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A NEW CLASS OF KERNELS FOR NONPARAMETRIC CURVE
ESTIMATION

By KAREN MESSER! AND LARRY GOLDSTEIN 2

California State University and University of Southern California

We introduce a new class of variable kernels which depend on the
smoothing parameter b through a simple scaling operation, and which have
good integrated mean square error (IMSE) convergence properties. These
kernels deform ‘automatically’’ near the boundary, eliminating boundary
bias. Computational formulas are given for all orders of kernel in terms of
exponentially damped sines and cosines. The kernel is a computationally
convenient approximation to a certain Green’s function, with the resulting
kernel estimate closely related to a smoothing spline estimate.

1. Introduction. The problem of choosing an appropriate kernel func-
tion K,(x,t) arises in the setting of nonparametric curve fitting: One would
like to estimate an unknown function f(x) or its derivatives, where f may be
for example a regression function, density function, link function or a dose
response curve. Here, b is a smoothing parameter which is chosen by the user,
and goes to 0 as the number of observations goes to infinity. Nothing is
assumed to be known about [ except that it belongs to some smoothness class,
for example f is continuous or has a specified number p of continuous
derivatives. We shall assume f is to be estimated on [0,1]. Most of the
estimation methods proposed in this context involve local smoothing; the
estimate f(x) is an average of neighboring observations, using some weight
function which depends on the number of observations and may depend on x.
In the case of a kernel estimator the weight function is chosen explicitly and is
often a scaled and translated version of some fixed kernel, a ‘‘translation”
kernel of the form K,(x,t) = k((x — ¢)/b). It is advantageous to allow the
shape of the kernel to depend on x in order to correct for bias effects at the
boundary, giving rise to a more complicated ‘‘variable” kernel K,(x,?). It is
the choice of K,(x,t) which is the subject of this paper. In general, the kernel
K should be chosen to exploit the smoothness of f; thus we are looking for a
class or hierarchy of kernels, one kernel corresponding to each order of
smoothness p.

We present a new class of variable kernel functions which are easy to
compute, and which have a simplifying scaling property, such that each kernel
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180 K. MESSER AND L. GOLDSTEIN

has good convergence properties over the appropriate smoothness class of
functions f. These kernels are closely related to the equivalent kernel of a
smoothing spline, as in Speckman (1981), Cox (1983) and Silverman (1984),
and so for want of a better term we call them pseudo-spline kernels. They have
several attractive features:

1. The kernels deform smoothly near the boundary in such a way as to correct
for boundary bias.

2. The kernel can be evaluated by a simple scaling operation on a fixed
function.

3. The scaling function K(x,¢) is available in closed form for all orders of
kernel, and for estimating any derivative. It is a sum of exponentially
damped trigonometric polynomials.

4. A small simulation study shows that these kernels have good finite sample
properties. The kernel of order p behaves like a translation kernel of order
2p, to which a smooth boundary correction of order p has been applied.

Several authors have investigated the ‘“optimal’”’ choice of kernel K under
varying optimality criteria, beginning with Epanechnikov (1969), who studied
the question for density estimation at a point and who considered only positive
kernels. Rosenblatt (1971) and Benedetti (1977) investigated the question
further in the regression context. More recently, Gasser and Miiller (GM)
(1979, 1984) and Gasser, Miiller and Mammitzsch (GMM) (1985) have intro-
duced two classes of optimal kernels, which minimize the variance and the
integrated mean squared error, respectively, among kernels which satisfy
certain moment conditions such as in (3). A good discussion is in Miiller

(1988).

In order to focus attention on the kernel, in this paper we consider a simple
regression model. One observes pairs (x;,y,), i = 1,...,n, with x;, = i/n and
(1) ¥ =f(x;) + &

The ¢, are independent with E(g;) = 0, Var(e;) = 0% The unknown function
f has p continuous derivatives on [0, 1].

The kernel estimate f of f with kernel K,(x, ¢) and bandwidth b is defined
as

N 1 n
f(x) = b Xl‘,yiKb(x,xi)'

Here, b must be chosen to go to zero at the proper rate as n — . .

