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ELICITATION OF PRIOR DISTRIBUTIONS
FOR VARIABLE-SELECTION PROBLEMS
IN REGRESSION!
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University of Aberdeen and University of Minnesota

This paper addresses the problem of quantifying expert opinion about
a normal linear regression model when there is uncertainty as to which
independent variables should be included in the model. Opinion is modeled
as a mixture of natural conjugate prior distributions with each distribution
in the mixture corresponding to a different subset of the independent
variables. It is shown that for certain values of the independent variables,
the predictive distribution of the dependent variable, simplifies from a
mixture of ¢-distributions to a single ¢-distribution. Using this result, a
method of eliciting the conjugate distributions of the mixture is developed.
The method is illustrated in an example.

1. Introduction. This paper is concerned with the task of quantifying an
expert’s opinion about a regression model when the expert is uncertain about
which set of independent variables should be used in the model. It is supposed
that a response Y is related to independent variables X, ..., X, through the
usual normal sampling model

Y=8,X,+ - +8,X, +¢,

and the expert believes that one or more of the coefficients B, are likely to be
zero or trivially small. There are many situations of this form where it would
be useful to have expert opinion expressed in a prior distribution. For example,
motivation for the present work arose from the potential benefit of being able
to use expert opinion in the design of experiments. At the design stage, the
source of information is the experimenter’s background knowledge, including
information gained from previous experimental data. Also, at that stage, a
variable-selection problem commonly arises because all the variables judged as
having a nontrivial chance of a marked effect on the response should be
included in the design. The failure to identify and control important variables
could be a serious error. Questions of how to utilize prior distributions when
designing experiments have been treated, for example, by Atkinson and
Fedorov (1975a, b).
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Fic. 1. Marginal distribution for the coefficient (B;) of a variable that might increase the
response or might have no effect on it.

Methods of quantifying subjective opinion about a linear regression model
have been developed for the case where the variable-selection problem does not
arise [e.g., Kadane, Dickey, Winkler, Smith and Peters (1980) and Garthwaite
and Dickey (1988, 1991)]. Such methods assume that expert opinion can be
well represented by a member of the standard family of conjugate prior
distributions [Raiffa and Schlaifer (1961)], but this assumption may be inap-
propriate if the expert has prior suspicion that there may be X-variables
included in the model that are unimportant. To illustrate, suppose that the
response Y is the yield in an industrial chemical process and that X; corre-
sponds to the quantity of a chemical, where the chemical might be of a type
that acts as a catalyst or might be one that has no effect. It follows that the
expert’s marginal prior distribution for 8, f(B,) say, would include a sharp
peak of probability at the origin, corresponding to the probability that X; has
virtually no effect. The remainder of the probability would be mainly to the
right of the origin, corresponding to X, being a catalyst and beneficial to the
response. The distribution might then be similar to that illustrated in Figure
1, which cannot be represented by the natural conjugate prior (a ¢-distribu-
tion).

It is imagined that if the effective-variable problem could be resolved, then
opinion could be represented by a natural conjugate distribution. But since the
subset of effective variables is not known, opinion will be represented by a
mixture of conjugate distributions, where each constituent distribution corre-
sponds to a different subset of regressor variables. A relationship between the
constituent distributions of the mixture will be assumed that will result in the
problem being tractable. The chosen relationship is described in the next
section and gives a structure which permits marginal distributions of the type
illustrated in Figure 1, provided the sharp peak of probability can be well
approximated by a point mass at the origin.

We give a method in this paper for eliciting the conjugate distribution
constituents of the prior distribution, but we do not give a special method of
eliciting the mixing weights, beyond asking directly for the subjective probabil-
ities of possible sets of effective variables. The method given here is a general-
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ization of the conjugate-prior method of Garthwaite and Dickey (1988). Indeed,
the method given in that paper was obtained as a special case during develop-
ment of the method reported here. Both methods exploit an elicitation task
involving the choice of points of constrained minimum variance, or CMV
points. In Section 3 this task is described and results developed concerning
CMV points pertinent to the variable-selection problem. In Section 4 the
elicitation method is described, and in Section 5 the way the elicited informa-
tion is used to determine the conjugate distributions is given. An example
illustrating the use of the method is provided in Section 6. The example also
shows that assessing the mixing weights of the prior distribution can be
straightforward.

