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SOME RESULTS ON 2" ~* FRACTIONAL FACTORIAL
DESIGNS AND SEARCH FOR MINIMUM
ABERRATION DESIGNS!

By Jianua CHEN

University of Waterloo

In this paper we find several interesting properties of 2" ~* fractional
factorial designs. An upper bound is given for the length of the longest
word in the defining contrasts subgroup. We obtain minimum aberration
2"~* designs for £ = 5 and any n. Furthermore, we give a method to test
the equivalence of fractional factorial designs and prove that minimum
aberration 2" % designs for & < 4 are unique.

-

1. Introduction and definitions. When n two-level factors are to be
studied in an experiment, one may choose a full factorial design which
investigates all possible level combinations of n factors. However, it involves a
large number of runs which may be too expensive and unnecessary. A 2" *
fractional factorial design is a 2 *th fraction of the 2" full factorial design. So
when the run size economy is of primary concern, a fractional factorial design
is often used. A good choice of fractional factorial design allows us to study
many factors with relatively small run size, and yet enables us to estimate a
large number of effects. See Box, Hunter and Hunter (1978) for examples.
However, with given n and &, there are many 2" * designs. We should choose
a design that fits our need best. When specific knowledge about these factors
and their interactions is available, one may be able to find a particular design
that suites the need. When there is little knowledge about the factors, some
optimality criteria are used to select a design. So it is important to supply as
many different designs as possible and also give optimal designs under some
criteria.

In the following, we introduce some notation and definitions of optimality.
To save space, we refer to Fries and Hunter (1980) and Franklin (1984) for
detailed discussions on these optimality criteria.

Suppose in an experiment, we have six factors at two levels to be studied
and only 16 runs can be performed. Denote the six factors by letters 1, 2, 3, 4,
5 and 6. A fractional factorial 262 design can be arranged. We refer to Chen
and Wu (1991) for the detailed arrangement. Here, however, we only point out
that the design can be characterized by
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The elements 125, 2346 and 13456 are called words. Especially, 125 and 2346
are called generators because the other word 13456 is their symbolic multipli-
cation. All the words under this multiplication form a defining contrasts
subgroup with I being its identity. The number of letters in a word is called
the length of the word or wordlength. Let A,/(d) be the number of words of
length ¢ in design d. The wordlength pattern is given by the relations

W(d) = (Ad), Ay(d), Ay(d),...).

The resolution of a design is the smallest r such that A,(d) # 0. The ith
moment is defined by

Mi(d) = ZjiAj(d)-
Jj=1 .
For convenience, we may use W, A, M; and so on directly without d.

DEFINITIONS. A 2"~ * fractional factorial design has maximum resolution,
if no other 2" * fractional factorial design has larger resolution.

Let d, and d, be two 2" * fractional factorial designs and r be the
smallest i such that A,(d,) # A/(d,). d, has less aberration than d, if
A, (d)) <A,d,). A 2" * fractional factorial design has minimum aberration,
if no other 2" ~* fractional factorial design has less aberration.

Let m be the first i such that M,(d,) # M,(d,). If m is odd and M, (d,) <
M, (d,), d, has better moments; if m is even and M, (d,) < M, (d,), d, has
better moments. A 2" ~* fractional factorial design has optimal moments, if no
other 2"~* fractional factorial design has better moments. A 2" * fractional
factorial design is a minimum-variance design if it has maximum first moment
and minimizes the second moment M,(d).

Without loss of generality, we assume throughout the paper that each of the
n letters in a 2" * design must appear in the defining contrasts subgroup.
This is equivalent to maximizing the first moment.

Optimal designs in the sense defined have been studied extensively, though
their theoretical properties remain largely unexplored. On the other hand,
when fractional factorial designs are interpreted as codes, there are plenty of
theoretical results in coding theory [see MacWilliam and Sloane (1977) and
Verhoeff (1987)]. The present study has benefited from the ideas in coding
theory. The main contribution of this paper is on the minimum aberration
designs which, because of its experimental design context, is irrelevant in
coding theory.

We will use a new method to present defining contrasts subgroups. With a
new representation, we prove that the second moment of a 2" * design is
divisible by 2%~ ! (Theorems 1 and 2). We use variance to bound the length of
the words in a defining contrasts subgroup (Theorem 3). A relation between
2" % and 2**V~* designs is given in Theorem 4. In Section 3 we obtain
minimum aberration 2"~ ° designs for all n. The integer linear programming
method and the results of Section 2 are used to prove these designs have
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minimum aberration. In Section 4, we study the uniqueness of the minimum
aberration designs. We give a method to test the equivalence of two 2"~*
designs (Theorem 5). Using this method, we prove the uniqueness of 2"~*
minimum aberration designs with %2 < 4. The techniques developed in this
paper are apparently new. The uniqueness result is the first one in the
literature and the minimum aberration 2" 5 designs were only known for
n < 16 [Franklin (1984)].