We sketch a standard argument for convergence of the estimate f(x) to
f(x) in the case where p = 2; see GM (1979) for details and considerable
refinement. Consider the expected value of the estimate Ef and suppose for
simplicity K, is a translation kernel. Any of various quadrature arguments
followed by a change of variable and a Taylor expansion in ¢ of f(x + b¢) gives
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an approximation

Bf(x) = b7 ['k((x = )b (1) dt
(2)
_ f(:/_bl)/bk(t){f(x) = bif O(x) + 3(b)" fO(x) + R(bt)} dt.

Here R(bt) is the remainder term in the Taylor expansion.
Now suppose the kernel k(¢) has compact support [—7, 7], and satisfies the
usual symmetry and moment conditions:

[ tr@ydt=1-j, j=0,1,
(3) "

= a, a < ©,

’ f;tzk(t) dt

Then, so long as (x — 1)/b < —7 <7 <x/b, and ignoring the quadrature
error, we have easily that |Ef(x) — f(x)| = (1/2)ab?f®(x) + o(b?). Similar
considerations give Var(f(x)) = [k(¢)%02/(nb). Using these relations, we may
choose b to minimize the asymptotic MSE of the estimate at the point x. As
n — o, if b is chosen optimally f(x) will converge to f(x) with the optimal
order of convergence for p = 2 as established in Stone (1980). Appropriately
modifying the moment conditions (3) gives, by a similar argument, a kernel
suitable for estimating ), the vth derivative of f, for f € C?.

To see the need for a variable kernel, consider x near the boundary. Then
the convergence argument for the bias breaks down: The first moment as in
(8) is now truncated, and the second term in (2) correspondingly fails to drop
out. Thus the bias of the estimate for x within 76 of the boundary of [0, 1] is of
larger order than the bias in the interior. It can be shown that these boundary
effects in fact dominate the IMSE, and a less than optimal rate of convergence
results. In addition, it is not unusual for these boundary effects to smear over
a substantial portion of the interval. [See, e.g., Eubank (1988) and the refer-
ences therein.]

There are several approaches to the boundary problem in the literature.
Rice (1983) provides a simple and effective boundary correction which can be
easily computed for an arbitrary translation kernel k(s). The corrected kernel
is a linear combination of p copies of the original kernel evaluated at different
bandwidths, thus introducing p new smoothing parameters to be chosen by
the user. Eubank and Speckman (1991) have proposed a general bias removing
approach which gives rise to several boundary correction schemes. GM (1979,
1984) and GMM (1985) propose a modification of the moment conditions (3) in
which the kernel satisfies for each x in the boundary region

[\ k(tyede=o.
(x—1)/b

Then the corresponding terms in the expansion (2) drop out as before.
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The present paper and the approach of GM share the advantage of present-
ing closed form formulas for the resulting boundary corrected weight function.
Such formulas can be computationally convenient, and are theoretically
tractable if the kernel estimator is to be used in a more complicated model
than that considered here. Closed form formulas for boundary corrected
minimum variance kernels as in GM (1979) have been recently given in Miiller
(1991) in terms of ultraspherical polynomials. Closed form formulas for the
pseudospline kernel are given in Section 2.

In this paper, rather than begin with the moment conditions (3) we exploit
the somewhat different properties of the Green’s function of a smoothing
spline estimator, that is, the equivalent kernel of the smoothing spline litera-
ture [Speckman (1981), Cox (1983) and Silverman (1984)]. Our kernel is thus
closely related to the equivalent kernel of a smoothing spline estimator. The
special case p = 2 was presented in Messer (1991).

The true “equivalent kernel’’ would give rise to an estimator with desirable
properties, as detailed in Section 4; however it depends in a rather complicated
way upon the smoothing parameter b. In particular, the Green’s function
G,(x,¢t) does not satisfy the scaling property we require of a kernel, that is,
G,(x,t) cannot be obtained from G,(x,¢) by a simple scaling operation. The
construction of G,(x,t) requires the solution of a set of 2p X 2p linear
equations for each value of 4. The key idea of this paper is to exploit a certain
symmetry in the construction of the Green’s function, approximating it by the
kernel K,(x,¢) which retains the asymptotic properties of G,(x,¢) and allows
b to enter as a scaling parameter.

