a bound on the gross-error sensitivity.

Several recent results are more in the spirit of Huber’s (1964) result
concerning the bias optimality of the median. Hampel, Ronchetti, Rousseeuw
and Stahel (1986) obtained minimal gross-error sensitivities for GM-estimates
in regression. Martin and Zamar (1989) obtained the form of the M-estimate
of scale with minimal bias, whereas Martin, Yohai and Zamar (1989) obtained
the forms of S-estimators and GM-estimators with minimal bias for linear
regression, in each case allowing full contamination neighborhoods as in (1.1).
In a notable recent development, Maronna and Yohai (1991) constructed a
regression equivariant functional with a high breakdown point and contamina-
tion sensitivity within a factor of 2 of the minimum among all regression
equivariant functionals.

In the present paper we consider the general question of how robust
estimators can be if one ignores efficiency considerations. For contamination
neighborhoods the known bias optimality results in the location model [Huber
(1964), (1981)] and linear regression [Martin, Yohai and Zamar (1989)] in-
volved rather specialized derivations. One naturally wonders whether such
results can be obtained more generally. We provide a partial answer to this
question by presenting a global lower bound for contamination bias for para-
metric families of models. This unifying framework leads to tight or nearly
tight lower bounds for contamination bias in a variety of settings, including
location estimation, regression through the origin, scale models, discrete expo-
nential families and multiple linear regression. Special cases include the bound
of Huber [(1981), page 75] for location equivariant estimators and the bound of
Maronna and Yohai (1991) for regression equivariant functionals. Techniques
of Donoho and Liu (1988a) establish that in general the minimum variation
distance functional has bias within a dimension-free factor of the lower bound;
however, in particular examples it is often possible to construct a better
estimator based on bias and efficiency considerations.

Local to the model the stability of an estimator is indicated by the contami-
nation sensitivity:

(1.3) ¥4 = limsupby(e; Fy) /e,
el0

where b;(e; F,) is given in (1.1). Various authors have made the heuristic
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connection between y{°®) and y}; see, for example, Hampel, Ronchetti,
Rousseeuw and Stahel [(1986), page 175]. One always has y3 > y©® if the
same norm is used for both [He and Simpson (1992)]. Our global lower bound
for bias implies a dimension-free lower bound for contamination sensitivity,
and the minimum variation distance functional is within a dimension-free
factor of this bound. However, for a large class of regular estimators we find
that the contamination sensitivity must increase essentially like the square
root of the dimension. Hence, estimators that are regular and have
dimension-free bias function must have unbounded contamination sensitivi-
ties. Examples from linear regression include the S-estimators of Rousseeuw
and Yohai (1984), the MM-estimators of Yohai (1987) and the 7-estimators of
Yohai and Zamar (1988). By similar reasoning the minimum variation distance
estimator cannot be regular in high dimensions.

We present a specialized bound for discrete exponential families with posi-
tive support. This bound is tight if the median of the model distribution is 0,
which corresponds to a situation common in practice. For instance, Simpson
(1987) presented count data exhibiting a substantial proportion of zeros. The
bound is achieved by the ‘‘proportion of zeros” estimate, which therefore has
minimax bias for each ¢ if the median of the model distribution is 0. In
nonequivariant problems of this type Hampel, Ronchetti, Rousseeuw and
Stahel [(1986), page 229] and He and Simpson (1992) discussed standardizing
sensitivities by the root Fisher information to achieve a degree of invariance.
The bound presented in Section 4.2 implies that the information-standardized
sensitivity of every Fisher-consistent estimator of the mean in the Binomial or
Poisson model has to be unbounded as a function of the parameter.

The rest of the paper is organized as follows. Section 2 presents the main
results and some of their consequences. This section also introduces technical
machinery that is used in subsequent discussions. Section 3 considers location
estimation, regression through the origin and scale estimation, each of which
is an equivariant problem. Section 4 is concerned with discrete exponential
families, which do not have exact equivariance properties. Section 5 considers
the trade-off between bias minimaxity and regular estimation in multiple
linear regression. Some concluding remarks are made in Section 6. Technical
proofs are given in the Appendix.

2. Lower bounds for contamination bias. In general one might like to
consider neighborhoods other than the contamination type. Suppose d(F, G) is
a metric or a nonnegative discrepancy on the space of distribution functions
such as the amount of contamination to reach G from F. A key property is
that the sets {G: d(F, G) < ¢} are increasing in . Let p(-, - ) be a metric on
the parameter space. The bias function

(2.1) bo(e; F) = sup (p(T(G), T(F)): d(F,G) < ¢]

summarizes various aspects of the stability of T' at F. Qualitative robustness
of T with respect to d(-, - ) corresponds to continuity, that is, b,(0 + ; F) = 0.
Quantitative robustness refers to the magnitude of b,(e; F) for nonzero ¢. In
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particular, the sensitivity

yr = limsup by (¢; Fy) /&
el0
indicates the stability of the functional close to the model, whereas the
breakdown point

ek = inf{s: br(e; Fy) = sup bp(8; Fo)}
P

indicates how far from the model the functional becomes completely uninfor-
mative. Various authors have employed versions of the bias function, including
Huber (1964, 1981), Donoho and Liu (1988a), Martin and Zamar (1989),
Martin, Yohai and Zamar (1989) and He and Simpson (1992). Huber (1981)
provided a general discussion. He, Simpson and Portnoy (1990) and He (1991)
studied the robustness of test statistics on the scale inverse to that of the
sup-bias in order to obtain comparisons invariant to one-to-one transforma-
tions of parameters.

2.1. A global bound. An estimating functional T is said to be Fisher
consistent for a parameter 6 € @ if T(F,) = 0. For such estimators, Donoho
and Liu (1988a) introduced the gauge b,(¢) = sup{p(6,n): d(F,, F,) < &}.
Because of the restriction to a parametric subset of the neighborhood, b,(¢) >
b,(¢) for Fisher-consistent functionals.