The elicitation method has been implemented as an interactive computer
program. To quantify his or her opinion, the expert types in answers to
questions displayed by the computer, questions formulated on the basis of the
expert’s answers to preceding questions. The individual assessment tasks
the expert must perform are essentially similar to the tasks imposed in the
elicitation method of Garthwaite and Dickey (1988), despite the added com-
plexity of having opinion modeled by a mixture of conjugate distributions
rather than a single such distribution. A user guide for the computer program,
together with a program listing and details of the implementation, are given
in Garthwaite (1990). Further examples where the elicitation method has
been used to quantify the opinions of industrial chemists may be found in
Garthwaite (1983).

2. Model and notation. The sampling model states that the response Y
is related to independent variables X;,..., X, by

Y=BIX1+ +BrXr+8’

where the experimental error is ¢ and is normally distributed with mean 0 and
(unknown) variance o2. We suppose 8, X, is a constant term with X, identi-
cally equal to 1. It is also supposed that each independent variable can take on
any value between its lower and upper bounds and that none of the variables
are deterministically related to one another. Otherwise the CMV points would
be excessively constrained, and as a consequence, would encode insufficient
information [cf. Garthwaite and Dickey (1988)]. These restrictions on the scope
of the elicitation method are regrettable, since they exclude regression models
involving polynomial terms or discrete variables. Removing the restrictions,
however, is a difficult problem, still to be addressed, and a more complex
assessment procedure will undoubtedly be needed.

While some variables might not affect the response, there will usually be
others which, in the expert’s opinion, are certain to affect it. For convenience
the variables are ordered so that the first m variables, X, (= 1),
X, X5,...,X,,, m<r, are considered certain to affect the response. Let
f(B, o) denote the expert’s joint prior distribution for B and o, where B =
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(B, .-, B,). The expert’s opinion gives positive probability that some B-coef-
fi ients are 0. For each i = 1,2,..., h, let H; be a hypothesis which specifies
that certain B-coefficients are zero and that the other coefficients are nonzero.
Also, let H, be the special hypothesis stating that all the B-coefficients are
nonzero with probability 1. It is assumed that exactly one of the A + 1
hypotheses H,, H,, ..., H,, is true and that each of these has positive probabil-
ity of being true, with the possible exception of H,. The prior distribution can
then be expressed as a mixture of 2 + 1 conditional distributions:

h
(2.1) F(B.7) = X 1(Bay oH)P(H)),

where B;, denotes the nonzero pB-coefficients when H, is true. P(H,) is the
expert’s prior probability that H; is the true hypothesis. Representing a prior
distribution as a mixture of conditional distributions in this way has been
advocated by Hill (1974), Dickey (1974, 1980) and others.

A relationship between the conditional distributions in (2.1) is required to
make the elicitation problem tractable. One way of relating these distributions,
a way that we will not use without modification, is first to take the distribu-
tion conditional on H, (H, gives zero probability that any B-coefficient is zero)
and then to condition further on particular B-coefficients being zero. With each
H,i=1,2,...,h, associate a set of integers, p; say, for which j € p, means
that H; requires B; equal zero, and with probability 1 under H,, the other B;
are nonzero. One might then assume the continuity condition,

(2.2) f(B(i)a U'lHi) = f(B(i)’ 0'|Ho, B, =0for j e Pi)'

Such prior continuity conditions are discussed generally by Dickey and Lientz
(1970) and Gunel and Dickey (1974). They play an important role in Savage’s
* density ratio for Bayes factors. Relationships of the form in (2.2) would arise,
for example, if an expert were perfectly coherent in his or her opinions and all
his or her knowledge of B and o came from experiments with the regression
model of current interest. That is, if each prior distribution under a hypothesis
were noninformative, and sample data were then obtained, then the posterior
distributions under the different hypotheses would satisfy (2.2).

A disadvantage of the structure given in (2.2) is that the marginal prior
distribution of o will vary from hypothesis to hypothesis. This would be
inappropriate if an expert’s opinions about the experimental error were mainly
based, not on experimental work with the present problem, but on experience
gained in other problems, perhaps using the same equipment or experimental
techniques as will be required in the present problem. We believe that these
latter circumstances occur commonly in practice.