The motivation for choosing an equivalent smoothing spline kernel is the
hope that the kernel estimate will inherit many of the properties of the
corresponding spline estimate. For the uniform design considered here, and
0 < v < p, the kernel estimate of f® will have the same asymptotic bias
and variance, to first order, as the spline estimate considered in Rice and
Rosenblatt (1983); see Messer (1991). In some cases the pseudospline kernel
estimate may be computationally more convenient than the corresponding
spline estimate, especially with large data sets. A kernel estimator is some-
times more convenient from a theoretical point of view as well, especially if it
satisfies the scaling relation 2. For nonuniform designs a comparison to a
spline estimator is more difficult.

How does the pseudospline kernel compare to existing kernels in the
literature? For many boundary corrected kernels the asymptotic integrated
mean squared error of the estimator can be shown to be determined by the
behavior of the kernel for x away from the boundary. For many kernels, if f
has p derivatives and the kernel is chosen to estimate the vth derivative of f,
the variance of the estimate can be seen to be asymptotic to the quantity
(o2 /nb?*1YV(K), where V(K) ~ [K,0.5,¢)? dt. Similarly, the bias will be
asymptotically proportional to b?"*B(K), where B(K) is often of the form
B(K) ~ (K 0.5, t)t? d¢t. The integrals are taken over the support of the ker-
nel. The asymptotic IMSE can then be seen to depend on the kernel through
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the functional
T (VP_Vsz+1)2/(2p+1).
(See GM or GMM for details.)

The bias is of a somewhat different form for the pseudospline kernel, and in
fact is 0(b?); see Lemma 6.2 and (11). The spline kernel of order p suitable for
estimating the vth derivative may be viewed as containing an interior transla-
tion-invariant component which is of order m = 2p + v at any fixed interior
point. That is, at an interior point if the function f actually has m + 1
derivatives, the asymptotic bias is proportional to 6™ ~*B(K), where |B(K)| ~
JRX#)t™ dt = m! and where k() is the translation component of the kernel
as given in (6). (See Proposition 3.4.) To this, boundary correction terms of
order p are added which decay exponentially away from the boundary, and
which bring the order of the kernel down to p over the entire interval. If we
compare the asymptotic bias and variance constants V(K) [given in (10)] and
B(K) for the spline and the GM optimal kernels, an interesting comparison is
between the spline kernel of order p and the GM kernel of order m = 2p + v.
In this case, which ignores boundary effects, the GM kernels, being given as
the solution of a variational problem, do somewhat better in terms of asymp-
totic IMSE. The corresponding constants may be found for the GM kernel in
GMM, Table 2, page 243. For example, for p = 2, v = 0; p = 2, v = 1, respec-
tively, we obtain T = 0.6227, 2.33, respectively, for the spline kernel and
T = 0.6199, 2.168 for the GM optimal kernel. Results of a small numerical
study are reported in Section 5, where the pseudospline kernel is seen to
compare favorably in finite samples both with and without boundary correc-
tion.

The remainder of the paper is organized as follows. In Section 2 explicit
computational formulas are presented. In Section 3 theorems are stated
concerning properties of the kernel and rates of convergence of the kernel
estimator. Section 4 presents the connection between our kernel and the
equivalent kernel of a smoothing spline. Section 5 presents numerical compar-
isons. Section 6 contains proofs.

2. Formula for the kernel. In this section we present the general
formula for the kernel of order p, and give the explicit formula for p = 2
and 3.

2.1. The general formula. For 0 <j < 2p — 1, let the 2pth roots of —1 be
given by r; = exp(im(2j + 1)/2p) and define the 2p X 1 column vector

) = eib‘ltro, L ,eib_ltrp_l, eib‘l(l—t)ro, o, et A-tr, ) ’_
b

We shall denote the components of () by ¢, ;, 0 <j < 2p — L.

The kernel is made up of two parts, one translation invariant and the other
comprised of terms that deal with boundary effects. The translation invariant
part %k(¢) of the kernel is the Fourier transform of (V27 (x2? + 1))~%, that is,
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@m) Y e i (x?P + 1)~ ! dx. Hence
4 —1anh
(4) k(t) = EFEO iy, (1t)
and
-12_1 I+1
EO(t) = — X (ir) " ¢y ;(¢) fort>0.
2p j=0 ’

For p even this becomes

/2-1
k(t)=p~* ’ Y e *mC){Im(r;)cos(Re(r;)lt]) + Re(r,)sin(Re( r)lel))

j=0
and for p odd

k(t) = (2p) e
p/2-3/2

+p7t X e MmC){Im(r;)cos(Re(r;)It]) + Re(r;)sin(Re(r;)It])}.