2. Properties of 2" ~* fractional factorial designs. The defining con-
trasts subgroup can also be presented in another way [see also Chen and Wu
(1991)]. Let us construct a matrix

[1, B
(1) H_[Bt BtB],

where I, is a k X k identity matrix; B is a k& X (2% — & — 1) matrix which
contains all distinct and nonzero linear combinations (modulo 2) of column
vectors of I,; B’ is its transpose. By adding a 0 row and a 0 column to it, we
obtain a Hadamard matrix H,: (when 0’s are replaced by —1’s) whose rows
form a group under summation modulo 2 (so do its columns).

To define a 2"~ * fractional factorial design, let us divide the n letters into
2k — 1 subsets. Let f; be the number of letters in the ith subset, such that

1f ; = n. For each row vector u; of H, form a word w; by combining all the

letters in those subsets for which the component of u; 1s 1.

Hereafter, we regard (H,f) as a design, where f = (f, fs,..., for_1) is
called the frequency vector of the design.

Clearly, (v;,f) equals the length of the ith word, where v;’s are column
vectors of H. Thus all moments of the design can be calculated easily, that is,

2k —1
j=1 m
k
with [[v]l,, = X270, when v = (v, vy, ..., Uge_ )"

From the property of Hadamard matrlx, we have [vllz = 2%~1 and
(v, v;) = 2%-2 for any i # j. Therefore, when L f, = n is enforced

M, =n2F1

and

(2) M2 — 2k_1[2fj2 + Zfzfj — 2k—2n2 + 2k—2 ijZ
i<j

The formula for M, is well known [Brownlee, Kelly and Loraine (1948)]. There
are also other formulae for M, [Burton and Connor (1957)]. However, our
formula relates the design and its second moment more clearly. It is easy to
see that in order to minimize M,, we should choose the values of f,’s as close
to being equal as possible. This leads to the following result given in Chen and
Wu (1989).
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THEOREM 1. A 2" * fractional factorial design (H,f) has minimum
variance if and only if f; =q or q + 1 for all j, where q is determined by
n=q@*—1)+r, where 0 <r < 2% — 1.

From (2) we obtain another property of the second moment of a 2"*
fractional factorial design as follows.

THEOREM 2. For any 2"~ * fractional factorial design, its second moment
is divisible by 2%~ 1,

More properties of the wordlength patterns can be found under our repre-
sentation. Since searching for optimal designs is essentially searching for
optimal wordlength patterns, the following results are helpful.

As is found in Chen and Wu (1991), when we consider all minimum
aberration 2" * designs with fixed % and general n, the range of the
wordlengths is finite regardless of the size of n. This is also true for minimum
variance designs. In general, a minimum variance design has a relatively short
longest word. As variance increases, it enables its longest word to be longer.
More precisely, we have:

THEOREM 3. Let v be the second moment of a minimum variance 2" *
design, M, be the second moment of any 2"~ * design d and let

(3) M, —v=m2¢1,
Then, the length L of the longest word of d satisfies
(4) L<q2*t+r +m,

where n = q(2% — 1) + r with 0 < r < 2% — 1 and r' = minf{r, 2*~1}.

Proor. Let f be the frequency vector of a 2" % design. We have
(5) f'H = 2" 1q1' + (f' — q1')H.

Clearly, the largest component of (5) is at most the sum of the positive
components of f¢ — g1° plus ¢2*~'. Using the formula for M,, Theorem 1 and
condition (3), we have

Z(fi—q)2=2m+r.
Since X(f; — q) = r, we have

Y(fi-) =(r+T(fi-—) +Z(fi-a)")/2
=(r+ Z|fi—Q|)/2S(r+2m+r)/2=m+r,

where super indices + mean positive part or negative part. So the theorem is
proved for r < 2*¢1,
For r > 2*~1 we use mathematical induction. When m = 0, d is a mini-

mum variance design. By Theorem 1, f; — ¢ = 0 or 1 for any i. Since each
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column of H has 2*~! components of 1, all components of (f! — g19)H < 2%~ 1,
So (4) is true for m = 0. Now suppose (4) is true for m < a, we prove (4) for
m =a + 1. Let f be the frequency vector for a design of m = a + 1. By
Theorem 1, there is at least one pair of (i, j) such that f; — f; > 2. Consider f’
which is the same as f but with f; = f; — 1 and f; =f; + 1. It is easy to show
that for design (H,f’)

M,-v=m2*1, m<m-1.