“In the case where o is known, this disadvantage does not arise and the
relationship derived by the further conditioning in (2.2) seems a suitable way
to model expert opinion. Hence we wish to choose a model that will have such
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a structure when o is known, so we assume that
(2.3) f(B(i)'Hi’o') =f([3|Ho,0',Bj=0f01‘j epi)'

In the more general case where o is unknown, the marginal distributions of o
conditional on the different hypotheses must also be specified, to define the
joint distribution of B;, and o conditional on H;. In line with the observation
in the preceding paragraph, we assume that this distribution is independent of
which hypothesis is true. That is, for : = 0,1,..., A,

(2.4) f(o) = f(olH;).

Equations (2.3) and (2.4) give the relationships between the distributions in
(2.1), since f(B;, olH;) = f(B;)|H;, o) f(c|H,). Each distribution must also be
given more specific structure. We suppose that each is a member of the natural
conjugate family, as follows. Under every hypothesis, let o? be distributed as
wv times the reciprocal of a chi-squared random variable with v degrees of
freedom,

(2.5) o~ wv/x2

Given o and H,, let B have a normal distribution with some mean b and
variance matrix o?U/w. The distribution of B, conditional on ¢ and any other
hypothesis, is then given by (2.3) and is also multivariate normal. The hyper-
parameters in this prior distribution, w, v, b and U, together with the weights
P(H;), must be determined in any elicitation method.

Conditional on any of the hypotheses H;, the marginal distribution of B is a
multivariate-¢ distribution with v degrees of freedom. The location—scale
multivariate-t family with v degrees of freedom has a generic random vector
z = ¢ + Bt,, where ¢ and B are constant and t, is the standard multivariate-
vector on v degrees of freedom [Press (1972)]. Following Kadane, Dickey,
Winkler, Smith and Peters (1980) and Garthwaite and Dickey (1988), we
define C(z) = ¢ as the “center” of z and S(z) = BB’ as the “spread” of z.
These quantities are used because they exist for all positive values of v, while
the variance, var(z) = [v/(v — 2)]S(z), does not exist if v is less than 2 and
the mean, E(z) = ¢, does not exist if v is less than 1. For B, we have that
C(BIH,) = b and S(BIH,) = U.

A vector x whose coordinates are particular values for the independent
variables will be referred to as a design point, and ¥ will be used to denote the
(unknown) average response that would be obtained if a specified number of
observations, n say, were obtained at a single design point x. The value of 7 is
held fixed throughout the elicitation procedure. Typically, n would either be
set-equal to 1, so that ¥ is a single observation at a design point, rather than a
mean, or n would be set equal to », so that y is the long run or “true”
response at a design point. In experiments we have conducted, experts gener-
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ally found assessment tasks easier to perform when n = » [Garthwaite (1983),
pages 70-80], and only this limiting value of n is considered in Garthwaite
and Dickey (1988). Conditional on H,, the center and spread of y at the design
point x are

C(y|x, Hy) =x'b
and
S(yx, Hy) =x'Ux + w/n.

The main assessment tasks that the expert will perform in order to quantify
his or her opinion are: (a) to select design points satisfying certain constraints,
where, subject to these constraints, the expert’s subjective accuracy in predict-
ing y is maximized; and (b) to specify the median and quartiles of his or her
predictive distribution for y at such points.

3. Points of constrained minimum variance. It has been assumed
that the expert’s prior distribution corresponds to a mixture of natural conju-
gate distributions, so the prior predictive distribution of ¥, at most design
points, is a mixture of two or more distinct ¢-distributions. Gaining useful
information about a mixture distribution is a difficult task, since such quanti-
ties as its interquartile range bear no simple relationship to its parameters. To
emphasize this point, three ¢-distributions and the mixture distribution they
form are plotted in Figure 2. It would clearly be difficult to obtain useful
estimates of the parameters of the individual ¢-distributions through question-
ing the expert about the mixture. Instead, our approach is to find design points
at which the prior predictive distribution simplifies from a mixture of distinct
t-distributions to a single ¢-distribution. These points will be found as points of
constrained minimum variance, which we now define.