We focus on contamination neighborhoods, which correspond to the discrep-
ancy

d,(P,Q) =inf{e > 0: @ = (1 — &) P + &R for some distribution R}
—inf(e > 0: sup (1-¢)P(A) - Q(A) < 0}.

meas. A
In general, the contamination gauge does not yield a tight lower bound for
contamination bias, but a notable exception is presented in Section 4.2. As a
technical tool we also use the variation norm

dv(P’Q) = SupAIP(A) - Q(A)l

(2.2) 1
= E[Ip —qldA =f(p —q)4 dA,

where A is any o-finite measure dominating P and @, such as (P + @)/2, and
p and ¢ are densities of P and @ with respect to A. The second equality in
(2.2) is Scheffe’s theorem. It is not difficult to show that d (P,Q) > d (P, Q),
so a contamination neighborhood of size ¢ is contained in a variation neighbor-
hood of size . A variation neighborhood need not be contained in a contamina-
tion neighborhood. However, the variation gauge

b,(&; Fy) = sup{p(@, n): n such that d,(F,, F,) < e}

appears in our lower bound for contamination bias.
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We write the contamination bias as by(e; Fy) = sup, 5, ry<. P(T(F), 0),
which is valid even for functionals that are not Fisher consistent.

THEOREM 2.1. Suppose {F,} is dominated by a o-finite measure. If T is a
functional mapping distributions to parameter values, then its contamination
bias satisfies

1 e
(2.3) sup br(e; F,) = —bv(-—;F};)-
n: p(0,7)<b,(e/(1—¢); Fy) 2 1-e¢

REMARK 2.1 (Constant functionals). As an aid to understanding (2.3) con-
sider the functional T(F) = 6, with the Euclidean metric for bias. In this
case, bp(e; F,) =10, — nll. If 6 = 0,, then the left-hand side of (2.3) becomes
simply b,(e/(1 — ¢); Fp), twice the lower bound for estimating 6,. Although
the constant functional achieves the minimum bias of 0 at one point, the
left-hand side of (2.3) is perhaps a more meaningful way to measure bias when
0 is not known a priori.

REMARK 2.2 (Model breakdown point). Define the model breakdown point
to be the smallest amount of contamination such that the estimator breaks
down for some parameter value; formally, &% := infle: sup,cq br(e; Fy) =
SUp, < @ SUP; > o b7(3; F,)}. As the variation distance between two distributions
can be at most 1, setting ¢ =1/2 in (2.3) yields sup,c¢ b7(1/2;F,) >
(1/2)sup,, < ¢ p(6, n). Hence, we obtain the following.

CoRrOLLARY 2.1. If sup, ,ce p(8,n) = =, then the model breakdown point
of an estimator can be at most 1/2.

REMARK 2.3 (Invariance). A simplification occurs in problems that have
invariance properties. Rather than detailing general conditions for invariant
estimation, we shall simply state that an invariance is present if there is a
metric on the parameter space such that b,(¢; F,) is independent of 6, and
with the same metric there is a class of functionals, called equivariant func-
tionals, such that b,(e; Fy) is independent of 6. Section 3 provides several
examples in which such invariance occurs. If an invariance is present and we
restrict ourselves to equivariant functionals, then the supremum over 7 in
(2.3) is unnecessary. Moreover, Corollary 2.1 implies that equivariant estima-
tors can have breakdown point no larger than 1/2. Special cases of the latter
result have been derived previously in various settings.

2.2. A bias-robust functional. A surprising feature of the lower bound
given in (2.3) is that it is dimension free. However, we shall exhibit a
functional whose contamination bias is within a dimension-free factor of the
bound. As the lower bound in (2.3) involves the variation distance, results of
Donoho and Liu (1988) suggest consideration of the minimum variation
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distance functional,

(2.4) T(F) = argmin d (F, F,).
6O

In practice one would need to ensure that FA, the sample-based version of F, is
not singular with respect to the model because otherwise d (¥, F,) = 1. When
modeling a sample of n counts by, for example, a power series distribution (see
Section 4), one might use the empirical distribution F(A) := n~'T7_,1,(X,) as
in Simpson (1987). However, in most settings it will be necessary to smooth
the empirical distribution in some way such as convolving it with a continuous
distribution as in kernel density estimation [Parzen (1962)].

Such concerns do not arise in connection with our formal results about the
contamination bias of the minimum variation distance functional, because if F
is in an e-contamination neighborhood of F, it is also in an e-variation
neighborhood of F,. We use the following result due to Donoho and Liu
(1988a).

ProposITION 2.1. For the minimum variation distance functional (2.4),
br(e; Fy) < b,(2¢; F).

Combining this with Theorem 2.1 we find that if an invariance is present so
that b,(2¢; F,) is independent of 6, then the bias of the minimum variation
distance estimator is deficient by a factor of at most 2b,(2¢)/b,(¢/(1 — ¢))
relative to the bound for equivariant functionals. As an interesting special
case, if bias is measured by the parameterization invariant metric d (F;, F,),
then the deficiency factor is at most 4(1 — ¢). In other cases we evaluate the
limits.

ProposITION 2.2. Suppose b,(¢) is continuous on (0,1/2), and b, (e) =
ey, + o(e) as € |0 with vy, > 0. Then the functional defined in (2.4) has

2b 2bp(e
lim sup—j'& <4 and limsup r()

PPy /(- ) S (o) (1 =) ~

It follows that the minimum variation distance estimator has the best
possible breakdown point and contamination bias no more than twice the
minimum for equivariant functionals as the amount of contamination ap-
proaches 1/2. Moreover, it has bounded bias sensitivity within a factor of 4 of
best possible. However, this result serves primarily to establish that the lower
bound in Theorem 2.1 is almost tight. The minimum variation distance
estimator as presented poses serious computational challenges in multivariate
settings, because it entails multivariate density estimation, multivariate nu-
merical integration and nonlinear optimization. Donoho and Liu (1988b)
observed certain pathological properties of the minimum variation distance
estimate of location.
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2.3. Local considerations. In general we assume that {Fy} is dominated by
a o-finite measure A such as Lebesgue or counting measure. In this section we
assume further that ® is an open subset of p-dimensional Euclidean space,
and that bias is measured by the Euclidean distance, possibly after a parame-
ter transformation. Let f, be a density of F, with respect to A. We say the
family {F,} is L, differentiable if there is a function u, with components in
L(f,) such that

(2.5) [V fors = fo = 8'uqfolda = o(l8l).