By induction, its longest words have length at most ¢2*~! + 2¢~1 + m'. From
the relation of f and f’, the longest words of f' have length at most ¢2*~! +
28 1+ m' + 1 <q2* ! + 2% ! + m. This proves (4). O

We have seen that 2" * and 2"*D~* designs are closely related. The
knowledge of one helps to understand the other. The following theorem
focuses on the number of words of the shortest length in the defining contrasts
subgroup.

THEOREM 4. Suppose a 2"~ * fractional factorial design d, has resolution
R, and Ag(d,) is the first nonzero component of its wordlength pattern. Then,
there exists a 2"*V~* design d, with Ag(d,y) < (1/2)AR(d,), and Ag(d,) is
the first possible nonzero component of its wordlength pattern.

Proor. Let g be a (2% — 1)-dimensional column vector of 0 and 1. Since

lg‘Hll, = g'HH'g = 2*~2||g|1} + 2*~2||gll,,

there must be a component of g’H which is larger than the square root of
2*=2||g||? /2*. That is, there is a column v, of H, such that

(6) (v;, & > 3liglh.
We will use (6) to prove this theorem.
Let £ = (fy, fa ..., fot_) and (H,f) be a 2" ~* design. Recall that the words

in the defining contrast subgroup have a one-to-one correspondence with the
rows of H. Let g be a vector which shows the position of the words of length
Ag(d)), that is, its ith component is 1 when the ith row of H corresponds to a
length AR(d,) word of (H,f), and is 0 otherwise. By (6), there is a row vector
v; of H such that (v, g> > (1/2)lgll,. Let f' be the same as f but with ith
component f; + 1 instead of f;. Then (H,f’) defines a 2"*V~* design with
Ag(d,) < (1/2)Ag(d,). This is because more than half of the words with
length R in (H,f) have length R + 1 in (H,f’') now. O

An interesting special case is when Ag(d,) = 2. The preceding theorem
concludes that A(d,) = 0 which implies the latter design has higher resolu-
tion.

3. Minimum aberration 2" ~® designs. All minimum aberration 2"*
designs with 2 < 4 are given in Chen and Wu (1989). It is also found that
minimum aberration designs have a nice periodicity property when n is large
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and k is fixed. That is, for fixed %, we can give optimal designs of large n via
optimal designs with relatively small . Precisely, it is proved that:

TuEOREM A. For any fixed k, there exists a positive integer M, such that
for n > My, if a minimum aberration 2"~ * design has the wordlength pattern
W, then there exists a minimum aberration design 2"+2'-D=k with the
wordlength pattern lag(W, 2*~1), where

2k—1

lag(W, 2%~ 1) = (0,...,0,W).

RemMark. If (H,f) is a minimum aberr]?tion 2" * design and n > M,, then
(H,f + 1) is a minimum aberration 2" *2"~D~* design.

It is known that M), = 1 when k < 5. In this section we find that M, = 14.
In other words, minimum aberration 2”5 designs for n > 45 can be obtained
from those of 14 < n < 44. The minimum aberration designs for 1 < n < 31,
38 <n <40 and 42 < n < 44 and their wordlength patterns are given in
Tables 1 to 4. Table 1 specifies the matrix H by presenting the first five row
vectors. The other row vectors can be generated from these. Table 2 are the
frequency vectors. Each row in the table defines a 2”5 design together with
the Hadamard matrix in Table 1. For any n that is not in the previously
mentioned range, the minimum aberration 2”75 design can be constructed
from that of 2("~3™)~5 design. The method is given in the preceding remark.
When n <5, the designs in the tables are given solely for constructing
minimum aberration designs with large n’s. They are not necessarily meaning-
ful designs.

An interesting observation can be obtained from our result. The 2385
design presented has minimum aberration but not minimum variance. This
contradicts a conjecture made by Franklin (1984).

We prove that these designs have minimum aberration by ruling out
possibilities of less aberration. We have seen that for a vector to be a wordlength
pattern of a fractional factorial design, it must satisfy:

RESTRICTION 0. YA, =2 — 1.
RESTRICTION 1. YA, _; =2*"!or0.
RESTRICTION 2. YiA; = n2*71,

RestrICTION 3. Yi%A; > 2579 n? + q%(2* - 1) + 2¢r + 1],
where n = (2% — 1) + r.