j=0
Next we give the boundary terms of the kernel. They are constructed from
&) = (@, (1),..., by, ((t)), a p X 1 vector of the homogeneous solutions of
the differential equation (14) of Section 4 with b = 1, which satisfy the

boundary conditions

(5) [¢(0),...,62P~D(0)] =1,

where I is the p X p identity matrix. The required vector ¢(¢) = [C, 0, ,1y,(2),
where the p X p matrix C is given by C = L 'A™?, with A =
i diag(ry,...,r,_;» and L the Vandermonde matrix L =[1,Al,..., AP11].
Here1 =(1,...,1).

The equation for the kernel K,(x,?) is

K,(x,t) =b”1k(%t—)

R

J
1- 1-
+¢2p—i(—_b_£)k(2p_j)( bx)}

2.2. Examples for p = 2 and 3. The general formula may be simplified in
any particular case by the use of trigonometric identities. For example, with
p=2let b =y2b, and let

®(u,v) =e “(cos(u) — sin(u) + 2cos(v)).




KERNELS FOR NONPARAMETRIC CURVE ESTIMATION 185

Then

_ , lx — ¢ x—t
K,(x,t) = (2b') " le™*~4/¥|sin i cos( x ))
+(2p) q)(x+t x—1 q)(l—x 1-¢t 1—x 1-¢
' — |+ + - :
( ) b/ ) b/ ) b/ bl ’ b/ b/ )
We next present the functions appearing in (6) for p = 2 and p = 3. For
p =2,

(1
+ s1n(ﬁlt|)},
EO(t) = %e_“/ﬁ)“'{—cos(—\/lzzt) + sin(%ltl)},

1 1
EO(t) = Ee_(l/‘/z_)m cos( —2—t)sgn(t) ,

bo(t) = —e‘(l/‘/z_)‘{—cos(—‘/l?t) + sin(—‘/lzzt)},

- 1
bs(t) = V2e s cos(—t).

k(t) = %6_(1/‘/5)"'{(cos( %t

V2
For p = 3,
k(t) = % e 1+ e_(""/z){cos(gt + @sin(gltl)}),
k®(¢t) = % —e M+ e“("'/z){cos(gt) + \/gsin(glﬂ)}),

EW(¢t) = % e Il + e‘("'/z){cos(—‘/zit) - \/gsin(gt)}),

EO(t) = — % (e"" + 2e 04/ cos(—\/;t)),
ba(t) = —e™ ' + e_(t/z){—% sin(—‘/ziltl)},
du(t) = —et+ e’(‘/z){—cos(gt + ﬁsin(gt)},

bs5(t) = —e7' + e_(t/z){—cos(gt) + —‘/1? sin(—‘/zgt)}.
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3. Properties of the kernel. In this section we give the properties of the
kernels defined in Section 2, and of the kernel estimator of the introduction.
We begin with notation, and then give two theorems which bound the asymp-
totic bias functional of the kernel and evaluate the asymptotic variance
functional. Finally we apply these theorems to bound the asymptotic IMSE for
the kernel estimator of the simple regression model considered in the introduc-
tion. Proofs are given in Section 6.

Mixed partial derivatives 3**K,(x,¢)/dx'dt’/ are denoted as K§"/(x,t). We
shall need the norms |2/l = sup, ¢, j/2(x)| and (A le, p) = Zﬁ;ollh(j)llm. In
what follows, C(-) will denote a positive constant which depends only on its
argument and which is not necessarily the same at each occurrence; o(1) will
denote a term which depends only on n and b and which goes to 0 as n — .
We shall always take 0 < b < 1.

The following theorem bounds the asymptotic bias functional of the kernel.

THEOREM 3.1. For the kernel K, (x,t) as given in (6),

LFK&W@qu)w—f@u)
0

(7)

p—1

< bp_V”f”(OO,p)( E )(1 +0(1)),

I(,)

(8) /01{/011{1(,1/,0)(35, t) f(¢)dt - f(”)(x)} dx < C(p,v, f)b2P~0o(1),

forallb >0, f€ CP[0,1]and 0 <v <p.
If fP*D exists on [0,1] and satisfies || fP*Vlle < || flle, py» then the right-
hand side of (8) becomes C(p, v)b*P~ %1 £l p).