The function u, in (2.5) is essentially the likelihood score function. If the
model has this differentiability property, then (2.3) reduces to the following
lower bound locally.

COROLLARY 2.2. Suppose for each 0 € O that F, has density f, with respect
to a o-finite measure A. Suppose {F,} is L, differentiable. Then

br(¢; F,
. 1m sup sup _— Y, 5
2.6 y 7(&; Foys) (6
el0  [I8li<b,(e/(1—e); Fy) €

where

7(0) = { inf Elzu/X)l}

If an invariance is present so that the bias of an equivariant estimator is
invariant to 8, then the supremum in (2.6) can be removed; see Section 3 for
examples. In noninvariant problems, the left side of (2.6) defines an extended
notion of contamination sensitivity.

Suppose a functional T is defined at F and contaminations of F' of the form
F,,=0—-¢F +¢A, if ¢ >0 is sufficiently near zero, where A, is the
distribution assigning probability 1 to {x}. Hampel (1974) defined the influence
function

IF(x;T, F) = lim(T(F, ) ~ T(F))/e

assuming this derivative exists. The influence function has been used exten-
sively in the literature as a heuristic tool; see Hampel, Ronchetti, Rousseeuw
and Stahel (1986) for a comprehensive treatment. The gross-error sensitivity
yE® = sup, || IF(x; T, F)llis often used to quantify the stability of a functional
T. If the influence function fails to exist, the gross-error sensitivity can be
defined without reference to the influence function as in (1.2). With the more
general definition, He and Simpson (1992) observed that the gross-error
sensitivity bounds the bias sensitivity below. We use this fact in the next
section.
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PrOPOSITION 2.3. For any functional T, y°® < yi.

2.4. Regular estimating functionals. It turns out that a large class of
regular estimators cannot have contamination bias within a finite dimension-
free factor of the bound in (2.3). This class essentially consists of functionals
that have influence functions, are Fisher consistent and are approximately
linear within the parametric family. In view of the results for the minimum
variation distance functional, it follows that there is a conflict between bias
minimaxity and regular estimation in higher dimensions. We assume here that
0 is an open subset of p-dimensional Euclidean space.

DEeFiNITION 2.1. Suppose {F,; 0 € O} is an L,-differentiable family of distri-
butions with finite Fisher information. A functional T is locally linear if it has
the following properties:

(1) For each finite x and 6 € ®, T has an influence function ,(x) =
IF(x; T, F,) such that E,[,(X)] = 0 and E,lls,(X)II* < oo.
(i) For each 6 € 0, and as [|5]| = 0,

(2.7) T(Fy.s) = T(Fy) = [y d(Fy.s — Fy) + o(lldl).

REMARK 2.4. A functional T is Fréchet differentiable at F, with respect to
the variation distance if ¢, is bounded and T(F) — T(F,) = [¢,d(F — F,) +
o(d (Fy, F)) holds for any sequence of distributions F such that d (F,, F) — 0.
Fréchet differentiable functionals are locally linear, because the L, differen-
tiability of { F,} implies d (F,, F,,,) = O(ll5]). If T is Fisher consistent, the left
side of (2.7) is simply 6.

REMARK 2.5. Variation distances are larger than Prohorov, Lévy and
Kolmogorov—-Smirnov distances, the latter two being associated with the root-n
convergence of the empirical distribution function; see Huber [(1981), pages
34-39]. Hence, estimators that are Fréchet differentiable with respect to these
distances are also locally linear.

REMARK 2.6. Hadamard or compact differentiability is a weaker condition
than Fréchet differentiability. Under slightly different conditions on {F},
Fernholz [(1983), page 117] established that Hadamard differentiable function-
als satisfy conditions (i) and (ii) of Definition 2.1.

ExampLE. If F, has a finite mean vector u(f) and a finite covariance
matrix, then the mean functional T'(F) := Ez(X) is a locally linear estimate of
w(0) with influence function x — w(#) and remainder 0 in (2.7). The mean is
not Fréchet differentiable unless the sample space is bounded.
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THEOREM 2.2. Assume O is an open subset of p-dimensional Euclidean
space. Suppose {F,} is L, differentiable with finite Fisher information. If T is
Fisher consistent and locally linear, then y%(0) > p/Ellu (Xl

REMARK 2.7. In the proof it is shown that if 7' is Fisher consistent with a
bounded influence function, and if {F,} is L, differentiable, then (2.7) is
equivalent to the requirement that the influence function satisfy
E[¢y(X)u (XY] = I,. This condition is usually straightforward to check.

Theorem 2.2 does not require a supremum over the parameter space, in
contrast to Corollary 2.2, because of its restriction to a class of regular
functionals. Both yield the same bound if p = 1.

ExampLE. Consider estimation of the mean in the p-dimensional normal
model with covariance I,. In this case E,l|X| = EIWPI, where Wp2 is chi-
square with p degrees of freedom, and p/E|X| =vV2T1/2(p + 2))/
I'(1/2(p + 1)) > p'/2. On the other hand, for any unit vector z, E |z’X| =
(2/7)'/2, so the lower bound of Corollary 2.2 is (7/2)'/? regardless of the
dimension.

3. Some equivariant examples.

3.1. Location of a symmetric distribution. Given any distribution function
F one can define a location-shift family of distributions {F,} by setting F,(x) =
F(x — 0). A functional T is location equivariant if it satisfies T(F,) = T(F) +
for each 6 and each F for which T is defined.

Suppose F is a continuous distribution function on the real line with
density f symmetric about 0 and radially decreasing, which is true if F is
Gaussian, Cauchy, double exponential and so on. Define the location-shift
family with density fy(x) = f(x — 0), where f is taken to be continuous at 0.
As an application of Theorem 2.1, we obtain Huber’s (1964) result that for
each ¢, the median is bias minimax among location equivariant estimators of
0. We also verify that the median is locally linear in the sense of Definition 2.1.

