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EFFECTS OF MISMODELING ON TESTS OF ASSOCIATION
BASED ON LOGISTIC REGRESSION MODELS!

By MELISSA Dowp BEGG AND STEPHEN LAGAKOS

Columbia University and Harvard University

We consider the effects of misspecifying the covariate vector on tests of
association between a particular covariate and the response variable in
logistic regression models. Misspecification can include random measure-
ment error, discretizing a continuous explanatory variable and mis-
modeling the functional form of an explanatory variable. The effects of
misspecification are examined by deriving the asymptotic distribution of
the test statistic under a sequence of models. Applications of this result are
discussed.

1. Introduction. In using logistic regression models to assess the rela-
tionship between a binary response variable and one or more explanatory
variables, misspecification of the explanatory variables is common and can
adversely affect hypothesis tests of association between the response and
exposure variables. The purpose of this paper is to derive an asymptotic result
that can be used for studying the consequences of misspecification on the
validity and efficiency of tests of association between exposure and response.

The literature contains many references to the effects of variable misspeci-
fication, but many of these, such as Cochran (1968) and Fuller (1980), discuss
errors of measurement only for linear models. Several authors have begun to
study the effects of mismodeling on parameter estimation in nonlinear regres-
sion. For example, Prentice (1982) studies variable misspecification for
failure-time data. Stefanski (1985) and Armstrong (1985) examine the conse-
quences of misspecification for the class of generalized linear models. Michalek
and Tripathi (1980), Carroll, Spiegelman, Lan, Bailey and Abbott (1984),
Stefanski and Carroll (1985) and Burr (1988) focus in particular on binary
data. With regard to the consequences of mismodeling on the size and power
characteristics of tests of association, Lagakos (1988a) and Lagakos and
Schoenfeld (1984) look at the efficiency of tests of association when covariates
have been mismodeled or omitted from the proportional hazards model for
failure-time data. Tosteson and Tsiatis (1988) and Stefanski and Carroll (1990,
1991) consider the effects of using surrogate variables for exposure in the
generalized linear model. Gail, Wieand and Piantadosi (1984) study how
covariate omission in a randomized clinical trial biases the estimated treat-
ment effect. In related work, Gail (1988) studies the effect of pooling in

Received January 1990; revised December 1991.

“Research supported by Grant CA39640 from the National Cancer Institute.

AMS 1980 subject classifications. Primary 62F05; secondary 62J02.

Key words and phrases. Asymptotic relative efficiency, asymptotic validity, logistic regression,
model misspecification, tests of association. )

1929

G:]
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z

The Annals of Statistics. BIKOIE ®

WWw.jstor.org



1930 M. D. BEGG AND S. LAGAKOS

perfectly balanced trials, and Gail, Tan and Piantadosi (1988) demonstrate via
simulations that, under simple randomization, score tests from logistic models
lose efficiency when needed covariates are omitted. Lagakos (1988b) explores
the efficiency of tests of association in which a single exposure of interest is
mismodeled in the absence of other covariates for linear, logistic and propor-
tional hazards regression models. In this paper, we wish to expand upon these
earlier results to study the consequences of simultaneously mismodeling both
the exposure of interest and other covariates on the asymptotic validity and
efficiency of tests of association between exposure and response in logistic
regression. For the special case of omitted covariates, we refer the reader to
Begg and Lagakos (1993).

Suppose that @(x,z) represents the likelihood score test statistic based on
the correct exposure variable x and on the correct (p X 1) vector of covariates
z. Further, let Q(x*,z*) denote a test statistic which is identical in form to
Q(x, z), but in which x and z are replaced by x* and z*, respectively. Here, x*
denotes a misspecified version of x, and z* denotes a misspecified version of z.
By misspecification, we mean simple measurement error, mismodeling the
functional form of an explanatory variable [e.g., using age instead of log(age)]
or discretizing a continuous variable. The only restriction imposed on misspec-
ification is that the distribution of the response variable given (x, x*,z,z*)
must be equivalent to the distribution of response given x and z. Loosely
speaking, this means that x* and z* do not add to the information about
outcome already furnished by x and z. The statistic @(x*,z*) does not, in
general, have the same distributional properties as Q(x,z). Its properties
depend on the type and the extent of mismodeling that has occurred. The goal
of this paper is to develop a convenient way to assess the consequences of
using Q(x*, z*) instead of Q(x,z).

There are various ways of assessing the ramifications of using Q(x*,z*).
We will focus on the asymptotic distributions of @(x,z) and Q(x*,z*) because
their exact distributions are, in general, intractable. Under a specific sequence
of models, we show that as the sample size goes to infinity @(x, z) converges in
distribution to N(u, 1) random variable, while @(x*, z*) converges to N(u*, 1).
Since u = 0 under H,, we can assess the asymptotic validity of Q(x*,z*) by
studying u* when the null hypothesis holds. By comparing the magnitudes of
w and u* for alternatives to H,, we can assess asymptotic relative efficiency
(under conditions when both tests are valid).

We state the theoretical problem and main results in Sections 2 and 3. In
Section 4 we discuss its applications to assessing the effects of misspecification
of both the covariate of interest and other covariates on tests of association. In
Section 5 we present an example which applies the theoretical result to a
problem in AIDS research. Proofs of the main results are provided in Sec-
tion 6.

2. Model and test statistic. Suppose that the response variable Y is
related to covariates x and z by the logistic model

(2.1) logit Pr(Y = 1lx,z) = 0, + ax + B;z,
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where 6, and « are unknown scalar parameters and B, is an unknown
(p X 1) vector parameter. We focus on the hypothesis of no association
between x and Y, that is, H;: @« = 0. Given n independent observations of the
form (Y,;,x,;,Z,;), i = 1,2,...,n, Hy: @ = 0 can be assessed by one of three
asymptotically equivalent tests based on the maximum likelihood estimator
(MLE) of «a, the likelihood ratio statistic or the likelihood score statistic [Cox

and Hinkley (1974)]. We will focus on the score test, which has the form

22) Qx.z) = ¥ x| Y- exp(ﬁﬁz / o
i=1

1+exp0+Bz,”

where 6 and B are the restricted MLEs of the nuisance parameters 6, and B,
when « = 0, and w is the reciprocal of the (1,1) element from the inverse
sample information matrix for (e, 8,, B,) [Cox and Hinkley (1974)]. For con-
tiguous alternatives to a = 0, the limiting distribution of @(x,z) can be shown
[Cox and Hinkley (1974)] to be N(u, 1), where u depends on 6,, @, B, and the
joint distribution of x and z. In particular, u = 0 whenever « = 0.