REMARK 1. Notice that the first bound is independent of x for x € [0, 1].
Hence, there is no boundary bias to first order.

REMARK 2. The second bound combined with Theorem 3.2 below implies
that, at any particular f € CP?, the kernel estimator behaves like a kernel of
order at least p + 1 in that it improves on the optimal order of convergence
established in Stone (1980). Of course, super efficient decay does not hold
uniformly over the appropriate space of functions.

Next we give a theorem which is used to establish the asymptotic variance
of the kernel estimator, apart from quadrature error.

THEOREM 3.2.

[H(Bg I (x,)) deda
0°-0
(9) Ry

= pQE+H+D 1o 2dx 1+ C()O(b
(zw[m(1+x@) % (P)O(B)),
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where

1 x* )2 (2p —2s - 1) sin(w(2s +1)/2p)
(10) Ef_w( 1+ sz) dx = 2p*® 1 —cos(m(2s + 1) /p) |’

ReEMARK. The limiting value p = « in (10) yields 1/((2s + D).

The following theorem establishes the asymptotic bias and variance of the
kernel estimator by a simple application of the two previous theorems.

THEOREM 3.3. Consider the regression model as given in (1). Let b = b(n)
depend on n in such a way that b — 0, b?*%2n — » as n — ». Let the estimate

——

f®Xx) be given by

— 1 n
FO(x) =~ 3y, Kid(x, ).
j=1
Then
1 = 2
(11) JEf®(x) = f(x)) dx = C(p,v, £)b*P~o(1)
0
and

2

(12) fOIVar(FT)(x))dx— "_( ! f_:( al )zdx)(1+C(p)0(1)).

T b 2L\ 1+ %

The following proposition is useful in comparing the spline kernel to
existing moment kernels in the literature.

ProposiITION 3.4.

0, 0<j<2p+v,j+#v,
[ #EO(@) dt = { (-1 (M)}, j=v,
- (-1)P™* Y 2p +v), j=2p+w.

4. The Green’s function. In this section we present the connection
between the kernel K,(x,¢) and the Green’s function of a corresponding
smoothing spline estimator. Consider the ‘“continuous’ version of the smooth-
ing spline minimization problem for given f and equally spaced design points
x;,

. 1 2 2p 1 N2
(13) min [(f = k)" + 6% [ (h®)
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and the associated Euler equations

(14) (—1)°8%Ph®P + h = f,

(15) 0 = AY¥(0) = hYY(1), j=p,...,2p— L

It can be shown that the solution to (13) exists and is unique [see e.g., Cox
(1983)], and hence that the solution is determined by the system (14), (15). It

can then be shown that the solution to the latter is determined by the unique
Green’s function Gy(x, ¢), that is, the minimizing A is given by

h(x) = fole(x,t)f(t) dt.

The equivalent kernel of the literature is exactly G,(x,¢). However, G(x, ¢)
depends in a complicated way on the smoothing parameter b, and in particular
does not satisfy the scaling property we require of a kernel, that is, G,(x, ¢)
cannot be obtained by a simple scaling operation from G (x, ?).

We briefly sketch the construction of the exact Green’s function [see, e.g.,
Speckman (1981) and Coddington and Levinson (1955)]. First the ¢fundamen-
tal solution” is obtained: a Green’s function for (14) so long as [ satisfies
stringent boundary conditions. Next, the fundamental solution is extended to
the space of functions C?([0, 1]), by modifying it to satisfy boundary conditions
(15) when considered as a function of x for fixed ¢, x # ¢; x,¢ € [0, 1]. This
construction requires the solution of a 2p X 2p system of linear equations for
each value of b.

The construction of the kernel K,(x,t¢) is related. We begin with the
fundamental solution & 'k2(b~(x — ¢)), and modify it by adding the proper
linear combination of solutions to the homogeneous equation (14) for & = 1 so
that K(x,t) is nearly G,(x, t). The exact relation may be found in the proof of
Theorem 4.1. Then K,(x,t) is obtained by a simple scaling operation on
K(x,t), as can be seen from (6). In some sense, when K,(x,?) is near the left
boundary (i.e., for x near 0), we allow the right boundary to be unconstrained
and vice versa. We then exploit the exponential decay of the homogeneous
solutions to (14) to obtain the following bound on the difference between
K, (x,t) and G(x, )

THEOREM 4.1. For 0 <b <1

sup IKI(,"’O)(x,t) - G},”’°)(x,t)| < C(p,V)b‘("+1)e_‘b_15i“(“/2”))
O<x,t<1

The proof is given in Section 6.