RESTRICTION 4. Yi%A,; is divisible by 2%~ 1.

REsTrICTION 5. The maximum length of words in a 2" * design is no more
than ¢2*~! + r' + m, which is defined in Theorem 3.
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TaBLE 1
The H matrix for minimum aberration 2"~ 5 designs ( first 5 rows)

101101001100 1011

100001111101000
010001110010110
001001001100111
000100101011101
000010010111011

1101010101010101
1110011001100110
111110000111 1000
1111111110000O0O0O0TO0

TABLE 2
Frequency vectors of minimum aberration 2"~ 5 designs

v

1000000000000000000000000000000
1100000000000000000000000000000
1110000000000000000000000000000
1111000000000000000000000000000
1111100000000000000000000000000
1111100000000001000000000000000
1111110000000000100000000000000
1111100000100010000010000000000
1111100000000000111010000000000
1111100000000000111010001000000
1111100000000000111010001000001

1111111111110000000000000000000
1111111111111000000000000000000
1111111111111100000000000000000
1111111111111110000000000000000
1111111111111111000000000000000
1111111111111111100000000000000
1111111111111111110000000000000
1111111111111111111000000000000
1111111111111111111010000000000
1111111111111111111010001000000

1111111111111111111111000000000
1111111111111111111111100000000
1111111111111111111111110000000
1111111111111111111111111000000
1111111111111111111111111100000
1111111111111111111111111110000
1111111111111111111111111111000
1111111111111111111111111111100
1111111111111111111111111111110
1111111111111111111111111111111

1211221112111111121211111212101

1211221112111111121211111212201
1211221112111111121211111212202

1212221122211112111112121212101
1212221122211112111112121212201

1212221122211112111112121212202

1
2

10
11

12
13
14

15
16
17
18
19
20
21

22
23

24
25

26
27

28
29
30
31

38
39
40

42

43

44
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TABLE 3

2"~k FRACTIONAL FACTORIAL DESIGNS
Wordlength patterns of minimum aberration 2"~ % designs (1 < n < 31)

C OO0 OO0 OO OO T HreHHHHHMMOMOMID 10
COCO 000000000 rHTOOOODOOONOODOIHO WWWOWOO
C OO OO OO0 rHOODOODODOONOOOONIL WO O

ococoocoH

=)
5]
2 S (lcooco-o
N
X
C 000000000 OO0 ONOOFDOINIOSOOOO 3 0 lcocoroo
— — N~ = N
0
i o~ coo
00000000000,0000000480n.mM00000000 5 &|°°°
g elococooo
OO0 00000000O00OOCNANSOVOOOOOOOOO 2Q
EY¥|n|loccococo
S |
O 00000000 ONOOOOOPLONNOOOOOOOOOO D S <
— = - 8 o5 | 0O MM
<+ g« | N
00000 O I NN FTONOOCOOOOOOOOO D 8 Sa
oo J g F %040040
C 00 0O ONYTOONNOINOOOOOCOOOCCOODD DD mumg,
e m3, N[t oo0mm
S| N —
OO0 OO MMNOONNN OO0 A
- ol |R|lococw-o
OO OO HOYFINLHIDVNMNMOOOOOOOOOOOOOOOO0O O NS
Y |olowrwmoo
iS xR RS
oo N N YFOFTAO OO0 OOOOOOOOOOOOOOO ],
- < o |lonocococo
4GLO | -
O oY R OO N O FTO OO0 O0000000000000O m x|vooooo
T
COHNNNONIN OO0 OD O % ~loocoococoo
Lo B o B I | Al

16

16
38
39
40
42

m8500000000000000000000000000

COOCOCOCODDODODODO0DO0OO0OO0OO0DO0OO0OOO0OOOOOOOC

15
7
3
1
0

AN F IO OO

11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
30
31
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The first three restrictions are from the literature [see Burton and Connor
(1957) or Fries and Hunter (1984)]. The others are discussed in this paper
earlier.

In addition, any subgroup of a defining contrasts subgroup defines a design
and satisfies Restrictions 0-5 (possibly with different n and k). In particular,
we have:

REeSTRICTION 6. The first moment of even length words is divisible by 2*~2.

The following lemma is useful in conjunction with the above arguments.
This is a standard result in group theory.