Now suppose that x and z are misspecified and consider the test, say,
Q(x*, z*), obtained by replacing x and z in @ by their misspecified versions,
say, x* and z*. The test statistic now takes the following form:

2.3)  Q(x*z") = ¥ k| Y- exp(“ﬁz / o
i=1

1+exp0+Bzm

where w* is identical in form to w in (2.2), but with x and z replaced by x*
and z*, and where 6 and B denote the maximizing solutions to estimating
equations based on the misspecified versions of x and z. For a particular
sequence of contiguous alternatives to model (2.1), we derive that

Q(x*’Z*) L N(/-L*’ 1),

where p* depends on 6, a, B, and the joint distribution of x, x*, z and z*.
3. Asymptotic distribution of Q(x*,z*).

3.1. Sequence of models. We derive the asymptotic distribution of
Q(x*,z*) by considering a sequence of contiguous models indexed by n.
Suppose that z*,, the misspecified version of z,,;, is equal to z,,; plus a term of
order 0,(n~'/?), say n~'/?V,,. Thus V,,; is a random variable whose relation-
ship to z%; is described by
(31) z¥, =z, +n 12V,

For a given n, assume that (Y,;, x,,;, Z,,;, x¥;, V,,;)), i = , n, are indepen-
dent and identically distributed (iid), where (xm, nis X V ) has cumulative
distribution function F that is independent of r. Furthermore suppose that
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the conditional distribution of Y,; given (x,;,z,;, x*;,V,;) is given by

logit{Pr(Y,,; = 1|x,;, Z,;, x¥;, V,,;)} = logit{Pr(Y,, = 1|x,;,2,,)}
By + —2
=0, + .t BoZ ;-
0 /n Xni Bozm

The first part of this equation implies that x}; and V,; add no information
about Y,,; beyond that supplied by x,; and z,,. The replacement of « in (2.1)
by a,/Vn is the usual form for the contiguous alternative to the hypothesis of
interest. The assumption in (3.1), similar in spirit and purpose to replacing «
by @,/ Vn , is intended to allow the misspecification of z to affect the test of H,
but still give a tractable result. As we see later, this rate of convergence of z;
to z,; ensures this. Had we instead let z%; and B be fixed, then the distribu-
tion of the test statistic would, in general, move toward infinity and, therefore,
not converge to a proper distribution as n — «. Had we let z%; be fixed and let
B = O(n~1/2), the test statistic would have a stable llmltlng dlstrlbutlon but
the result would be of no value because it essentially would be assuming that
the covariate was not important. However, by allowing B to be fixed and z%; to
converge to z,;, we get a limiting distribution for the test statistic Whlch isa
proper distribution and which reflects the misspecification of z,,;. It is impor-
tant to note that the assumption of local alternatives has no direct physical
significance; it is employed merely to guarantee tractability [Cox and Hinkley
(1974)]. Finally, although the joint distribution F can be arbitrary, we assume
that E[x], E[xV], E[x*V], E[x*?*V], E[xx*z], E[xx*V], E[VV'], E[x*zz'],
E[x'VV'] and E[x* VZ'] are finite.

3.2. Main results. For the specified sequence of contiguous alternative
models described in Section 3.1, it can be shown that 6 and B are strongly
consistent for 6, and B, and are asymptotically multivariate normal.

THEOREM 3.1. For the sequence of models described in Section 3.1,

(é, é) = (60,B) a.s.

THEOREM 3.2. For the sequence of models described in Section 3.1,

{ é
B~
where

‘ T o exp(8 + By2)
om0

90
N(p+1) izm, 122) asn — x,
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and
iy — E [1 zI,] exp(6, + Boz) V.
Z 2211 + exp(8, + Byz)]

Proofs of these theorems can be found in Section 6.
It can also be shown (Theorem 3.3) that the misspecified test statistic
Q(x*,z*) has an asymptotic normal distribution.

THEOREM 3.3. For the sequence of models specified in Section 3.1,
Q(x*,Z*) _)L N(l"'*, 1),

where
= 8%/ E"

and

8% = ¢ — m'iz'i},, & =1y — iTziz_zlizp
where

exp(6, + BLz
¢ = E{x*(aox — ByV) P * Fo2) 2 [
[1 + exp(6, + Byz)]
exp(6, + BLz
(3.3) i*, = E{x*2 P(fo + Foz) b,
[1 + exp(6, + Byz)]

0k gk
i, =il =E

[1]x* exp(6y + Boz)
217 1+ exp(6, + By2)]* |

and where m and i,, are defined in (3.2).

The test statistic @(x*, z*) is invariant to scale or location changes in x, x*,
z and z*. Similarly, it can be shown that the expression u* is invariant to scale
or location changes to x, x*, z and z*. For a proof of Theorem 3.3, see Sec-
tion 6.

4. Discussion of applications. Given the joint moments of the random
variables x, x*, z and z*, Theorem 3.3 gives the limiting distribution of the
misspecified test statistic @(x*, z*). The limiting distribution of the “correct”
test, @(x,z), can be obtained by setting x = x* and z = z* in the general
result. Similarly, the asymptotic distributions of Q(x*,z) and Q(x,z*) follow
as special cases of Theorem 3.3. In general, the main result has no closed-form
solution, but is readily evaluable by numerical techniques. Although expres-
.sions for asymptotic relative efficiencies can be complicated in general, they
simplify in several special cases.

When there are no covariates z in the model, the misspecified test is always
valid, since u* = 0 whenever « = 0. For this special case, it is easily shown
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that the asymptotic relative efficiency of @Q(x*) to @Q(x) simplifies to the
squared correlation of x and x*, say, p%(x, x*), which is the same as the result
derived by Lagakos (1988b) and Tosteson and Tsiatis (1988). This simple
expression can be numerically evaluated under a wide variety of conditions,
giving rise to guidelines for test selection and design. For example, Lagakos
(1988b) evaluates this expression to study the effects of choosing the wrong
dose metameter in a test for trend, mismodeling the functional form of a
continuous exposure variable, discretizing a measured exposure, misclassifying
a categorical exposure and mismeasuring a continuous exposure variable.