5. Numerical results. A small numerical study was done to compare the
pseudospline kernel with the GM optimal kernels in finite samples, both with
boundary effects and without. In the first case we consider the behavior of the
estimate over an interior region following the example of GM Tables 4-6. In
the interior the spline kernel of order p suitable for estimating the vth
derivative behaves as a moment kernel of order 2p + v; see Proposition 3.4
and the discussion at the end of the introduction. Hence the spline kernel of
nominal order p was compared to the GM kernel of order 2p + v.
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As in GM Tables 4-6, we used the smooth test function f(x) =2 — 2x +
3exp(—100(x — 0.5)) with 2n equispaced observations over the interval
[-0.5,1.5], and evaluated the optimal IMSE for o2 = 0.4 over the interior
interval [0, 1]. This avoids boundary effects; as in GM, both kernels were used
without boundary correction. We used a simple Simpson’s quadrature rule
rather than the more complicated GM quadrature rule, and replicated the
results in GM Table 4 in several cases for verification. Programming was done
in MATLAB. Comparisons of the IMSE evaluated at the optimal bandwidth
were done for the cases p =2,4; n =25,100; v =0 and p = 4, n = 100,
v = 2. In all cases the optimal IMSE were within a few percent of each other,
with the spline kernel having the smaller IMSE despite having a larger IMSE
asymptotically. Presumably for larger sample sizes the comparison would
reverse.

The more interesting comparison is perhaps with boundary correction. We
used the shifted function f(x) =2 — 2x + 3exp(—100x), with equispaced
observations within [0, 1]. Now the function has a bump truncated at the left
boundary. The GM boundary corrected kernel as in Miiller (1991) Table 2, for
k =p =2, v =0 was compared to the pseudospline kernel for p = 2. [The GM
kernel is the common quartic kernel 15/16(1 — x2)?, boundary corrected.] For
sample sizes n = 25,40, 50, 100, 200, the ratio of the pseudospline IMSE to
the GM IMSE was 64%, 69%, 73%, 75% and 74%, respectively.

6. Proofs of Theorems. We shall use notation and results from Rudin
(1973) (R) on Fourier transforms and differential equations. As in R, we take
as measure dm(t) on R, where dm(t) = (Y27 )~ ! dt and where d¢ is Lebesgue
measure. We correspondingly redefine k(¢) to have the factor V27 in front for
this section only, and in keeping with the notation in R shall use f to denote
the Fourier transform of f. The L2 norm is taken to be [|k[|5 = [ h%(t) dm(2).
We first give the following useful proposition which is a simple consequence of
our definitions.

PROPOSITION 6.1. Let ky(x) = b~ 'k(xb™1). Then
|k§,j)(x)| < C(j, p)b~UtDesin(m/2p)ix /bl

for all j > 0. A similar bound holds for (b~ ¢,(t/b)V .

In order to establish Theorem 3.1 we shall need the following representa-
tion of the asymptotic bias:

LEMMA 6.2.

[TREO(x,8)(8) dt = ()
0

(16)
= —p?P [ 1K,<,V»P>(x,t) f®(t) dt + O(b~ e /2P| fll ),
0

where the term O(-) depends only on its argument.
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Proor. Consider the differential equation (14) as an equation over the
space 2'(R) of distributions on R [R (6.7)]. By the usual Fourier techniques,
one can show that k(x — ¢) is a fundamental solution for (14) for b = 1, that
is, that % * f solves (14) for f € 2(R), the space of test functions on R, where
(B* fXx) = [2 k(x — 8)f(t)dm(¢) as in R. It follows that

| k(x = 1) f(t) dm(2)
(17 - ]
= (@) + (=17 [ k(x =) FO(2) dm(t).

By specializing (17) to test functions f with support on [0, 1], using the usual
properties of the fundamental solution % and integrating by parts 2p times we
obtain

['r(x = ) £(2) dm(t)
0

= £) + (-7 [0 = 1) £(0) dm(e) + 8% 0(0) £ ().