A point of minimum variance (MV) is a point where the interquartile range
of the prior predictive distribution of ¥ is minimized. Let x be partitioned so
that x = (x, x},), where x; and x, are £ X 1 and (r — k) X 1 vectors, respec-
tively, and suppose the constraint is imposed that x; take some specified value,
say X; = a. A point where the interquartile range of the predictive distribution
of y is minimized, subject to this constraint, is referred to as a point of
a-constrained minimum variance, or if it is clear what constraint is meant, as

Fig. 2. Three t-distributions and the mixture distribution they form.
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just a point of constrained minimum variance (CMV). The MV point is a CMV
point with % equal to 1 and @ = 1, since X is identically equal to 1 while the
other X-variables are not constrained. It will be convenient to consider distri-
butions conditional on H;, and then to refer to a CMV (or MV) point under
H;. The word ‘““variance” is used, rather than “spread,” because the spread of
a mixture of t-distributions is not defined. It will be shown (Theorem 3) that if
v > 2, so that var(y|x) exists, then out of those points satisfying the con-
straint, the CMV point is indeed the one for which var(¥(|x) is minimized.

The basic result about CMV points is the following. Suppose x and U are
conformably partitioned as

X U, U,
3.1 =[], U= .
(3:1) ( X2 ) ( Uy Uy )
Then if x, is constrained to equal a, the CMV point under H, is the point
(3.2) (a, —a'U,Usz').

Also, the spread of the distribution of ¥y at this point is given by

where U, , = Uy, — UpUp'Us,.

Equations (3.2) and (3.3) are a simple extension of results given in
Garthwaite and Dickey (1988), Theorem 4.1, for the case n = . A CMV point
under H, is unique. For a CMV point under other H,, those X-variables
corresponding to nonzero B-coefficients are unique.

It will be convenient to express the above results in terms of inverse-spread
matrixes. Suppose

-1
Ull U12 _ Gll G12
U21 U22 G21 G22 '

Then —U,Uy! = G;;'G,, and U, , = G1}, so the a-CMV point under H, is

(3.4) (a,aG'Gy,)
and
(3.5) S(F|x, = a,x,, Hy) = aG'a + w/n.

It has been assumed to be known that X,, X,,..., X,,, m < r, nontrivially
affect the response. The following theorem shows that if some (or all) of these
variables are constrained to take specified values, then the CMV point under
H, is also a CMV point under every other H;, i = 1,..., h, and at this point
the distribution of ¥ is a single ¢-distribution and not a more complicated
mixture of ¢-distributions. We go on to show in Theorem 2 that this point is
also the CMV point when it is uncertain which hypothesis is true. Proofs of
the theorems are given in Appendix A.
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THEOREM 1. Leta = (1,ay,...,a;), where the a; are constants and k < m.
Then:

(i) The a-CMV point under H, is also an a-CMV point under H; for
1=1,2,...,h.

(ii) At this point x, f(y|x) = f(F|x, H,) for i =0,1,...,h and f(J|X) is a
t-distribution.

THEOREM 2. Let a = (1,ay,...,a,), wherethe a; are constants and k < m.
Then the a-CMYV point, when it is uncertain which hypothesis is true, is the

a-CMV point under H,,.

The predictive distribution of ¥ is a mixture distribution, so its variance at
different design points is not proportional to its interquartile range. Since
CMYV points are defined in terms of the interquartile range of the distribution
of ¥, Theorem 2 does not show that var(¥|x) is smaller at the a-CMV point
than at any other point whose first components equal a. However, this result
does hold, as given in the following theorem.

THEOREM 3. If v > 2[so that var(y|x) exists), then under the conditions of
Theorem 2, var(y|x) is smaller at the a-CMV point than at any other point
whose first k components equal a.

Proor. Let 6 be a random variable that takes the value ¢ if H,; is the
hypothesis that is true. Then, for fixed x,

var(y|x) = Eo[var(5'|x, Ho)] + Vare[E(5/|x, Ho)]

(3-6) = Zh: P(H;) var(y|x, H;) + Varo[E(5'|X, H")]‘
i=0

At the CMV point, E(y|x, H) = E(¥|x) for all i (Theorem 1), so
Var,[ E(y|x, H,)] = 0 at this point. Also, for all i, var(y|x, H;) is smaller at this
point than at any other point whose first £ components equal a (Theorem 1).
Hence (3.6) is also smaller at this point than at other points satisfying the
constraint. O

The purpose of this section is to identify points at which the prior predictive
distribution of ¥ is a single #-distribution. Theorems 1 and 2 show that
particular CMV points have this property. Moreover, the decisiveness with
which var(¥|x) is minimized at such points [each term on the right-hand side
of (3.6) is individually minimized] suggests that assessing the positions of CMV
points is a reasonable task to ask of an assessor. To select CMV points, an
expert should choose points for which subjective predictions of ¥ are believed
to be most accurate. If the X; are controllable variables and the expert has
done some experimental work related to the problem of current interest, then
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CMYV points should typically be within the design region where the experi-
ments were conducted, unless the constraints on x prevent this. Similarly, if
the X; are not controllable and the expert has observed a random sample from
their joint distribution, then CMV points should usually be near the center of
their joint density. Our experience of using the elicitation method suggests
that this tends to be true in practice.