When correctly specified covariates are present (z* = z), it follows from
Theorem 3.3 that u* = 0 and hence Q(x*, z) is asymptotically valid, although
inefficient. When z is independent of x and x* (as in a randomized clinical
trial), the formula for asymptotic relative efficiency reduces to p?(x, x*), just
as when there were no covariates in the model. Hence the reduction in
efficiency caused by misspecifying x in the absence of covariates is the same as
the reduction in efficiency in the presence of correctly specified covariates.

When both the exposure and covariates are misspecified simultaneously, the
asymptotic size of @(x*,z*) can be distorted. Asymptotic validity is preserved,
however, in certain special cases, such as when x and x* are independent of z
and V, when B, =0 or when less intuitive, algebraic conditions hold, for
example, when

E[x*V exp(8, + Boz) ], E[x*z [ exp(6, + Boz) ]

[1 + exp(6, + Byz)] 1 + exp(8, + Boz)]”

and

" exp(8y + Boz)
Elx 5
[1 + exp(6, + By2)]

are all equal to zero.

For the special case when x and x* are independent of z and V, the
asymptotic relative efficiency of Q(x*,z*) to Q(x,z) simplifies to p%(x, x*),
just as when there are no covariates or when there are correctly specified
covariates in the model. This implies that misspecification of covariates that
are independent of exposure does not further reduce efficiency. We find this
result counterintuitive. For the special case of independence, a slower rate of
convergence in (3.1) or a different formulation of the problem may be needed
to give a result that is more relevant to finite-sample conditions.

Similarly, this paper’s main result, although valid, is not useful in assessing
the effects of omitted covariates; when z* = 0, the assumption that (z* — 2) is
0,(n~1/?) forces covariate effects to be negligible in the limit. Under these
circumstances, an asymptotic approach that deals specifically with omitted
covariates provides a more meaningful result. Results in a separate paper
[Begg and Lagakos (1993)] show that, for the special case of omitted covariates
when z is independent of (x, x*), asymptotic test size is retained. However, a



EFFECTS OF MISMODELING 1935

loss in efficiency results. The manuscript provides a formula for the asymptotic
relative efficiency and evaluates the formula for several examples. Because of
the independence of (x, x*) and z and because of the simple form of Q(x*, 0),
we were able to derive this formula without assuming contiguous alternatives
for z. Hence the results in Begg and Lagakos (1991) are quite distinct from the
results given here, as well as distinct from related work by Gail, Tan and
Piantadosi (1988). These authors considered the problem of omitting relevant
covariates in a randomized trial. They show that when z is omitted (z* = 0),
Q(x, 0) retains nominal size. When there is partial adjustment for covariates
(i.e., when only a subset of the important covariates is included), the authors
find only a minute distortion of test size and conclude that ‘“for practical
purposes, logistic regression yields tests of H, with nominal size, whether no
covariates or a few covariates are included in the model.” Because the authors
assume independence and restrict attention to the case of covariate omission
(not general misspecification), they did not have to appeal to any assumptions
like condition (3.1) to reach a tractable result. Thus the results in Begg and
Lagakos (1991) verify the findings of Gail, Tan and Piantadosi (1988) about
test size and extend these findings by providing a formula for asymptotic
relative efficiency for the special case of omitted covariates under indepen-
dence.

The utility of the main result depends on how well the asymptotics approxi-
mate what happens in finite samples. The asymptotic results in this paper
have been shown to reflect accurately small-sample results for at least one
application. We have applied Theorem 3.3 to a problem in animal carcino-
gencity experiments [Begg and Lagakos (1991)]. Very briefly, because of prob-
lems with treatment lethality, tumor lethality and unobservable time to
tumor, the test procedures used in this setting often make strong assumptions
about the mechanisms underlying tumor development and death [see Lagakos
(1982), McKnight and Crowley (1984), Lagakos and Ryan (1985) and their
references]. We compare the limiting behaviors of various carcinogenicity tests
via asymptotic results such as Theorem 3.3 and the results of Schoenfeld
(1981). There is some overlap between the cases we consider and earlier work
on the same problem, which relied on simulation results to compare the
various test procedures [Bailer and Portier (1988)]. Preliminary findings indi-
cate that our asymptotic results are very close to the results obtained by
simulation. Thus, there is some indication that the asymptotic formula can
reflect what actually happens in finite samples.

5. An illustrative application.

5.1. General setting. In general, the formula for the mean (u*) of the
misspecified test statistic is complex, but can be evaluated numerically to
assess the consequences of misspecification in a particular setting. To demon-
strate this point, we have applied Theorem 3.3 to an example arising from a
phase-3 AIDS clinical trial comparing two treatments: zidovudine (AZT) and
dideoxyinosine (ddI). Entry criteria required that all subjects be diagnosed
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with clinical AIDS and that all had previously taken AZT for at least 4
months, but less than 2 years. After randomization to one of the two treat-
ment arms, each subject was followed to see whether there was a response in
CD4 cell count.

The results of such a trial can be analyzed via a logistic model, with a binary
treatment indicator (T) as the exposure of interest (T' = 1 if AZT, T = 0 if
ddI). However, a comparison of the two treatments is complicated by the fact
that prior exposure to AZT may introduce a resistance to its effects among
those randomized to AZT in the current trial. Consequently, even if the two
treatments were equally effective, AZT may look worse than ddI simply
because patients have developed a resistance to AZT. Similarly, if AZT is truly
better than ddI, resistance to AZT will diminish the treatment difference; or if
ddI is better than AZT, resistance to AZT will exaggerate this difference in
treatments.