First observe that if T is equivariant, then b,(¢; F,) = by(¢; F,), the reason
being that T((1 — &)F, + eG) — 0 = T((1 — e)F, + eG_,), and G_,(x) =
G(x + ) still ranges over all contaminating distributions. Moreover, the varia-
tion distance is invariant, that is, d (F,, Fy, ;) = d (F,, F;). Hence, by Theo-
rem 2.1 an equivariant functional satisfies

b(——:F
v(l—e’o)'

N =

(3.1) br(e; Fy) = bp(e; Fy) =
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In order to evaluate the lower bound in (3.1) use the symmetry of f and
(2.2) to calculate

dy(Fy20 Foy)2) = f_ow{ f(x + %IBI) - f(x - %IGI)} dx

_or() _ 4
= 5 .
It follows that b,(¢) = 2F (1 + (1/2)e), and (1/2)b,(e/(1 — ¢); F,) =
F~Y271(1 — &) 1). This lower bound, which applies to all location equivariant
functionals, is the same as the contamination bias of the median computed by
Huber [(1981), page 75]; the bound is tight.

Under the assumptions on F, the median is Fisher consistent for 6.
Moreover, it has the influence function ,(x) = (1/2)sign(x — 6)/f(0); see
Huber [(1981), page 57]. A direct calculation establishes that (2.7) holds:

[0 f(x = 8) = f(a)) d = T 5 4 o3
x x—8)—f(x))de = ——FF—=6+0 ,
° 21(0)

so the median is locally linear.

(3.2)

3.2. Regression through the origin. Let F be a bivariate distribution
function for jointly distributed random variables X and U. One can define a
linear regression family of distributions via transformations of the form
Fy(x,u) = F(x,u — x0). Observe that F, is the distribution of (X,Y):=
(X, X6 + U). The usual linear model assumes X and U are independent, and
U has a continuous distribution symmetric about 0. We consider functionals
for estimating 6.

Using the transformation family defined above a functional T is regression
equivariant if T(F,) = T(F,) + 6 for each real 6. This is the functional
version of the sample-based definition given by Rousseeuw and Leroy [(1987),
page 116]. To remove the dependence of the bias on the scale of X we use the
parameter distance p(T,6) := |T — 6| /s(Fy), where s is a scale equivariant
functional and Fy is the marginal distribution of X. Hence, we can assume
that Fy has unit scale. By reasoning similar to that in Section 3.1, the
contamination bias is invariant in 6.

Observations at X = 0 provide no information about 6, so we assume that
{X = 0} has probability 0 under F. Given a bivariate distribution for X and Y,
let Fy denote the distribution of R := Y/X. Under the model, 6 is a location
parameter for R, which has a continuous distribution symmetric about 6.
Hence, the median ratio Fy '(1/2) has the smallest contamination bias among
location equivariant functionals of Fy. Such functionals are regression equiv-
ariant, but not all regression equivariant functionals are functionals of the
ratio distribution. Consider the ordinary least squares estimate. However,
Martin, Yohai and Zamar (1989) reported that the median ratio minimizes the
contamination bias over the broader class of regression equivariant function-
als. We verify this result via Theorem 2.1.
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Using Huber’s [(1981), page 75] calculation, the median ratio has contami-
nation bias F; 1(271(1 — &)™), where Fy, is the distribution of the ratio for F,,.
For positive r,

Fo(r) =Py(X>0,Y<Xr) + P)(X<0,Y > Xr)

= [ Fy(larl) dFx(x) + [* {1~ Fy(~lerl)) dFx(x) = Eo| Fy(1Xr)]

using the symmetry of Fy. The bias b = b(¢) of the median ratio therefore
solves E [ F,(IXb])] = 271 — &)1

In order to calculate the lower bound given by Theorem 2.1 we solve for b,
in the equation d (Fy, Fy, ) = ¢/(1 — ¢). Let f;; denote the density for Fy.
Then, using (3.2),

1
d,(Fo, Fas,) = 5 [[| fo(u + 2abo) = fy(u)| du dFy(x)

2 [ Fy(lxbl) dFy(x) — 1.

Upon rearranging we find that b, satisfies E[F,(Xb,)] =271 —-¢)" .
Hence, b = b,, and the median ratio achieves the minimum contamination
bias for equivariant functionals in regression through the origin.

3.3. Scale of a positive random variable. Starting with F as in Section
3.1, one can define a scale family of distributions by setting Fy(x) = F(x/0). If
F has density f symmetric about 0, then the absolute values of the observa-
tions are sufficient for 8. Hence, we shall assume that the unit model F has
positive support. Martin and Zamar (1989) considered robust estimation of 0,
obtaining the form of the min-max bias estimate among M functionals of the
form

S(x, F) = inf{s:fowx(x/s) dF(x) < b},

where x(0) = 0, and y is nondecreasing on [0, «) with at most a finite number
of discontinuities. The min-max estimate depends on ¢, but a scaled median
functional S(F) := cF~%(1/2) provides comparable performance.

A functional T is scale equivariant if T'(F,) = 6T (F,) for each § > 0 and F
such that T'(F) is defined. We shall obtain lower bounds for all scale equivari-
ant functionals. In order to measure bias invariantly we employ the distance
p(T, 6) := |log(T/6)|. In other words, we evaluate the estimate of the log-scale
parameter. In this metric, b, (¢; F,) = byp(¢; F,) for each equivariant functional
T. The variation distance d (Fp, F,,) and parameter distance [log(76) — log(6)|
are both invariant to 6, so b,(¢; F,) is invariant as well. Theorem 2.1 implies
that a scale equivariant functional satisfies

(3.3) br(es Fy) = br(es F) = 5b,( 73 Fi).

N | =
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TAaBLE 1
Contamination biases and lower bounds for log-scale estimation in the exponential model

€ Scaled median Min-Max M Lower bound
0.10 0.165 0.159 0.1516
0.20 0.389 0.359 0.3466
0.30 0.723 0.632 0.6195
0.40 1.335 1.080 1.0779
0.45 1.984 1.530 1.5233

Suppose {F,} has monotone likelihood ratio in X. Then, using (2.2),

auFu B = [ 1) - 5£(5)) de=1F(ao)) - Eao)]

where a(6) solves f1(a(8)) = f,(a(6)). To compute the lower bound b, in (3.3)
one would solve for 6, in the equation |Fy(a(6,)) — F;(a(6))| = /(1 — ¢), and
set b, = 1/2|log(6.)I.