LEMMA 1. Let G be a defining contrasts subgroup of a 2"~ * design with
k=2 w,,w, are any two nonidentity elements. There always exists a sub-
group G, C G of size 2*71, such that w,, w, & G,.

With the help of the integer linear programming method and these neces-
sary conditions, we prove that no other designs may have less aberration. In
the next section, we briefly introduce the integer linear programming method.
We will also give a detailed example for illustration.

3.1. The integer linear programming method. In a linear programming
problem, a linear function is minimized subject to some linear constraints,

minimize: ax, +azxy + 0 +a,x,
subject to: Q1% + QX + 00 +aq,x, < by
(7) Q91X + QogXe + <+ +0ay, %, < by
Q1%+ QpeXe + 0 +a,,,x, <b,,.

When all x,’s are restricted to be integers, it is called integer linear program-
ming. For more details on linear programming see Srinath (1982).

In our problem, we optimize wordlength pattern W = (x,, x,,...). By the
definition of minimum aberration, x,, x, and so on are minimized sequen-
tially. The corresponding constraints are Restrictions 0—6. Thus, the existing
linear integer programming method can be used except that:

1. For each n, the length of W is n. As n grows, it is impossible for any
program to accommodate so many variables. This should be fixed before a
program can be applied. In the next example we will show how this problem

“can be avoided.

2. We may get a W which is not a wordlength pattern. Restrictions 0-6 are

necessary but not sufficient.



2" ~* FRACTIONAL FACTORIAL DESIGNS 2133

So our procedure is:

1. For each n and &k, find a 2"~ * design which is likely to be a minimum
aberration design.

2. Use the integer linear programming method to search for W’s with less
aberration and satisfying Restrictions 0-6. We call these W’s feasible
solutions.

3. If there is no feasible solution, the design has minimum aberration. Other-
wise, either we prove none of the feasible solutions are wordlength pattern
of any design or we look for a design with less aberration from the feasible
solutions.

As an example, we prove the 231" +19~5 designs given in Table 1 and 2 have
minimum aberration by using the integer linear programming method. The
designs we give have the following wordlength pattern:

length(16m + ) 6 7 8 9 10 11 12 13 14

# of words 7 16 7 0 0 0 0 0 1
We will omit “length(16m + )’ and “# of words’’ hereafter. A vector
W = (x4, x4, ...) will have less aberration if x; =x, = -+ =x5=0and x4 <

7. If there is no odd length word, the proof is straightforward. Otherwise there
are 16 odd length words present, the problem becomes:

minimize: Xg
subject to: X6 <6
Xg+Xg+ X9 - =15
(8) ot d by o = 16
Xq + 2xg + 3x9 + -+ = 38

X7 + 4xg + 9xg + - -+ = 108.

According to the first constraint we look for solutions with x; < 7 only. The
second and the third count the number of odd and even length words. The last
two take care of the first and second moments and have been simplified
according to the following relationships:

Y(i—c)A, = Y iA, +cn21 =M, + cM,,
Y (i—c¢)?A, = Yi%A, — 2¢ LA, + c2n2k "1 = M, — 2¢M,; + ¢*M,.

We choose ¢ = 16m + 6 to eliminate m in (8). Thus the solution of (8) is for
all m.

To apply the NAG (numerical algorithms group) computer software, we
need to limit the number of x’s in (8). This is done by noticing that the first
four constraints imply all x, = 0 for i > 13. The computer finds that there is
no feasible solution for (8). Next, we set x4 = 7 and minimize x, and so on.
There is no feasible solution found and hence the 231" *19~5 design in Table 2
has minimum aberration.
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We have completed this example by using Restrictions 0-3 only. However,
Restrictions 4-6 are useful in other cases. We may find a feasible solution
which has the second moment not divisible by 2*~1. To avoid such solutions,
for example, we can replace the last constraint in (8) by

%, + dxg + 9xg + <+ = 108 + 16 X j

and use Restriction 5 to control the number of x;’s in the problem. If there are
still unwanted possibilities, Restriction 6 becomes our last systematic method
to rule them out.

We will go over all the designs in Table 1 and 2 in the next section.

3.2. Brief proofs. In this section, we use the integer linear program pro-
vided by NAG to search for feasible solutions. If as in the example given in the
last section, there is no feasible solution, we will give the conclusion without
details.

For n =31m + 1, 31m + 2, 31lm + 3, 31m + 4, there is no feasible solu-
tion.

For n = 31m + 5, there is no feasible solution when an extra constraint
Aigms1 + Algmsz = 15 is used. If this constraint is not true, we will obtain a
2Blm+6)-5 degion with less aberration than the one in Table 2. Here, we
preassume that the 2G+6~5 designs in Table 2 have minimum aberration.
This is shown in the following discussion.