In an effort to control for the possibility of resistance to AZT, we can adjust
for duration of prior exposure to AZT (call this D) in the analysis. Hence the
logistic model fitted can include variables for treatment effect (T'), duration
effect (D), and a treatment—duration interaction term (TD). The inclusion of
an interaction term allows for a differential effect of length of prior exposure to
AZT on the AZT and ddI arms of the study. The logistic model can be cast as
follows:

(5.1) logit Pr(Y = 1|T, D) = 8y + B, T + BoeD + a,TD,

in which the hypothesis H,: a, = 0 represents the null hypothesis of no
treatment—duration interaction effect (i.e., no resistance to AZT). ,

Theorem 3.3 allows us to assess the consequences of misspecifying prior
duration of AZT exposure on the asymptotic validity and efficiency of tests of
the treatment—duration interaction term. To shape this problem in terms of
variables defined earlier, set x, the exposure of interest, equal to the interac-
tion term TD, and set the vector of covariates z equal to vector [T, D]. The
misspecified version of x (x*) is equal to TD*, and z* (the misspecified version
of z) is equal to [T, D*]. Finally, by (38.1), V is equal to n'/?[0, D* — DJ.
Having fashioned the AIDS clinical trial problem in terms of Theorem 3.3 [i.e.,
in terms of the variables appearing in equations (3.3)], we must specify the
sample size n, values for each of the unknown parameters (ag, 6y, Bo1, Boz)
and the joint distribution of random variables T' and D*.

All calculations assume a total sample size of 100 subjects. Since this is a
randomized trial, T is assumed to be independent of D and to follow a
Bernoulli distribution with parameter 0.5. Judging by actual data from the
trial, the distribution of duration is roughly uniform from four months to two
years. The choices of the unknown parameters depend on the type of misspeci-
fication considered. For each type of misspecification, D* is equal to the
number of years exposed, while the correct parameterization D is some
function of D*. The four functions considered are D = In D*, D = exp D*,
D = (D*)/2 and D = (D*)2
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TABLE 1
Choices of Bog for four different types of misspecification. In the following, By, was computed by
taking the ratio of the true duration In(odds ratio) to [ f(2) — f(1/3)], where f is one of the four
functions listed

Type of misspecification
True OR(D*=2:D*=3) D=ImD* D=expD* D=(D*)/2 D= (D*)?

1 -0.3868 -0.1157 -0.8282 -0.1782
1 -0.6131 —-0.1833 -1.3127 -0.2825
3 —0.8982 —0.2685 —1.9231 —0.4139
= -1.2851 -0.3842 -2.7513 -0.5921

5.2. Asymptotic validity. In assessing the effects of model misspecification
on test size, parameter a, was set to zero. Parameter 6, the constant term,
was allowed to take on values in the set {—1,0, 1}, translating to “baseline”
probabilities of outcome of 27, 50 and 73%. Parameter B,,, representing the
effect of treatment when D = 0, could assume values {—In 2, 0,1n 2}, giving
treatment odds ratios of 0.5, 1.0 and 2.0. The coefficient of duration, B8,,, was
chosen to make the effects of mismodeling across the four different types of
misspecification comparable, as we now explain. Under H,: a, = 0, the model
states that

logit Pr(Y = 1|T, D) = 8, + Bo,T + BoyD = 0y + Bo,T + Boy f(D*),

since D is a function of D*. Hence the true duration In(odds ratio) (In OR) for
a subject with D* = 2 versus a subject with D* = 1/3 is given by

InOR = B[ £(2) — £(2)].

Thus the actual values of B, vary from one type of mismodeling to another;
but all represent the same true duration odds ratios: {0.5, 0.33, 0.2, 0.1} (see
Table 1).

Having chosen sample size, the distributions of T and D*, and ranges of
plausible values for the unknown parameters, u* was numerically computed
using equations (3.3). Actual test size was calculated assuming a two-sided test
with nominal significance level 0.05. We note that because we consider two-
sided tests which assume u* = 0, a shift away from zero causes test size to be
inflated (i.e., tests become anticonservative). Had we taken a one-sided ap-
proach, we would observe both increases and decreases in test size, giving tests
that are both conservative and anticonservative. In addition, these distortions
would be more extreme than those observed here. Table 2 gives the values of
actual test size for different combinations of parameter values and for four
different types of mismodeling of D*. Note that we present values only for
0, = 0, since varying this value did not qualitatively alter the results. As can
be seen in the table entries, distortion of test size is almost negligible. We
conclude from these results that distortion of two-sided test size is not a
serious problem in this particular setting.
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TABLE 2
The effect of misspecification of duration of prior AZT use on asymptotic validity. Table entries
give actual test size. In the following, 0, represents the constant term, By, represents the coefficient
of the binary treatment indicator and B (the coefficient of duration) is chosen such that the true
duration odds ratio of 2 years prior AZT use versus 4 months prior AZT use takes on values 1/2,
1/3,1/5 and 1/10. Calculations assume a sample size of 100 and a nominal test size of 0.05.

Type of misspecification
Bor True OR D = In D* D = exp D* D = (D*)1/2 D = (D*)?
—In2 1 0.0501 0.0500 0.0500 0.0500
1 0.0503 0.0500 0.0500 0.0501
i 0.0504 0.0501 0.0500 0.0501
5 0.0506 0.0501 0.0500 0.0502
0 1 0.0502 0.0500 0.0500 0.0500
1 0.0505 0.0500 0.0501 0.0500
1 0.0510 0.0501 0.0501 0.0501
= 0.0520 0.0501 0.0501 0.0502
In2 1 0.0502 0.0500 0.0501 0.0500
3 0.0506 0.0500 0.0503 0.0500
1 0.0515 0.0500 0.0504 0.0501
& 0.0532 0.0501 0.0505 0.0501

5.3. Asymptotic relative efficiency. To assess the asymptotic efficiency of
the misspecified test statistic relative to the ideal test, we set B,y equal to zero
to ensure that both tests being compared were valid. We allowed 6,, the
constant term, to take on values {—1,0,1}, and B, the coefficient of treat-
ment, to assume values {—1In2,0,In2}, just as before. The parameter of
interest, a,, is calculated in a way similar to the way we computed B, for test
size. We know that the treatment In(OR) (T = 1 versus T = 0), based on (5.1),
is given by

InOR = (Bo; + agD) = (Bor + @0 F(D*)).