As an example, consider the exponential scale model with f(x) =e™*.
In this case a(8) = 6(0 — 1)~ 'log(h). The lower bound in (3.3) becomes
—(1/2)1og(6,), where 6, solves

(34) 00(1 _ 0)(1—9) _ ( € )(1—9)

1—¢

Taking logarithms and applying the Newton-Raphson algorithm yields the
iteration sequence

0(k+1) =1 — log(o(k)) -
log(1 — 8®) + logit(¢)

for solving (3.4). The computed bounds for several choices of £ are given in
Table 1. For comparison we show the bias values reported by Martin and
Zamar (1989) for the scaled median and min-max bias M functional. It is
interesting to note that their min-max functional is very close to minimax
among all scale equivariant functions.

4. A class of noninvariant models: Power series distributions.
Suppose F, is a discrete distribution on the set of nonnegative integers with
the density

(4.1) fo(x) = a(x)0%/c(0), x=0,1,2,...,v,0 € 0.

Here v may be finite or infinite. The parameter set in (4.1) is the interval of
positive 6 for which c¢(0) == X%_,a(x)6* is convergent. This is a discrete
exponential family, also known as a power series model [Johnson and Kotz
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(1968)]. Examples include the following:
Binomial(v,0/(1 + 68)) ¢(8) =(1+6);

Poisson(8) c(0) = e
Negative Binomial c(8) = (1—6) °(s > 0);
Logarithmic Series c(0) = —log(1—19).

We consider estimates of 6 and functions of 6 such as the mean w(9) =
0¢(0)/c(6) and the proportion p(8) = u(0)/v if v is finite. Unlike the models
of the preceding section, power series distributions lack exact invariance
properties. However, they satisfy our regularity conditions.

PropOSITION 4.1. For a power series model, 0 — f, is L, differentiable and
F, has finite Fisher information if 0 is in the interior of ©.

The mean functional, which corresponds to maximum likelihood estimation
of (), has contamination bias b,(¢) = ¢ - max{u(8),v — u(0)} > ve/2.If v is
infinite as in the Poisson model, then the mean is nonrobust with b,(¢g) = ©
for £ > 0. If v is finite as in the binomial case, then the mean functional is
robust, but its contamination sensitivity can be improved.

4.1. Fisher consistent M-estimates. Given a random sample X,,..., X,,
the maximum likelihood estimator of 6 solves
n
(4.2) nt Y A{X, - u(bw)} = 0,
i=1

s0 w(fyy) = n~ X7, X,. Hampel’s (1974) Fisher-consistent M-estimators gen-
eralize (4.2) as follows:

solve B, [v(X - B)] =0,

(43) subjectto n7' Y ¥ (X, -B) =0,
i-1

where ¢, (u) = min{x, max(—«, )}, and « may depend on 6. Setting x = = in
(4.3) yields (4.2). The functionals corresponding to maximum likelihood esti-
mates and Hampel’s M-estimates replace the empirical averaging in (4.2) and
(4.3) by expectations with respect to F. Hampel (1974) showed that the
estimator given by (4.3) minimizes asymptotic variance within the class of
Fisher-consistent M-estimators subject to the bound on the influence function.
Simpson, Carroll and Ruppert (1987) studied the large sample theory and
recommended to replace ¢, by a differentiable function when fitting discrete
models. Stefanski, Carroll and Ruppert (1986) and Kiinsch, Stefanski and
Carroll (1989) discussed extensions of (4.3) for generalized linear models.

We first consider M-estimates that take the form of (4.3), except with the
piecewise linear ¢, replaced by ¢, (u) = (v /«), where ¢ satisfies the follow-
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ing conditions:

(i) ¢ is monotone increasing and odd, that is, ¢(—u) = —y¢(u) for all u.
(i) (o) = 1. ) )
(iii) ¢ has a derivative ¢ such that 0 < ¢(z) < 1 for all real u.

An example is ¢(z) = tanh(z). Denote the M-estimator with tuning constant
k by T..

PropOSITION 4.2. Suppose 0 is in the interior of © in the power series
family. Then for each positive, finite k, T, is Fréchet differentiable in the
variation norm, and it has contamination sensitivity y¥(8) = |E,(X -
B)/1)u(X)| "', where B solves E[yp (X — B)] = 0. Moreover, y*(0) is increas-

ingin k.

REMARK 4.1 (The least sensitive M-estimate). The smallest contamination
sensitivity is obtained by letting x — 0, which yields the limit y§ = 0 /E,|X —
xol, where x, is the smallest integer £ € {0, 1,...,v} such that F(k) > 1/2.
In general, an M-estimate can have sensitivity arbitrarily close to y§. If
x, = 0, then vy, is achieved; see Section 4.2.

In the present setting the minimum sensitivity among M-estimators is
within a factor of 2 of the bound given by Corollary 2.2.

PROPOSITION 4.3. In a power series family y§ < 2/E,lu (X)I.

REMARK 4.2 (Binomial p estimation). The maximum likelihood estimate of
the binomial p(8) = 6/(1 + 6) corresponds to the empirical proportion
T(F) = Ez[ X]/v, which y% = max(p, 1 — p). For large v in the Binomial(v, p)
model we have y§(p) ~ v~ ?27p(1 — p)}*/% Hence, the sensitivity of the
empirical proportion can be improved at least by a factor of order v'/? for
moderate values of p.

4.2. A bias bound for small . Calculation shows that if the median is zero
and k is sufficiently small, then (4.3) reduces to the proportion-of-zeros
estimate of 6, which corresponds to the functional T' defined by

a(0)

(44) «(T(FY)

= f (0) ’

where f(0) is the probability at 0 under F. This estimate achieves the
minimum sensitivity for M-estimators if the median of F, is 0. We now show
that in fact it has optimal contamination sensitivity among all Fisher consis-
tent functionals, and optimal contamination bias with respect to a specialized
parameter discrepancy, if the median of F, is 0. Bishop, Feinberg and Holland
[(1975), page 506] briefly considered the proportion-of-zeros estimate of the
Poisson mean.
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THEOREM 4.1. If T is Fisher consistent for 0 in the power series model, and
if m(¢) is monotone increasing with derivative m(¢t) for t > 0, then

(45)  bger(€) = ~log(1 =€) and e, = m(6)c(6) /6(6).

The proportion of zeros functional achieves the equalities in (4.5) if ¢(8) <
2a(0).