4. Elicitation method. In the prior model, the marginal distribution of
o satisfies f(o) = f(o|H,) for all i [equation (2.4)] and its form is given in
(2.5). To determine w and v, the hyperparameters of this marginal distribu-
tion, the procedure given by Garthwaite and Dickey (1988) can be used
without change. It is outlined briefly in Appendix B but is not discussed
further in this paper. Instead, attention is concentrated on the other hyperpa-
rameters to be determined, b and U. These latter parameters are the center
and the spread of the conditional prior distribution f(B|H,, o) so information
about this distribution must be elicited. It might seem natural to ask condi-
tional questions of the form: “Suppose H, were true, what would be your
assessment of ... .”” However, conditional questions are harder to answer than
unconditional questions and become harder as the number of conditions
increase. Also, a conditional question is particularly hard to answer when the
given condition seems unrealistic, and ““H,, is true’’ may be such a condition. If
several of the independent variables are each unlikely to affect the response,
then H,, the hypothesis that all variables affect the response, may be very
unlikely. For these reasons, we prefer questions in which no hypothesis is
conditioned on, and when conditional questions are asked, relatively weak
conditions will be specified.

The elicitation method described here and the method of Garthwaite and
Dickey (1988) require similar tasks of the expert. The positions of CMV points
are elicited, together with fractile assessment of the predictive distribution of
y at these points. The only difference is that in the present method, the expert
is asked to assume, for parts of the elicitation interview, that a specified
X-variable is certain to affect the response. This is done for various X-variables
in turn. For these parts of the interview, the expert must then take this
assumption into account when giving assessments. To illustrate, if X corre-
sponds to a variable which may, in the expert’s opinion, be a catalyst in a
chemical reaction, then at times the expert must assume that it is a catalyst
when giving his or her assessments.

4.1. Design point assessments. Theorem 2 indicates that the overall MV
point and the MV point under H, are coincident. Hence the questions (a)
“What is the MV point?” and (b) “Supposing H, were true, what would be the
MYV point?” should, in principle, give the same answer. Consequently, to
obtain the answer to the conditional question (b), the unconditional question
(a) can be asked. Similarly, if a = (1, a,,...,a,) with £ < m, the expert can
be asked to specify the a-CMV point and his or her answer can then be
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equated to the a-CMV point under H,. (The expert believes the first m
X-variables are certain to affect the response, and is only uncertain as to which
of the last r — m variables should feature in the model.) Hence, without
asking conditional questions, design points x;,X,,...,X,, can be elicited that
have the following structure:

!

Xy

X5

!

X;

;
xm

(4.1)

]_ x1’2 x1’3 xl,m xl,m+1 xl,r
1 ay x5 -  Xgm Xgmer Tt Xy,
1 ay - a;j  Xjj+1 T Xjm Xjmar T X,
1 a2 am xm,m+l xm,r

where (i) x; is the MV point under H, and (ii) for j = 2,...,m, x; is the
a;-CMV point under H,, where a; = (1, a,,...,a;) and

(4.2) a;#*x;_,,; forj=2,3,...,m.

J
In the above matrix, the values a, are specified by the computer, and the
values of the elements x; ; are chosen by the expert. The rows of the matrix
are determined sequentially, starting with x,, which is obtained by eliciting
the expert’s MV point. For x i» J =2,..., m, the computer selects a value for
a; that differs from x;_, ;, the jth element of the preceding row, thus
satisfying (4.2). The other elements of a; have previously been selected and
the expert assesses the a;-CMV point, giving the point x; specified in (ii).