Hence, given values for In(OR) [2, 3, 5, 10] and B,;, we can solve for a, by
taking D* = 2 to assess the interaction effect at the maximum duration of
prior exposure. When B,, = 0, however, a, cancels out of the ratio of u* to u;
hence choice of «, does not affect calculation of the asymptotic relative
efficiency.

Efficiency calculations are presented in Table 3. As with test size, we see
that misspecification of duration does not greatly affect asymptotic relative
efficiency. At most, the misspecified test loses about 10% efficiency relative to
the ideal test. In planning such a trial, then one would only need to increase
the proposed sample size by about 11% at most to compensate for any loss in
efficiency due to the misspecification of duration. We observe that the conse-
quences of misspecification are somewhat greater for the transcendental
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TABLE 3
Asymptotic relative efficiency of the misspecified test statistic relative to the ideal test when there is
no main effect of prior duration (B, = 0). Calculations assume 100 subjects per treatment group.
Note that the asymptotic relative efficiencies do not depend on a, the coefficient of the treatment—
duration interaction term

Type of misspecification

06 Bot D = In D* D = exp D* D = (D*)1/2 D = (D*)?
-1 ~In2 0.9237 0.9296 0.9815 0.9463
0 0.9098 0.9167 0.9779 0.9363
In2 0.9000 0.9076 0.9753 0.9291
0 ~-In2 0.9144 0.9210 0.9791 0.9396
0 0.9098 0.9167 0.9779 0.9363
In2 0.9144 0.9210 0.9791 0.9396
1 ~In2 0.9000 0.9076 0.9753 0.9291
0 0.9098 0.9167 0.9779 0.9363
In2 0.9237 0.9296 0.9815 0.9463

functions than for the power functions. This is not surprising, since the
transcendental functions represent a greater departure from a linear relation-
ship (in the logit scale) than do the power functions. In sum, there appears to
be little loss in efficiency due to misspecifying duration. We note, however, that
for all of the situations considered, both tests suffer from very low power for
detecting a treatment—duration effect. Rejection probabilities for different
values of «, range from 5 to 8%. These probabilities increase if one considers
larger values of n or «,. This result emphasizes that either very large effect
sizes or very large sample sizes are needed to achieve reasonable power for
detecting interaction effects, as has been noted by others [Smith and Day
(1984)].

In developing this example, we considered the possibility that the minimal
distortion of test size and small losses in efficiency may be due to condition
(3.1) (the z* assumption), rather than to the choice of example. However, the
formula for u* [see equations (3.3)] clearly indicates that the difference be-
tween the mean of Q(x,z) and the mean of Q(x*, z*) (and, therefore, asymp-
totic validity and efficiency) depends on the size of the covariate effect (3,) and
the degree of misspecification of z (as represented by V = n'/?[z* — z]). There
does not appear to be any upper limit on the distortion of u*; in fact, the
distortion may be substantial. We conclude from this that the amount of
distortion possible depends on the particular example chosen.

6. Proofs of theorems. Theorem 3.1 states that estimators 6 and B are
strongly consistent for 6, and B,. Theorem 3.2 claims that vector [6, B] has a
limiting multivariate normal distribution. These two results are needed to
prove Theorem 3.3 [the asymptotic normality of @(x*,z*)].
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6.1. Proof of Theorem 3.1. Define

* e exp(Y,(0 + Bzh))
L (O,B) L=l_-[1 1+ exp(0 + Blz;‘:i) ’

and note that this would be the correct likelihood under H,, if z¥, = z,,;. Also,
let

. o __exp(6 + B'z};)
(6.1) W0, 8) = Z[ ]( 1+exp(e+ﬁ'z:'ii))'

Define the estimators § and 8 to be the values of 6 and B which maximize
L*(6, B). The proof of Theorem 3.1 begins with the following strong law.

LEMMA 6.1. n~'W*(6, 8) > A6, B) a.s., where

exp(6, + B,z) exp(6 + B'z)
(6.2) Aq(6,8) = E[H( 1+ exp(fy + Byz) 1+ exp(0 + Bz) ”

Proor. Note that

exp(6 + B'z};)
] "1+ exp(0 + BzY;)
n exp(6 + p'z%;
/2 Z n }( ni ’ ?k )

1+ exp(8 + B'z?))

12

1 1
“w (e,ﬂ)=;§1[
1

=M,,+Nn.

We first show that N,, — 0 a.s. For any vector V, let (V) be the vector whose
elements are the absolute values of the elements of V. Furthermore, define
V, <V, to mean that each element of V; is less than or equal to the
corresponding element of V.

Clearly,

1z exp(0 + p'z};)
(N, = WE’I Vi Yoi = 1+ exp(60+pzk)|
Since the second term in absolute value on the right-hand side falls between 0
and 1,

1 n
N,) < — £ (V).
i=1

Thus, since the V,;’s are independent and identically distributed (iid) random
variables with finite first moments, n~¥2?L.V, . - 0 a.s. It follows that N, —> 0
a.s.

Thus n~'W*(6, B) has the same almost sure limit as M,. Adding and
subtracting the expected value of Y,; given x,; and z,; within the parentheses
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in M,,, we can write M,, = M;, + M,,,, where

1~ 1
M, = n Z [zni](Yni - E[Ynilxni’zni])’
i=1
12 1 exp(0 +'z};)
M., = — Y . . o=

Because each of the terms in the summand of M,, has expectation zero, it
follows that M;,, — 0 a.s. by a variant of the strong law of large numbers [Puri
and Sen (1971)].

Next consider M,,. By expanding the right-hand term in the summand in a
Taylor series, M,,, can be expressed as the sum of three terms:

M,, = M,;,, + My, + My;,,

where
M,,, l Zn: [zl ]( exp(f, + B:)z,ni) B exp(f) + Blzr,zi) ),
n /L% ]\ 1+ exp(8, + Boz,;) 1+ exp(6 +pB'z,;)
M, - 31/2 d [zli ](aoxm_ exp(6y + ByZ,;) 2
nE o L (1 + exp(8, + BoZy,;))

) exp(0 + B'z,;)
_B Vni f 2|
(1 + exp(0 + B zni))
1= 1
M,,,=—).0.—1.
23n n i§1 as( n )
By Kolmogorov’s strong law of large numbers, M,;, converges almost
surely to a constant, A (8, B), which is defined in (6.2). Similarly, since M,,,, is
n~1/2 times an average of n iid random variables, each having finite expecta-

tion, M,,, — 0 a.s. By similar arguments, M,;, — 0 a.s. Lemma 6.1 follows.
O

Proor oF THEOREM 3.1. Assume without loss of generality that each
component of vector z,; is nonnegative and let

¢=[Z], ¢o=[ZZ] and <Z>=[g].