REMARK 4.3 (Binomial p estimation continued). If p <1 — (1/2)"/V the
proportion-of-zeros functional has y% = (1 — p)/v, which improves on the
sensitivity of the empirical proportion by a factor of v.

REMARK 4.4 (Information standardized sensitivity). Hampel, Rochetti,
Rousseeuw and Stahel (1986) defined the information-standardized sensitivity
J2(0)yF = Yj1/2yr, Where J(8) is the Fisher information. It is invariant to
one-to-one differentiable transformations of 6. By (4.5), the information-stan-
dardized sensitivity of every Fisher-consistent estimator of either the Poisson
mean or the binomial p has

o(8) (B [X-u(®)]})”

é0) 1(0) ’

which blows up as 8 — 0. In these cases, Fisher-consistent estimators with
uniformly bounded information-standardized sensitivities do not exist.

Viagr = J1/%(0)

4.3. Comparison of bounds. For power series families as a whole we have
established that the minimum sensitivity for M-estimates is within a factor of
2 of the minimum for Fisher-consistent functionals. However, M-estimates
can be much closer to the minimum. Information-standardized sensitivities
versus the binomial p for v = 5 and v = 10 are shown in Figure 1(a) and (b).
Also shown are the sensitivity bounds of (2.6) and (4.5). These are clearly
complementary. The least sensitive M-estimator achieves the tighter of the
two bounds if x, = 0 or x, = vp, and it is never very far off. The situation for
the Poisson model is similar. In fact, whenever the mean of the Poisson or
binomial distribution is an integer it is equal to the median [Kass and
Buhrman (1980)], in which case y§ achieves the lower bound of (2.6).

5. Multiple linear regression. The conflict between bias minimax and
locally linear estimation does not arise in the one-dimensional estimation
problems of Sections 3 and 4. This section considers multiple linear regression,
in which the conflict helps explain why certain high breakdown-point estima-
tors such as S-estimators necessarily have unbounded contamination sensitivi-
ties. Moreover, as another application of Theorem 2.1, we obtain the bias
bound for regression equivariant functionals reported by Maronna and Yohai
(1991).
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Fic. 1. Information-standardized sensitivities for Binomial models: Bound 1 is from (2.6) and
Bound 2 is from (4.5).

Suppose F is the distribution function for a random vector (X', U), where
X is p-dimensional and U is a scalar. Define the multiple linear regression
family F(x, u) = Fy(x, u — x'0), where the parameter vector 6 takes values in
p-dimensional Euclidean space. F, is the distribution of (X', YY) :=
(X', X'0 + U)Y. We assume that, under the model, X and U are independent,
and U has a continuous distribution symmetric about zero.

Regression equivariant functionals satisfy the relation T(F,) = T(F,) + 6
for each p-vector 6. If we were to employ the ordinary Euclidean distance for
the parameter vector, the resulting bias function would be invariant to 0;
however, it would be affected by nonsingular transformations of X. We
therefore employ the distance p(T, 8) = {(T — 0YC~Y(FxXT — 6)}*/2, where C
is a scatter functional that satisfies C(F, y) = AC(Fx)A for each nonsingular
p X p matrix A. The resulting invariance implies that we can assume
C(Fx) = I,. Martin, Yohai and Zamar (1989) and Maronna and Yohai (1991)
employed the same strategy in studying robust functionals for multiple linear

regression.

5.1. Lower bounds for bias and sensitivity. We first specialize the lower
bound of Theorem 2.1 to the present setting. We need to solve for b, in

€

inf d,(Fy, Fyy ) = .
llzll=1 v( 0 2b0) 1—¢

If we assume further that X has a spherically symmetric distribution, then
the problem simplifies because then d (F, F,;,) is invariant to the direction z.
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In this case, the computations parallel those for regression through the origin.
Let z=¢; = (1,0,...,0). Using (3.2) we obtain d,(F,, Fp ) =
2[F,(1X,b,)) dFx(x) — 1, so b, satisfies E[Fy,(1X;6,)] = 2711 — ¢)~". Solv-
ing for b, yields the bound given by Maronna and Yohai (1991) for regression
equivariant functionals when X has a spherically symmetric distribution. If
Fy and Fy are both standard normal, the bound simplifies to give br(e) >
tan(mre /(@21 - ¢))) and y% > w/2. Maronna and Yohai (1991) constructed a
projection based functional that is equivariant, has a high breakdown point
and is within twice the lower bound for contamination sensitivity.

To compute the local bound implied by Corollary 2.2 we evaluate y, in
(2.6). Assume Fy; has a differentiable density fy(x) > 0. Under the linear
model, the score function has the form u,(x,y) = ¢(y — x'6)x, where

d(w) = —fy(uw)/fy(w). Hence,
1

Yo = {Evl¢(U) |ExIX,l}

where X, = 2, X and z, is the unit vector minimizing Ey|z'X|. We can simply
set X, = X, if X is spherically symmetric. Locally linear regression function-
als are subject to the sensitivity bound of Theorem 2.2, which in the present
setting becomes v > p{Eyl¢(UIE|X|} .

ExampLE. Suppose X has a spherical standard normal distribution, and U
is standard normal. Then the contamination sensitivity of an equivariant
functional is at least y, = w/2. The sensitivity of a locally linear functional is
at least v ['((1 /2)(p + 2))/T((1/2)Xp + 1)) = (p7/2)*/% The Maronna-Yohai
functional has contamination sensitivity at most m, so it cannot be locally
linear in dimensions higher than 5. Maronna and Yohai (1991) argued that the
corresponding estimator is root-n consistent, but has a non-Gaussian limiting
distribution.

5.2. GM-estimates. A GM-estimating functional T(F') solves
E:n(X,Y-X0)X=0

for some function n(x, r). We adopt the regularity conditions on 1 given in
Hampel, Ronchetti, Rousseeuw and Stahel [(1986), page 315], including the
assumption that n is increasing in each argument so the estimate is Fisher
consistent. The influence function of the GM-estimate at F, is given by

Yo(2,5) =m(x,y —x'0) M 'x,
where M = E,n'(X,U)XX'. Suppose the density function of U is continu-
ously differentiable. A standard integration by parts argument shows that
Eyp(X,Y)u,(X,YY =I,. By Remark 2.7, the GM-estimate functionals are
locally linear.