With b = 1, considering functions f with f(x) = 0 and functions f which are
zero outside an arbitrarily small neighborhood of x, and then applying the
chain rule for arbitrary b yields

(18) (=1)782P(k) 2P (x) + ky(x) =0, x€(0,1],
(19) (—1)"6%PA(ky)*7P(0) = 1,

where V27 A £(0) = lim, _, o+ f(x) — lim_ _, - f(x).

Now, for f € CP[0, 1], the expression [jk,(x — t) f(¢) dm(¢) — f(x) contains
boundary terms such as b5/71(@P~)(x/b) fU~1(0) which are canceled by
adding the boundary correction terms. In particular, one can demonstrate

['Ey(x,2) £(2) dm(2) = f(x)
0

= —b% [ KPP (x, 1) fP(2) dm(t)
0

P P 1
+(-1)" YL X bm‘%‘f,ﬁ’%"”(g)

j=1m=1

% {( _1)J'+’"k(2p—j)(%) f(m—l)(l)

o).

Differentiating both sides of the preceding equation with respect to x v times
and bounding the double sum using Proposition 6.1 establishes the lemma. O

+(- 1)J'+1k<2p—j)(
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In the following theorems we shall often bound cross terms by use of inequali-
ties of the kind (a + b)? < 2(a® + b2) without further comment.

Proor oF THEOREM 3.1. Statement (7) follows readily from Lemma 6.2 and
Proposition 6.1, noting that

b—pe—b_lsin(‘n'/2p)

is bounded for & € (0,x). To establish (8), we see from Lemma 6.2 that it is
enough to consider the following integral:

(20) b4pf01{f011{,<;»1’>(x, t) F®(t) dm(t)}2 dx.

First, we shall consider the contribution from the boundary terms in the above
integral, and show that it is of order O(b%P~**1), Consider the contribution
from a typical boundary term of the form

pAP- u)f ( fk(zp—1+v)( )¢(2§7)_J(%)f(1’)(t) dm(t))2dx

=b2(P‘”)(fO (keren(2)) )( o) ¢<2’;3_j(£)f<m(t)dm(t))2-

The left-hand integral is bounded by C(p)b, and the right-hand integral is
easily seen to be bounded. Hence the contribution from the boundary terms
may be majorized by C(p, f)bXP~—+1,

To demonstrate (8) it now suffices to show that the contribution to (20)
from the translation invariant term is of order o(b%?~*)). Extend f to R by
taking f(¢) = 0 for ¢ & [0, 1]. Then we may write the contribution to (20) from
the translation invariant term and bound it using Parseval’s relation and the
smoothness properties of % as follows:

pAP- V)f {f b~ 1k<v+p)(

< b2 | (R« F);

o) dm(t)}

(21) = 522 [ (KD (bu) FP(w)) dm ()

_ bz(p_,)mf‘” ( (bu)v+p

the last by recalling that £(z) = (¢2” + 1)L
We shall show that the above integral tends to 0 as & — 0. Note that £,

and therefore 7‘5 are in Ly(R), and that sup_._, .. lu"*?/(1 + u?P)| < .
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Hence, given ¢ we may choose A depending only on f such that

[ (b)) 27<77>(u)2dm(u) <2,
ui>al 1+ (bu)?” -2

Then

- b v+p 2A \
fw(%) fP(u)"dm(u)

(bu)"™”

= |u|sA(W) FP(u) dm(u) + 5

< b2 2| fPlC(p,v, 4) + 5.

The last may be made less than ¢ for b < b,, where b, depends on p, v and f.
This establishes (8).