Because each component of A (¢) is continuous in ¢ and monotone de-
creasing in ¢, and A \(¢,) = 0, we have for all § > 0,
Ay(¢p —61) >0, Ay (o +61) <0,

where 1 is the (p + 1) vector of ones. (As before, V, <V, means that
each element of V; is less than the corresponding element of V,.) Since
n"'W*(¢$) > A (¢) a.s., we know that for all § > 0 and for all ¢ > 0, there



1942 M. D. BEGG AND S. LAGAKOS

exist integers N(3, ¢) and Ny(3, ¢) such that

1
Pr[;W*(qﬁo—Sl) > O0forall n > Ny(¢,e)| > 1—%
1 £
Pr[;W*(¢O +81) < Oforall n > Ny(d,e)| >1— R

Define N(§, ¢) = max(N;, N,). Then, for all § > 0 and all ¢ > 0,
1 1
Pr[—W*(d)O — 81) > 0and —W* (¢, + 81) < O for all n > N(5, )
(6.3) " n

>1—e.

Since n~'W*(¢) is continuous in ¢, positive for‘ (¢ — 61) and negative for
(¢ + 81), there exists some value of ¢, say, ¢, such that ¢, — 61 < ¢ <
¢, + 81 and n~'W*($) = 0. If there is more than one such value, define ¢ to
be the one closest to ¢,. Then statement (6.3) is equivalent to the following:
for all § > 0 and for all ¢ > 0, there exists an integer N(§, £) such that

Pr[¢, — 81 <& < ¢, + 81, forall n > N(5,¢)| > 1 —e.

But this statement by definition means that ¢ is strongly consistent for ¢,
and Theorem 3.1 is proven. O

6.2. Proof of Theorem 3.2 (Asymptotic normality of 6 and B). To prove
Theorem 3.2, we must first define T*(0, 8), the ((p + 1) X (p + 1)) matrix of
negative second derivatives of L* with respect to 8 and B, that is,

=1 exp(0 + B'zy;
T*(0,B) = * || 1 o .
(6.8) ,-gl[z'”'][ i) [1+ exp(6 + B'z*,)]”

By expanding W*(6, B) in Taylor series about 8 = 6, and B = B,, we get

(a0 A\ — W _ mx 7 _ b0
w6y~ roaslf]-[2])

6 B [9* ] 6 B 00]
B B B Bo |
Since W*(8, ) = 0,

R

Given (6.4), the proof of Theorem 3.2 involves two steps. The first is to
prove that n=1T*(8,, B,) converges in probability to a constant (Lemma 6.2).

where (6, B, ) satisfies

<
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We then prove that n~'/2W*(8,, B,) has an asymptotic multivariate normal
distribution (Lemma 6.3). The desired result (Theorem 3.2) will follow by
Slutsky’s theorem [Bickel and Doksum (1977)].

LEMMA 6.2. Asn —

- 1
n p “22»

where i,y is defined as in (3.2).

Proor. Replacing z*; by z,; + (1/Vn)V,, in n"'T*(8,, B,) gives

1
1 z .+ —V'.
1 . 1 n ni \/;L— ni
=T (0*,3*)=_Z 1 1 1
" Misll g 4 —V,, + =V, ||z, + =V,
nt ‘/‘n"‘ nt ‘/; ni nt ‘/’7 ni

exp(0, + Byz};)
[1 + exp(0, + ﬁ,*z;kzi)]2

T¥ TF
Ty TH|
where T} is a scalar, and can be written as

12 exp(0, + Bzy;)
1y

n =1 [1 + exp(0* +ﬁ* nz)]

Using Taylor expansions, it can be shown that

_ l i eXP(Oo + B,Oznz)
n 21 [1+ exp(0, + Byz,i)]°
Thus, by the weak law of large numbers [Puri and Sen (1971)],
exp(6, + Boz)

[1 + exp(6, + Byz)]”
To find the probability limit of T#, we express this term as

12 exp(0, + BxZ,;)

T = — Z . , 2

ni-1 [1 + exp(()* + B*zni)]
1 exp(0, + Bxz,;)
372 Z V.

[1 + exp(0 + ﬁ* nz)]

By similar arguments as used earlier, we can show that the first term above

+ 0,(1).

T¥ -, E

p
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converges in probability to
{ exp(8, + Boz) }
E{z —
[1+ exp(6, + Byz)]
and that the second term converges in probability to zero. Thus TZ converges

in probability to (6.5).
The third term, T, is given by

1 n
Ty=—13 |z
ni;_1

(6.5)

1 1 exp(0, + By z%;
i —V,”-] L+ =V, (6 + By 5
Vn vn " [1+ exp(6, + ByzE,)]
Using arguments similar to those used above, it is easily shown that
exp(8, + Byz)
[1+ exp(6, + By2)]* |

Combining these results, Lemma 6.2 is proven. O

Ty -, E{z

LEMMA 6.3. Asn — o,
W*(0o, Bo) .
\/—’;'_T“— -L Np+1(m’122)’

where m and i,, are defined in (3.2).

Proor. From (6 2), we have

W*(8,, By) = T g [ ](Yni — E[Y,lx,:,20:])

" exp(0y + Bozy;
Z [ ] ilxni’zni] - ’ %k
(6.6) Vn o 1 + exp(0, + Boz,;
1 ~ [0 exp(0, + Bozk;
- Z V.. Yni
n ni 1 + exp(0, + Bozy;)

—Dn+En+Fn.