A lower bound for the gross-error sensitivity of GM-estimators is given in
Hampel, Ronchetti, Rousseeuw and Stahel [(1986), page 318]. It is the same as
the bound implied by Theorem 2.2 in the regression setting. The bound is
achieved by the GM-estimate with n(x, r) = sgn(r)x/||x|| if X has a spheri-
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cally symmetric distribution. Martin, Yohai and Zamar (1989) further showed
that it has the optimal contamination bias among GM-estimators. Theorem
2.2 shows that this GM-estimate has the smallest contamination sensitivity
among all locally linear estimators.

5.3. S-estimates. We next consider a class of functionals with contamina-
tion bias independent of the dimension. Rousseeuw and Yohai (1984) defined
an S-estimator to be a vector T(F') that minimizes the scale functional
s(¢; F) > 0 defined by Epp(Y — X'¢)/s(¢t; F)) = b, where t €« R? and 0 < b <
sup p. They assumed the following conditions for p:

(1) p is symmetric, has a continuous derivative ¢ and p(0) = 0.
(ii) There exists a finite constant ¢ such that p is strictly increasing on [0, c]
and constant on [c, ).

Under these conditions, S-estimators satisfy the first-order conditions of
GM-estimators and have influence functions [Rousseeuw and Yohai (1984) and
Lopuhai (1989)], but their influence functions are unbounded in x and
nonmonotone in the residual. The scale minimization is needed to ensure that
a Fisher-consistent solution of the estimating equation is selected. S-estima-
tors are locally linear, so their contamination sensitivities are subject to the
dimension dependent lower bound of Theorem 2.2. Martin, Yohai and Zamar
(1989) observed that the S-estimators have dimension-free bias functions. In
view of the lower bound, S-estimates must have infinite contamination sensi-
tivities. This fact is well known, but Theorem 2.2 shows that it is related to the
general conflict between bias minimaxity and local linear estimation.

6. Further remarks. Focusing on the stability of the estimating func-
tionals, we derived lower bounds for contamination bias that are tight or
nearly tight across a broad range of parametric estimation problems. However,
the estimates that achieve the bounds might not be suitable in practice, either
because they sacrifice too much efficiency to achieve the optimal contamination
bias, or they are insufficiently smooth to allow reliable inferences. Restricting
to a class of locally linear functionals, we derived a tight lower bound on the
contamination sensitivity. It is intriguing that such estimates cannot achieve
the global bound for bias in higher dimensions. Estimates that improve on the
sensitivity bound for locally linear estimates cannot be Fréchet differentiable,
and their behavior close to the model may not be as predictable as one would
like. See Donoho and Liu (1988a) for an example involving the minimum
variation distance estimate. The most familiar classes of estimates such as
M-estimates of location and scale, regression GM-estimates and S-estimates
are locally linear, and outside this class one can expect limiting distributions to
be non-Gaussian, as in the Maronna—Yohai (1991) example, and large sample
inferences to be complicated.

The primary use of lower bounds for contamination bias is to provide a
standard against which to measure the functional stability of compromise
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estimators that take account of other measures of performance such as
efficiency and stability of inference. The bounds we have established also
enable us to extend many bias minimaxity results from a conveniently defined
class of estimators to a broader class, as well as to understand the conflict
between bias minimaxity and local linearity in higher dimensions.

Note added in proof. After final acceptance of this manuscript for publica-
tion it came to our attention that Reidel (1991) obtained independently a lower
bound for contamination bias in parametric models generated by groups and
showed that the bound is tight. Our Theorem 2.1 specializes to the same
bound for equivariant functionals in group models.

7. Proofs.

Proor oF THEOREM 2.1. Fix 0. Given n € @ set 6 = 8(n) = d (F,, F,)/
(1 + d(F,, F,)), so that

o
7.1 d(F,,F)=——.
( ) v( 6 77) 1-35
Let F, and f, be densities of ¥, and F, with respect to the dominating
measure A, and set

1-6 1-5
8= _5—(]“1, _f9)+’ and h = T(f" —fo)_-

Using (2.2), [(f, — fo)« dA = [(f, — f)_ dA = d (F,, F,), which, along with
(7.1), implies that both g and & are probability densities. Now (1 — 8) f, +
6g =1 — 8)f, + 8h, so any functional T must satisfy p(6, n) <
br(8(n); Fy) + bp(8(n); F,). Taking the supremum with respect to 71, and
observing that d (F, F,) < c implies 8(n) < ¢/(1 + ¢), we have

b(e/(1-¢); Fy) < sup {62(8(n); Fy) + by (8(m); F,))
d(Fy, F)<e/(1—¢)

<br(e; Fy) + sup br(e; F,)
d(Fy, F)<s/(1—¢)

<2 sup br(e; F,).
d(Fy, F,)<e/(1—¢)

The result follows because d (F,, F,) < c implies p(8, ) < b,(c; F,). O

Proor oF ProposiTION 2.2. This is immediate from Proposition 2.1 and
Theorem 2.1. O
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Proor oF COROLLARY 2.2. We need to approximate the right-hand side of
(2.3) for small &. Using (2.2),

sup{ : 1nf flbez f9|d)t<26}
b

b,(¢; Fy)

sup{b: inf b [|2'u,ylfy dA + 0(b) < 25}
b llzll=1

sup {b: b + o(b) < 2ey,(0)} = 2y,(0)e + o(¢). i
b

PrOOF OF THEOREM 2.2. Let y,(x) be the influence function for T' at F,. By
Proposition 2.3 we have y5(0) > y§$® = sup,llg,(x)l, so it is sufficient to
establish the bound for y&®. If y{*® = o, we are done. So assume henceforth
that ¢, is bounded.

By assumption, T is Fisher consistent and satisfies (2.7), so

(7.2) 8 = [Wy( foss —fo) dX + o(l8]).