To obtain the positions of further CMV points under H,, conditional
questions are asked. For each j =m + 1,...,r, it is uncertain whether the
variable X; will have an effect on the response. For each of these variables in
turn, the expert is asked to assume that it does have an effect. Conditional on
this assumption, the expert assesses the CMV point for the constraint that (a)
the first m components of the point equal 1, a,,...,a,, (these are the values
of the first m components of x,,) and (b) the jth component of the point
equals a;. Theorem 2 implies that, conditional on X, affecting the response,
the selected CMV point is also the CMV point under H,. In this way, CMV
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points X, 1,X,, .5, ..., X, are elicited that have the following form:
xIm+l
Xonio
X;
(43) \*
1 Qg " Ay a1 xm+1,m+2 xm+1,r
1 Qg """ Ay xm+2,m+1 [} xm+2,m+3 xm+2,r
“lia, o an xnn o A o x
Lay o an st o e x a,
The values a,,,1,@,,.9,---,a, are selected by the computer and satisfy
(4.4) a;#x, ; forj=m+1,...,r
4.2. Median and quartile assessments. At each of the design points
X,,...,X,, the expert is asked to assess the median, upper and lower quartiles
of the predictive distribution, f(yIx;). For the point x;, where j =m + 1,
m + 2,...,r, the expert is asked to assume that the independent variable X;

certainly affects the response when making these assessments. Under this
condition, Theorem 1 implies that f(¥Ix;) is identical to f(yIx;, H,), and so
the fractile assessments can be equated to fractiles of this latter distribution.
Let y; denote an observation of y at the point x; and let ¥; 50, ¥; 075 and
¥j,025 denote the median and quartile assessments at this point. Then for
J =1,...,r, the center and spread of f(¥;|H,) [i.e., f(¥|x;, H,)] are calculated
as

(4.5) C(&leo) =3_'j,0.50,

(4.6) S(5’j|Ho) = [(3—3‘,0‘75 _yj,0‘25)/(2qv)]27

where ¢, is the interquartile range of a ¢-distribution with unit spread and v
degrees of freedom.

The number of tasks performed by the expert could be reduced by determin-
ing S(y;|H,) from assessments of the median and just one quartile, rather
than the whole interquartile range. However, quartiles are assessed as condi-
tional medians [e.g., J 75 is chosen to satisfy P(¥; > ¥; o.15l¥; > ¥} 0.50) = 0.5],
so values of C(y;|H,) and S(y,;|H,) are not assessed independently of each
other. Garthwaite and Dickey (1985) show that there are desirable aspects of
the relationship between these quantities when S(¥;|H,) is obtained from an
elicited interquartile range. In particular, small errors in C(¥;|H,) then have
only a second-order effect on the expected value of S(¥;H,), while larger
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errors increase the expected value of S(¥;|H,), so less faith (i.e., a greater
spread) is associated with less accurate median assessments. These properties
fail to hold if S(y;|H,) is obtained from assessment of the median and just one
quartile.

The expert is also questioned about the differences in average response
between pairs of design points where, as before, averages are based on n
observations at each point. Specifically, the median and quartiles of the
distributions of d,, d,...,d, are elicited, where d ;=Y — ¥ and s is the
smaller of j — 1 and m. The usefulness of these assessments stems from
results in the following theorem.

THEOREM 4. Forj=2,8,...,r,
(4.7) C(d;|H,) = C(¥,|H,) — C(3,/H,),
(4.8) S(d;|Hy) = S(7;|Ho) — SF,|Ho) + 20/n

and the distribution f(d;) is a t-distribution that is identical to f(d JIH).

ProoF. Fori=0,1,..., h, trivially C(d |H;) = C(y,|H) - C(3,/H;). From
Theorem 1, C(¥;|H,) is the same for all H,, so the same is true of C(d;|H)).
From (5.19) in Garthwaite and Dickey (1988), S(d,|H) = S(y,|H,;) -
S(¥,/H;) + 20/n and, again from Theorem 1, S(¥;|H,) is the same for all H,.
Hence S(d;|H;) is the same for all H;. Clearly, for all H,, f(d;|H) is a
t-distribution on v degrees of freedom and we have just established that its
center and spread do not change as i varies. It follows that the distributions
f(d;|H,) are identical for i = 0,1,..., k, and hence equal fdy. o