The terms, say, d,,;, in the summand of D, have mean zero and covariance

matrix
1 exp 00 {ao/x/;}x + B’Oz)
Cov(d,;) =3, = E [z zz] 1
[1 + exp 00 {ao/ﬁ}x + B’Oz)]
Expanding the fractional part in the brackets in Taylor series about a, =0
and taking the limit of ¥7’_,3, /m, we find that this sequence of matrices

converges to the matrix i,,. It follows from a variant of the multivariate
central limit theorem [Puri and Sen (1971)] that

Dn L Np+1(0’ i22)’
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By expanding the first term in parentheses about 6, = 0 and the second
term in parentheses about Byz%; = Byz,;, we can re-express E, as

E, - % é [ ]{(aoxm BoV..:) [ fxfx(:(oojfbﬁzb’:zim
= Lol

By direct application of Khintchin’s rule, E;, converges in probability to m.
Since E,, converges in probability to the zero vector, we have that E, —, m.

Now consider F, defined in (6.6). By adding and subtracting the conditonal
mean of Y,; within the parentheses, we get

| v, |~ BTz

1 0 exp(0, + Bozy;)

- Z [V ] E[Yni'xni’zni] - 1 ’ ok .

n v + exp(0, + Boz%;)
F, +F,,

Since F,, is the average of n iid random variables, each having mean zero,
F;, =, 0. To find the probability limit of F,,, expand the first term in
parentheses of F,, about a, = 0 and the second term about Byz%; = Byz,,;.
This leads to

1 2o ] exp(0, + BoZ,;)
F n - ni ,Vni
o n¥2 i=Z1 [Vni {(aox BaVu) [1+ exp(6, + B:)zni)]z
n 1
+ izl Op(?)

Clearly both terms converge in probability to the zero vector, proving Lemma
6.3. O

Proor or THEOREM 3.2. From (6.4), we have
T*(0,, 7 ] W*(8,,
(*B*)‘/; (z | Y% =\/;1,_( (oﬁo))'
n B Bo n
The theorem follows from Lemmas 3.2 and 3.3 and Slutsky’s theorem. O

6.3. Proof of Theorem 3.3 [asymptotic normality of Q(x*,z*)]. To prove
Theorem 3.3, we first re-express @(x*,z*) as a quotient. From (2.3), we can

write Q(x*,z*) = U*(0)/y/I*(0), where
( exp(é + B'z“;i) )

1 n
6.7) U*(0) =U*(ag)|ag=0 = 7= 2 %ni| Yn; ——
(67) U*(0) =U*(a)lay-0 = 7= & T~ ey

ni
i=1
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1
I%(0) =I*(ao)lagmo = —w*.

The proof is completed in three steps. First, we derive the asymptotic distribu-
tion of the numerator term U*(0). Next, we show that the denominator I*(0)
converges in probability to a constant which is equal to the asymptotic
variance of the numerator U*(0). The theorem then follows from an applica-
tion of Slutsky’s theorem.

Given (6.7), we can rewrite U*(0) as follows:

1 n
U*(O) = \/’7 Z x:i{Yni - E[Ynilxni’zni]}
i=1

1 =z exp(6 + B'z*,
+ = Z x:i E[Ynilxni’zni] - p( ~ B ~ )
Vn [0 1+ exp(@ + B'z’,‘;i)
=A,+B,.

By expanding the first term in brackets in B,, in Taylor series about a, = 0
and the second term about 6 = 6, and B'z%; = Byz,,;, we get
n exp(0, + BLZ,,;
B,=n"" ) xfagx, (B * Bo ,m) 2
i=1 [1+ exp(8y + BoZy;)]

"o i , exp(8, + Boz,;)
—n 2y [(6—0 - e
n i§1 [( 0) + (B Bo) znt]x"‘ [1 + exp(8, + B’ozni)]z

n
+ X x3,0,(n%)
i=1

n - exp(0, + BoZ,;
-n7t Y x¥BV,, xp(60 + Boz) 5
i=1 [1 + exp(0y + Byz,;)]

n - exp(8y + BoZ,;) |1 — exp(0y + BoZ,;
-t i, 2 Bt U orpCn )
1 [1 + exp(6, + Byz,;)]

_ n—1/2 fo:,[(é _ 00) + (B —ﬁo),zm. 2
i=1
9 exp(0, + Boz,;)[1 — exp(8, + Boz,;)]
[1+ exp(8, + B,Ozni)]3

-nt Y 2x:i(.é'vni)[(é —6,) + (ﬁ - 30),zni
i=1

i=

% exp(00 + B,Oznz)[l - eXP(ao + ﬁ’Ozni)]
[1+ exp(6, + 3'ozni)]3

o £ (-0 5w )|
i=1
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Hence, (A, B,)" can be re-expressed:

(gn)==(g§)*'(§§)*-%xlx

n

where
N { e f‘, [ ] exp(0o + BoZn:) }
1 ﬁ ﬁO P — Zni 1+ eXp(oo + BOznt)
and
n exp(0, +‘ﬁ6zni)
B* = -1 x k.

: {n iglaoxmxn, [1+ exp(8, + 3'ozni)]2}

(68) _ '{n_l Z ,” ” exp(00+[3’0 nz) }
[1 + exp(00 + ﬁoznz)]

= B3, + B3,.

All other terms from the expansion of B, converge to zero in probability. We
wish to find the distribution of the vector

xrﬂ:i[Yni - E(Ynilxni’zni)]
A
n| _ o —1/2
(B;“) ne

3 6 -0, ’[ 1 ]x* exp(8, + BoZ,;)
B —Bo | L] [1 4+ exp(0, + Byz,.:)]”
= -ani
=n"12 Z * ],
i=1]

M=

~
Il
[

where the subscript n reminds us that the distribution of Y,; depends on n.
Note that the mean of a,; is zero, and its variance is given by

exp(ﬁ'0 + {ao/w/;}x + B’oz) }
[1 + exp(()0 + {ao/\/r—z—}x + B()z)]z

Var(a,;) = E{x*2

As n - », Var(a,;) — i, defined in (3.3).