For n = 31m + 6, our designs have wordlength pattern

1 2 3 4 5 6

0 15 0 15 0 1

It is straightforward to see there is no feasible solution without odd length
words. Thus, a feasible solution W = (x, x,, .. . ) must satisfy

X9+ x4 +x6+ 0 =15,
X3+ x5 +x,+ 0 =16,
2x, + 3x5 + 4x4 + -+ = 96.
These imply
2xy + 4x, + 2x5 + 6xg + - = 48,

and hence
2x, + 4x, + 6xg + -+ < 48.

If a feasible solution W exists and is indeed a wordlength pattern, all the
even words will define a 2” ~* design. The first moment of this design is

Y (2i + 16m)xy = ¥ (2i)xy + 16m(2* — 1) < (30m + 6) x 2*7 L.

That is, according to Restriction 1, #” < 30m + 6 < n unless m = 0. The case
of m = 0 is trivial. When n’ < n, all the odd length words share a common
letter. When this letter is removed from each of the words in W, the set of new
words form a new defining contrasts subgroup for a 26 *+5-5 design. The
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new design has wordlength pattern (y,,y,,...) with y,, = x5, + x,,.; and
¥9;—1 = 0. Thus, this design has resolution 16 m + 2 which is impossible.

For n = 31m + 7 and m = 0, its proof is straightforward. When m > 1, it
is clear from Theorem 2 that there must be at least three words of length
16m + 2. Otherwise, it contradicts the result for n = 31m + 8. Again, we
preassume the result for n = 31m + 8. It is to be proved later.

Using the integer linear programming method, we find a feasible solution as
follows:

2 3 4 5 6 7 8

4 14 10 0 0 2 1

For this solution, note that the upper bound of the longest word given by
Theorem 3 is reached. If the solution is a wordlength pattern of some design,
then from (5) there must be two columns of H, v, and v,, such that

(- q),vi) =8, {((f'-q),vs)="1.

Also, from the second moment formula, we find that f, — g = 1 for eight i’s
and f;, — q < 0 for others. So the preceding equations imply that v,(i) = 1
whenever f; — q = 1, and so does v, with one exception. Therefore, v (i) +
vy(i) = 0 (mod 2) whenever f; — q = 1 with only one exception. So if v; =
v, + v, (mod 2),

<(ft - q),v3> =1

This implies that there is a word with length 16 m + 1, which contradicts the
solution itself.

For n =31m + 8 and m = 0, the proof is straightforward. When m > 1,
let x,9 and x,, be the words of length 16m + 19 and 16m + 20. Since
minimum aberration 2@ *9~5 design has 26 words of length 16m + 20. We
must have x4 + x4 > 26. Under this restriction and Restrictions 0-6, we find
no solutions.

For n = 31m + 9 and m = 0, the proof is straightforward. When m > 1,
we have one feasible solution:

4 5 6 7 8 9 10

25 0 3 0 2 0 1

Using a similar method to the one for n = 31m + 7, we can show if a
defining contrasts subgroup has words of length 16m + 8 and 16m + 10 at
the same time and its variance is the same as the variance of this solution,
then it must have a word of length 16m + 2. So this solution is not a
wordlength pattern.

For n = 31m + 10, there is only one feasible solution:

4 5 6 7 8 9 10

9 16 3 0 2 0 1
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We find that this solution has minimum variance, so if this is a wordlength
pattern of some m, it must also be a wordlength pattern of m = 0 because of
periodicity. This is impossible.

For n = 31m + 11 and m = 0, the proof is straightforward. When m > 1,
assumed that our result for n = 31m + 12 has been proved. By Theorem 4,
we can see that the first nonzero component of its wordlength pattern must be
at least 3. From Table 2, we know it can be as small as 4. If the smallest
possible is 4, there will be no feasible solutions by using the integer linear
programming method. Let us assume that it can be 3. Under this assumption,
we find one feasible solution:

4 5 6 7 8 9 10 11 12 13

3 15 11 0 0 0 170 0 1

The proof of impossibility of this solution is similar to that for n = 31m + 7.
For n = 31m + 12 and m = 0, the proof is straightforward. When m > 1, we
find one feasible solution:

5 6 7 8 9 10 11 12

10 14 5 0 0 0 1 1

The proof of impossibility of this solution is again similar to that for
n=31m+ 1.