The theorem implies that median and quartile assessments of f(d ;) can be
equated to the corresponding fractiles of f(d jIHy). The median is C(d J1Hy)
and, analogous to (4.6), S(d;|H,) is set equal to [(d; o5 — d; o25)/(2¢,)1%. In
the elicitation method, the expert is questioned about both ¥ ; and d; at each
design point in turn, and medians and quartiles of their distributions are
elicited that give centers and spreads which satisfy (4.7) and (4.8). The expert
is helped in this task by the computer. The expert assesses fractiles for d j
(or ¥;) and the computer calculates fractiles for ¥; (or d;) that would be
consistent with these assessments. The expert then either accepts the calcu-
lated fractile values as being an adequate representation of his or her opinions,
or revises them. In the latter case the cycle is repeated. Requiring (4.7) and
(4.8) to hold makes the expert consider the coherence between his or her
assessments at different design points.

Under the assumptions of the model, f(y;1H,) and f(d;|H,) are ¢-distribu-
tions and hence symmetric, so one might constrain an expert’s assessments of
upper and lower quartiles to be equidistant from the median assessment. This
is not done in our implementation of the elicitation method in case the expert,
conscious of the constraint, assesses just one quartile and then merely calcu-
lates the other, thus providing less information about his or her opinions. In
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practice, we have found that while an expert’s quartile assessments often show
some asymmetry, symmetric values for quartiles suggested by the computer
are generally accepted by the expert as representative of his or her opinion.
The example given later in Section 6 illustrates this. Of course, if an expert’s
opinion can only be represented by quartile values that display extreme
asymmetry, then our model for the expert’s beliefs is inappropriate and the
elicitation method described here should not be used.

For j = 2,...,r, the interquartile range for ¥ should be smaller at x, than
at x;. This follows from the fact that, when a = (1, a,, ..., a,), x, was chosen
as the a-CMV point and not x;, even though the latter point also satisfies the
constraint. [From (4.2) and (4.4), x; # x_.] If the interquartile range for y is
not less at x; than at x;, the expert is required to revise some of his or her
previous fractile assessments and/or the positions of CMV points. Also, from
(3.5) and (4.8), quartile assessments must be such that S(y,|H,) > »/n and
S(d;|Hy) > 2w /n. Obviously, these requirements are automatically satisfied if
n = o, Otherwise they are checked and reassessments of quartiles elicited if
necessary.

5. Assessment of hyperparameters. The elicited centers and spreads
of predictive distributions, together with the elicited positions of CMV points,
must be used to determine the hyperparameters U and b of the conditional
prior distribution f(B|H,).

5.1. Assessment of U. Let z, be the r-dimensional vector whose ith
component equals 1 and whose other components are zero. Define the triangu-
lar matrix T by

L
(5.1) TN=(xX1,Xy — X1,X3— Xg,...,X,, X _1,Zps15Zpminre-rZy).

Results given in Garthwaite and Dickey (1988), Lemma 5.2 and Theorem 5.1,
indicate that

_(D o0
(5.2) sereiE) - (5 v);
where D is an m X m diagonal matrix whose nonzero elements are
2w/n and
(5.3) V =8((Bn+1:Bmsas---» B |Ho).
From (4.1), the diagonal elements of T are 1,a, — x; 5,03 — X53,...,a,,
Xpm-1.m»1,1,...,1. These are all nonzero, from (4.2), so T is invertible. The

expert’s quartlle assessments provide estimates of the nonzero elements of D
so, if V can be estimated, then U = S(B|H,)) can be calculated from

(5.4) U = T~[S(TB|H,)](T") "
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Denote V™! by

gm+1,m+1 gm+1,m+2 gm+1,r
gm+2,m+1 gm+2,m+2 gm+2,r
v-l=
gr,m+1 gr,m+2 gr,r

In Appendix C we show that the diagonal elements of this matrix may be
estimated from
2
g = (aj_xm,j)
70 S(dj|H0) —20/n

(5.5)

and that the off-diagonal elements should satisfy

_ gj,j(xj,i - xm,i)

Aj = Xm,j

(5.6) 8j,i

Since the matrix V~! is symmetric, the values of g; ; and g; ; given by (5.6)
should be equal. To reconcile any difference, for simplicity we take their
average as the estimate of g; ;:

185 = %) . 8ui(%i) ~ %))
5‘7 = JsJ Js m,t + 1,1 1, J m,j
(5.7) 8ii =g a;,—x a;, — X, ;