Also, note that Bf is the product of two terms: By Theorem 3.2, the first
_term is asymptotically normal, with mean —m'i;,' and covariance matrix i,
the second term converges in probability to i%¥, by the weak law of large
numbers. Therefore, the expected value of b,; is —m'i; i}, and its variance is

sk - —lek
EPISYRINE
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The covariance of A, and Bf is equal to

COV(A B*) = Cov{n 2 Z x [ - E(Yni‘xni’zni)]’

i=1

_[5 0} 1 Z m[ ] exp(0, + ByZ,;) }

B - ﬂO i=1 [1 + exp(00 + BOznl)]

To make computation of the limit of this expression easier, we re-express B}
as a summation involving {Y,; — E(Y,;lx,;, z,;)}. Recall the following equality

from (6.4):
6— 0,
B - Bo

Substituting this in B} yields

T* -t
|: (0*’B*)] n_lw*('oo,Bo).

’ T* 0*;B* i
Bf = —n "2 [W*(6,, o) [—(;—l]
_1 Z [ eXp("o + BIO nz)
i [1 + eXP(Bo + 30zm)]

B {‘ is the product of three terms. The second term converges in probability
to i5; by Lemma 6.2. The third converges to i}, by the weak law of large
numbers. Hence,

Bt = ~{n2 5 [ ] 0~ Bl i

[ [ (BTl - Tme B bt

1 + exp(8, + Boz};)

+0p(1)
= —BY; — Bf; + 0,(1).
rs—12

Since BfY, converges in probability to m’iz, i%;, it contributes nothing to
covariance and can be ignored. Thus, (A,, Bf)Y has the same limit as C,,
where

Cov[n 172 Zx i(Yoi = E[Yil%0i,2,0:])s
i=1

n ’
-n"172 ) [z%<] (Y,; - E[Ynilxni,zni])]iz_zli§1
=1L ™
= —n_lEI: Z x:z[z]i:] (Yni - E[Ynilxni’ zni])z]i2_21i§1'

i=1
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Substituting for z*%; and taking iterated expectations,

x*[ 1 } exp(ﬁ'0 + {ao/x/;}x + B()z)

C,=-E -
z +n-12v [1 + exp(00 + {ao/‘/;}x +B6z)]2

S Les
]lzz 131

After expanding in Taylor series about a, =0, it is easy to see that C,
converges to i},i5,i%;. Hence, Cov(A,, B}) » —i%igli% as n — o.

Given these results, the distribution of (A,, BfY = n=2¥(a,,,, b%) fol-
lows. Since Var(a,;) — i}, clearly

ani > _0
(nVar<ani))1/2} 8}_ |

lim max Pr{

n—ow 1<i<n

Also, Var(b};) < » by Lemma 6.2, and Cov(A,, B¥) < w. Therefore, by the
multivariate central limit theorem [Chung (1974)], (4,, B¥)' is asymptotically
normal, with mean (0, —m'i3;'i%,)’ and covariance matrix 3, where

s - i —ifyizi%;
' —ifhi il ifainil
Recall BS from (6.8). By the weak law of large numbers,

exp(6, + Byz)
[1 + exp(8, + Byz)]” |

* *
B3, =, E|ayxx

and

exp(0, + Byz)
[1+ exp(6, + Byz)]” |

B3, -, E|x*ByV

Thus, B3 converges in probability to c, defined in (3.3). Thus, (A,,B,)
converges in distribution to a normal random variable with mean (0,
¢ — m'iy'i%) and covariance matrix 3; by Slutsky’s theorem [Bickel and
Doksum (1977)]. By the Cramér-Wold result [Rao (1987)], it follows that
A, + B, is asymptotically normal, with mean ¢ — m'i,;'i5, and variance
i1 — i1aizs i3

The denominator term of the misspecified score test Q(x*,z*) has exactly
the same form as I, ,(0) [the reciprocal of the (1,1) element of the inverse
information matrix for (a,, 8, B,), evaluated at a, = 0], but replaces x and z

by their misspecified versions x* and z*:

~ ~

(69) I*(0) = I(0,6, f) — 15,(0,6, )| 1:(0, 8, )] '13,(0,6, B),
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where

I 12z
15(0,8,8) = ~ ¥ xi?

-~ 1 b+ Bz .
008 Rl S G e
i=1 1 + exp(6 + B'z¥,

. 1 . 1271 *r b+ Bz,
I3(0,6,8) = —T*(6,8) = — & [z*' N exp( z%;)
i=1L%nt ni®ni

[51 + exp(é + ﬁ’zj‘;i)]z

Given these formulas for the components of the denominator term, we will

derive their individual probability limits. ) 3
Substituting 6, and B, for the consistent estimators 6 and 8 and using

Taylor expansions, it can be shown that
e eXp(00 + B:)znz)
I {kl(o’ ) Z
1= [1 + eXP(oo + BO nz)]
Hence, I13(0, 6, B) converges in probability to i*; by Khintchin’s rule.

Because § and $ converge in probability to 8, and B,, I%,(0, 8, B) has the
same limit in probability as I3,(0, 6,, B,):

op(l).

exp(0, + Boz};)
I*,(0,0,,8,) =n! i
12( 0 ﬁO) n lzlx [ ] [1 + eXp(oo + Boznz)]

Using a Taylor series expansion and replacing [ 1 Zni] by
[1 (Z,; + n_l/ZVm-)'],
one can show that
exp(6, + BozZ,;)
[1 + exp(6, + Bbzm-)]z

By the weak law of large numbers, I%,(0, 8,, B,) converges in probability to i%,.
Hence, I*,0, 6, B) -, il
Earlier we showed that

n
155(0,6,,B,) =n~' 3. x:z[ 1 zlni] +0,(1).
i=1

- 1 .
13(0,6,8) = ;T*(a,/s).

By Lemma 6.2, n‘lT*(O*, Bs) converges in probability to the matrix iy

[defined in (3.2)]. Since 6 and 6, are strongly consistent for 6,, and B and B,

are consistent for B,, then I2(0, d, B) also converges in probability to Log-
From (6.9), it follows that I*(0) converges in probability to &¢* =i¥, —

.* c_l.*
179293 191-
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It has been shown that the numerator of @(x*,z*) has an asymptotic
normal distribution, and the denominator converges in probability to a con-
stant;

U*(O) L N(ﬁ*’ f*), I*(O) _')p g*a

where expressions for 6* and £* can be found in (8.3). Hence we conclude by
Slutsky’s theorem that

Q(x*,z*) -, N(u*, 1),
where u* = §*//¢*, proving Theorem 3.3. O
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