For n =31m + 13, when m =0 and m > 1 are considered separately,
there is no feasible solution for either of them.

For n =31m + 14, 31m + 15, 31m + 16, 31m + 17 and n = 31m + 18,
there is no feasible solution.

For n = 31m + 19, we find seven feasible solutions:

8 9 10 11 12 13 14 15 16 17 18 19 20

116 12 0 0 0 O O 2 0 O 0 O
116 12 0 1 0 0 O O O 0 0 1
1161 0 1 0 1 0 1 0 O O O
116 11 0 2 0 0 0 O O 1 0 O
116 10 0 2 0 2 0 0 0 0 0 O
11512 0 2 0 0 0 0 1 0 O O
1 14 13 1 0 0 1 1 0 O O O O

Note that all the feasible solutions share a common feature: There are a few
words which are much longer than the other ones. From Lemma 1, for the
first two solutions, we can find a subgroup of size 15 (not counting the
identity) whose elements have length 8, 9 and 10 only. According to Restric-
tion 1, each has wordlength pattern as one of the following:

8 9 10

1 8 6
0 8 7
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which violates Restriction 2. Similarly, for the rest of the feasible solutions, we
can first find a subgroup of size 15, then a subgroup of this subgroup of size 7,
whose elements have words of length 9 and 10 only. According to Restriction
1, each has wordlength patterns as:

9 10

4 3

which violates Restriction 2.
For n = 31m + 20, 31m + 21,...,31m + 31, there is no feasible solution.

4. Uniqueness of the minimum aberration designs. A lot of designs
with practical usage or theoretical interest have been found. However, for
fractional factorial designs, many optimality criteria are based on the
wordlength pattern. There are examples where the wordlength pattern does
not uniquely determine the design. It is possible that for given n and k, there
are two different minimum aberration designs. It is of interest to know
whether we have found all minimum aberration designs for each n and k.

When we say different designs, we should note that designs can appear in
different ways. Two designs are said to be equivalent if one can be obtained
from the other via sign changes in columns, rearrangement of runs and
rearrangement of columns. When two designs are nonequivalent, they are
different.

The following two designs given by Draper and Mitchell (1968) have the
same wordlength pattern:

1
@ = 234579¢,t, = 234568¢,t, = 14578t t,t,,

. I = 13469¢t, = 13578t, = 456789¢,¢, = 1234568t
(2) — 2589t ,t, = 2467t t, = 12379t t,t,,

where ¢, t,,¢t, are used for 10,11,12. They are found to be nonequivalent
because of different letter patterns. The letter pattern is defined as a matrix
whose (i, j)th entry is the frequency of the letter ¢ in length j words. The
letter pattern does not uniquely determine a fractional factorial design either,
see Chen and Lin (1991).

In order to study this problem, we first need a practical way to test whether
two designs are equivalent. With the help of the frequency representation, we
suggest the following testing method.

THEOREM 5. Let £ = (f1, fo,.-., for_1)' and g = (g4, 82, .., 8ot _1)" be two
frequency vectors, and H be given by (1), such that (H,f) and (H,g) are two
2"~* fractional factorial designs. If there exists a relabelling map ¢ for
(1,2,...,2*% — 1), such that for any i and j,

1 f;= 8y
2. Vi ¥V = Vyay When v xv; = v,
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where v;,v; are row vectors of H, * stands for sum of modulo 2, then f and g

are equivalent. Otherwise, they are not.

Proor. The second conclusion is obvious.
The design (H, g) is equivalent to (H', g’') where

[
H' = (Vg Vg - - - Vit - 1)) s

g = (81 vy Bur-1) =T

Although H' is not the matrix specified in (1), (H',g’) can determine a
defining contrasts subgroup in the same way as (H,g) does. We therefore
name it a design for the sake of convenience.

If H' can be obtained from H by rearranging the rows of H, then (H', g’)
has the same words as (H,f). Therefore, they are equivalent. Since
Vi, Vs, ..., V, generate all the other columns, by condition 2, vy, V), - - -5 Vyz)
generate all the other columns in the same way. So if these two sets of vectors
can be obtained from each other by rearranging rows, so can H' be obtained
from H. Note that there are only 2* different k-dimensional vectors of 0 and
1, and both [vy,v,,...,v,] and [v,), V) - - - » Vyky] must contain all of them
except the 0 vector. This shows that they can be obtained from each other by
rearranging rows. Hence the theorem is proved. O

With the help of this theorem, we prove that all minimum aberration
designs of k& < 4 are unique up to equivalence.