To prove the last statement of the theorem, suppose that f®*1 exists on
[0,1] and is bounded in absolute value by |l fllp,«. In this case we may
integrate by parts in (21) to obtain

p2AP- v)/ {/ JACRI A 1)( )f@“)(t) dm(t)

_ppHr- 1)( - )f"’)(l) + pp+v= 1)( )f(p)(())}

By a change of variable we may bound the above by C(p)Il fllw, pyd*P "1
This establishes that the contribution to (20) from the translation invariant
term is O(b%P~V*1) O

Proor or THEOREM 3.2. The contribution from the boundary terms may be
shown to be O(b) times that of the translation invariant term by an argument
similar to that in the proof of Theorem 3.1. Statement (9) follows from
Parseval’s relation and a change in variable. A contour integration then
establishes (10). O

ProoF oF THEOREM 3.3. Consider first the bias of the estimate. In this

model, we have easily
n

E(f®(x)) =n~" Z K$:0(x, %) f(x;)

= [(K:9(x,0) (1) dt + 2(x),
0

where the quadrature error 2(x) is bounded in absolute value by
Il fllw, yC(p, ¥)n"'6"*~2. Hence in order to establish (11) it is enough to
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consider the integral approximation to the bias, and then (11) follows immedi-
ately from Theorem 3.1 (8).

Statement (12) follows similarly, where the approximation error is
O(n~2~%73), 0

Proor orF ProprosiTiON 3.4. It follows from the remarks preceding (17) that
h(x) = [2 k(x — )t/ dt is a solution to (14) for b = 1 and f(x) = x’. Substi-
tuting for A(x) in (14), differentiating under the integral and integrating by
parts yields A(x) = x/ for 0 <j < 2p — 1, and h(x) = x2? + (- 1)?*1(2p)! for
Jj = 2p. Integrating by parts yields [©_k®(x — )t/ dt = [® k(x — t)(¢))® dt
and substituting x = 0 completes the proof. O

Proor oF THEOREM 4.1. For p <j, k < 2p — 1, let 6,(¢) be the solution to
the homogeneous equation (14) with scaling parameter there set equal to 1
and satisfying boundary conditions

. (1
(22 000 =50 0(5] -0

and let 6(¢) = (6,(2),...,0,,_4(t)) be the corresponding p X 1 vector. The
Green’s function for (14) and (15) is given by [Coddington and Levinson (1955)
and Speckman (1981)].

Gy(x,t) =b k(b~Y (s —t)) +b7" i (-1)7*!
j=1

(28) t 1-¢ 1-
X{%—j(?)k@p—j)(%) + "2p—j(_b_)k(2p_j)( b x)}

Comparing (6) to (23), and using Proposition 6.1 to verify that 2ZP~**) ig
bounded, we see that it is sufficient to establish the bound

0 t t )
(3) -3
Let ¢, A and L be as in Section 2. As the components of ¢, form a basis for
the solution space of (14), we have

(24) sup < C(p,V)e—b_lsin(‘rr/Zp)‘

0<t<l1

t
9(3) = [Cy, By Js(2)
for some pair of p X p matrices C,, B,. Using

s =575 S (o),
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we have from (22)

1 1
9P(0 ’0(p+1) 0 ’”.,0(217—1) 0 ,g(p) — ,.__,0(217—1) —
(0),6%*1(0) (0) (b) (b)]

- [1,,0] = (G B,]| ) _ﬁ]p[wb(O),...,[ﬁ O w0, m,

[g _2]1’_1%(1)].

Letting D, = diag(e®™® ™, ..., ei»-* Y and § = (- 1)P diag(1, - 1,...,(—1)?),
we simplify the above to find that [C,, B,] is the solution to

N DA el R Al

Solving, [C,, B,] = [L~XI — D2)~'A~?, ~L~XI — D2)~'D,A ?S].

Recall that &(¢/b) = [C,0lp,(¢) = [L7'A7P, 01, (¢). Therefore, 6(¢/b) —
¢(t/b) = [C, — C, Bl (¢) with ¢,(¢) bounded, and (24) will follow by demon-
strating that [(I — DZ)~! — Illand || D,|l may be bounded by C(p)e =t 'sin(m/2p),
For || D,|l this is immediate, as [|D,|l = le b Yiro| = g~ 'sin(m/2p)

We have

-b%2r, e b li2r,

-1 .
(I - Df) —I= dlag( 1— e—b'1i2r0 e 1-— e—b'li2rp_1

and therefore

e—b—lizr0 e—b‘12 sin(r /2p)

"(I - Df)_l - I” =< < C(p)e‘b_ls‘“(”/zl’),

<
1 - e—b_1i2r0 - 1 — e—b_123in(1r/2p)

where C(p) may be taken to be e ~Si2("/2P) /(1 — ¢~ 25in("/2P)) for 0 < b < 1. O
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