Moreover, as {Fp} is L, differentiable,

(7.3) Jo fors = F2) X = [Woy 8fy dA + Ry(8),

where [|R, (O < vy If,r5 — fo — 8wy fol dr = 0(|I8]). Equations (7.2) and
(7.3) hold regardless of the direction of 8, so Ely,u',] = [ty fo dX = I,

The remainder of the derivation is standard from the theory of influence
functions:

p =trEg[y,uy] = Ej[wythy] < Egllugllllgggll < yFPEllu,ll. o

Proor oF PROPOSITION 4.1. Let u(#) and o%(9) be the mean and variance
of the distribution Fj. If the power series X% _,a(x)8” is convergent, then both
w(0) and o*9) are finite and continuously differentiable. Moreover, as
fo(x)/fo(x) = (x — u(8))/0, the Fisher information 1(8) = E,(f;(X)/f( X))?
is finite.

Given 6 > 0, consider sufficiently small [§| such that Ya(x)(0 + £)* is
convergent for all [£| < [8]. By second-order Taylor expansion of f,, ,(x) at
5=0,

Y| fors(2) = fo(x) — duy(x) fo(x)| <82% sup |Fy,o(2)].

l&l<1a]

It is therefore sufficient to establish that the sum on the right is bounded as
8 — 0. Direct calculation gives

| fo(x)] = 07 2f(2)|(x — 1(8))* = 1 — 6 (0)|
< 07 % (x){1 + 0u(0) + p?(0) + 2xu(0) + x2}.
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For x =0,1,2,..., the function # — #* is monotone, so SUD <1 fore(x) <
for15/(x)c(0 + |8l)/c(0 — [81). The result now follows from the continuity of
c(6), n(6), w(6) and o*(9). O

PROOF OF PROPOSITION 4.2. Monotonicity of B(6). We first show that B is
strictly increasing in 6. Let B8 be the derivative of 8 with respect to 8. By the
definition of B,

X-By_d X-B
- B - B
o lEow( )(X by - k" BEo«P(—K—)-

The assumptions on ¢, imply E,¢'{x (X — B)} > 0 and
-B - B
Ew( )(X—u)=Eo ( )(X 8) >0,

so B is positive.

Continuity of T. Suppose liminf, » .o T.(G) <8 — & for some & > 0.
As E{k H(X — B8 — )} > E,{k (X — B(0))} = 0, there exists G such
that d,(F,,G) < A1/DEp{x (X — B — 8))} and T.(G) <6 — 5. Then
B(T) < B(6 — 8) < B(), and

o= gy EET) , g X800

K

(X—BI(<0—6))

1
> Egy —2d,(F,G) > EEe‘p

b

(X—Bia—a))

a contradiction. Hence, lim inf, 5 G0 T(G) = 6. A similar argument shows
that limsup, 5 gy o T.{(G) < 0, so T, is continuous.

Fréchet dtﬁ'erentzabzlzty of T. Use the shorthand T = T,(G) and ¢,(x) =
Yl (x — B(n))}. By definition of T and Fisher consistency, [, dG =
[ dFp = [y, dF, = 0. It follows that

(T4)  [vod(F, ~ G) = [(¥r— ) d(G = Fp) + (v, d(F, - Fy).
The first term on the right in (7.4) is dominated in absolute value by
= Yolle - 2(d,(Fy, G) + d,(Fy, Fr)) = o(d(Fy, G)) + o(IT — 6l).

The second term on the right in (7.4) is (0 — T)[¢,u, dF, + o(IT — 6]). Rear-
ranging yields

T~ 0= (Elyou,])"" [0,d(G — F,) +o(d,(F,,G)) +o(IT - 6l),

which, as T is continuous, implies T is Fréchet differentiable.
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Monotonicity of vy,. To establish that y*(6) is increasing in «, we show
that the derivative of

gnp( =Lx- M(B))—El//( “Jx-p

is negative. Let B be the derivative of B with respect to . Differentiating the
relation

X-B
Eol//( P ):O
yields
: - B X-pB
— _,—1 ’
p=« E"‘”l( P )Ee«p'((X—ﬁ)/K)'
Hence,

Ep( T )x - g = e[S (x -+ icx - )

_ o (B (X = B)/0)(X - B)Y°
Eg/((X — B)/x)

—ew( _B)(X B)}

because ' > 0 and by the Cauchy-Schwarz inequality. O

Proor ofF ProposiTioN 4.3. For the power series family E,lu(X)| =
07 'E,|IX — u(0)|. Hence, it suffices to prove that E,|X — u(0)| < 2E,|X — x,|.
However, this is almost immediate: E,|X — u(0)| < Eg|X — x| + |xq — u(0)|
and |xg — u(0)| = |Ef(X — x0)| < Ej|X — x|. O

Proor oF THEOREM 4.1. Bias bound. Fix 0. Define n by
(7.5) c(n) = ¢(8) /(1 —¢).

Observe that m > 6, because c¢ is increasing on 0. Define h(x) by (1 —
&) f(x) + eh(x) = f,(x). Clearly A must sum to one. It is also nonnegative
because, using (7.5),

1-—¢((n\* a(x)6*
h = — —
(=) € {(0) 1} c(0) =0
If T is Fisher consistent, then T'((1 — &) f; + eh) = n. Hence, by, .r/e) =
log{c(n)/c(0)} = —log(1 — &).
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Sensitivity bound. For small ¢ we have —log(1 — &) = ¢ + o(¢), and so

(7.6) e + o(z) =log{%%} - ZEZ;(" —8) +o(n — 6).
Moreover, if m is monotone increasing and differentiable,
(7.7) bnry(€) =2 m(n) —m(0) =m(0)(n —0) +o(n —6).

Combining (7.6) and (7.7) yields the bound for v}, 7, in (4.5).
Proportion of zeros functional. For any contaminating distribution H, let
h o be the probability mass of 0. Let T, = T((1 — ¢)F, + ¢H). Using (4.4),

log o(T.) = log a(0) — log| (1 — £) X2 1 ¢n
& 0(0) 0
c(9)
=logc(0) — log{l — ¢ + ehom .
This has extremes at A, = 0 and Ay =1, so
c(9)
(7.8) b1og ocry(€) = max{ —log(1l —¢),log(1 + ¢ a(0) 1)]}.
The maximum in (7.8) is —log(1 — &) if
— &
(7.9) c(0) < e ga(O).
As (2 — £)/(1 — ¢) is increasing in &, (7.9) holds for each & > 0 if ¢(8) < 2a(0).
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