Consider the 2"~ * designs. For £ = 1 and 2, we have the following stronger
result.

THEOREM 6. Any 2"~ * fractional factorial design with k = 1,2 is uniquely
determined by its wordlength pattern.

Proor. It is obvious when k2 = 1. For k = 2, let £ = (f}, f5, f3) and g =
(g4, 85, 83), be two frequency vectors. If they have the same wordlength
pattern, then using moments relations we find

fitfotfs=8 18+ &8s
fifa+ fifs+fafs=8182 + 8185 + 8283,
fifefs = 818285-

This shows that g is only a rearrangement of f. Since any two of the nonzero
columns of H generate the third nonzero column, this rearrangement map
satisfies the conditions in Theorem 5. Therefore, f and g are equivalent. O

. The same conclusion is not true when % = 3 or 4. However, we have:

THEOREM 7. Any 2"~ * fractional factorial design with minimum aberra-
tion is uniquely determined by its wordlength pattern when k = 3, 4.
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We give a lemma first.

LEMMA 2. Suppose A and B are two subsets of a group G which satisfies
a *a = I (identity) for any a € G, where * is the operation of G. If there
exists a bijective map ¢: A — B, such that fora, €A, i=1,2,...,n,

(9) v(a)*¢(ag)* - *y(a,) =1, ifandonlyif a;*ay* -+ xa,=1,

then i can be extended to an isomorphic map of G — G.
REMARK. For formal definition of isomorphism, see Pinter (1982).

The proof of this lemma is straightforward. It uses standard methods to
extend ¢ from A to the subgroup generated by A.and so on. Note, it is
important that a * @ = I for any a € G. Without this condition, (9) might not
be satisfied after ¢ is extended.

If such a ¢ exists, we say A and B are isomorphic subsets.

Proor oF THEOREM 7. Under our new representation, we show any two
minimum aberration designs (H,f,) and (H,f,) with the same n and k&
(k < 4), are equivalent.

From Chen and Wu (1991), all minimum aberration designs for k2 = 3 or 4
have minimum variance, and minimum variance designs are fully periodic.
Thus we need only prove the uniqueness for n < 2* — 1. In addition, f’s can
only have components 0 or 1. To prove uniqueness, we need only examine the
isomorphism of the column sets determined by different f’s.

We first consider &k = 3. Let us name the columns of H as
{a, b, c, ab, ac, bc, abc} with, as usual, a + b (mod 2) = ab and so on.

For n = 1, any two columns of H are clearly isomorphic with each other.
Thus there is only one minimum aberration design. The same is true for
n=2.

For n = 3, we have two nonisomorphic subsets of columns, {a, b, ¢} and
{a, b, ab}. The first one gives the minimum aberration design and the second
one determines a design with more aberration.

For n = 4, a subset of four nonzero elements is a complement of a subset of
three nonzero elements. So the proofs is the same as n = 3. For n = 5, 6, the
proofs are similar to that for n = 4. For n = 7, it is obvious.

Next we consider k = 4. Let the columns of H be

(a,b,ab,c,ac,be,abe,d,ad, bd,abd, cd, acd, bed , abed) .

For n =1,2,3,12,13, 14, 15, it is clear that the proofs for £ = 3 can also be
used for & = 4.
For n = 4, 11, there are three nonisomorphic subsets:

, {a,b,c,d}, {a,b,c,abc}, {a,b,c,ab}.
For n = 5, 10, there are four nonisomorphic subsets:
{a,b,c,d,abcd}, {a,b,c,d,abc}, {a,b,c,d,ab}, {a, b, c,ab, abc}.



2140 J. CHEN

For n = 6,9, there are at most eight nonisomorphic subsets:

. {a, b, c,d, abc, abcd}
. {a, b,¢,d, ab, abcd}
. {a, b, ¢, d, abc, bed}
. {a, b,c,d, ab, abc}

. {a, b, c,d, ab, bed}

. {a,b,c,d,ab, cd}

. {a, b,c,d, ab, ac}

. {a, b, ¢, ab, ac, be).

Calculations show that only one structure for each n has minimum aberra-
tion. For n = 7, the proof is similar. O

000 Utk W

-

REMARK. As pointed out by a referee, in the case of n = 6,9, subsets 1,2, 5
are isomorphic, 3,7 are isomorphic. However, by including all eight sets, it is
clearer that we miss nothing.

REMARK. The same technique can also be applied to find the number of
nonequivalent fractional factorial designs for each n and k. However, it
becomes more complicated as n and % get large.
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