J m, j

In the implementation of the elicitation method, the matrix
Bm+t,m+1 7 Bm+1,j
(5.8)
8j,m+1 T 8j,j

is estimated after assessments at the design point x; have been elicited
(j=m+1,...,r). It is checked that this matrix is positive definite, since
otherwise the expert’s assessments would not be probabilistically coherent. If
this check were not satisfied, the expert would be required to revise some of
his or her assessments. (In the authors’ experience, these checks have always
been satisfied.) A reassessment procedure is given in Garthwaite (1990). When
j =r, the matrix in (5.8) is V™!, so both V™!, and hence V, will be positive
definite. After determining V, the hyperparameter U is obtained from (5.1),
(5.2) and (5.4), and it will also be positive definite.

5.2. Assessment of b. The expert has given assessments that equate to
C(y,|H,), C(d,lHy),...,C(d,|Hy), where C(d;|H,) = C(y,;|H,) — C(y,|H,) and
s is the smaller of j—1 and m. Let d,5, = (C(y,|Hy),C(d,|Hy),...,
C(d,|H,)) and define the matrix A by A = (X,X; — Xy,..., X, — X, _q,
Xpi1— Xpm>Xpmio — Xps..., X, — X,.). We have that d,5, = Ab and, in Ap-
pendix C, we show that the positive definiteness of V ensures that A is
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nonsingular. Thus the hyperparameter b can be determined as

(5.9) b=A"ld,,.

6. An example. In this real example, the ‘“‘expert’’ whose opinion was
quantified was an industrial chemist. He was seeking a viable way to manufac-
ture a particular chloride compound. To produce this compound, two gases are
mixed in a diluent and passed through a long tube containing a catalyst. To
the extent that the desired reaction does not occur, a waste product is
produced and the chemist wanted to minimize the proportion of this waste
product in the output. He was sure it would be affected by the following four
factors: the temperature within the tube (Temp 1), the time the gas is in
contact with the catalyst (Time) and the quantity of each gas (Gas 1 and
Gas 2) per unit volume of diluent. The chemist was also interested in three
further factors which he thought might (but might not) affect the percentage
waste: the temperature of the input gases (Temp 2), the pressure (Pres) and
the back-mix temperature (Temp 3). The chemist thought that those factors
which affected the percentage waste would have a linear effect for the range of
values he wished to consider. Hence if all factors had nonzero effects, the
linear regression model for this application would be

Waste = B, + By(Temp 1) + Bg(Time) + B,(Gas 1) + B5(Gas 2)
+ Bg(Temp 2) + B,( Pres) + Bg(Temp 3).

Before having his opinion elicited, the chemist was forewarned of the
elicitation questions he would be asked and some advice was given on how he
might tackle the questions. He had used an earlier version of the method so
this took little time. The interactive computer program that implements the
method was then initiated. In response to prompts from the computer, the
chemist typed in answers expressing his opinions.

His first set of answers determined the names and ranges of the indepen-
dent variables that he felt certain would affect the response. These were

Temp 1: 360-445 (°C) Time: 4-20 (s)
Gas 1: 5-15 (%) Gas2: 5-11(%).
His next answers described the other variables which he thought might have
an effect:
Temp 2: 300-420 (°C)
Temp 3: 250-380 (°C)
Pres: 0-1 (atm).
(The chemist specified pressure as the increase in pressure above one atmo-
sphere, measured in atmospheres.) He was next questioned about experimen-

tal error [using the methods of Garthwaite and Dickey (1988)], and his
assessments gave values of 63.3 and 7 for w and v, respectively.
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TaBLE 1
Elicited points of constrained minimum variance

Point Constant Temp 1 Time Gasl Gas2 Temp2 Pres Temp 3

X} 1* 380 8 9 6 320 0 280
x), 1* 402.5* 8 9 7 350 0 280
X} 1* 402.5*  16% 9 9 320 0 280
X/, 1* 4025*  16*  125% 10 320 0 320
X} 1* 402.5*  16* 125* 8 330 0 280
X 1* 4025*  16% 125% 8 390 0 300
X} 1* 402.5*  16* 125* 8% 350  05* 320
X} 1* 402.5* 16 125* 8 350 0 315"

*Chosen by computer.

N

The value of n was set equal to » so that ¥ was the long-run average
response at a design point and d was the difference between the long-run
average responses at two points. The chemist then assessed the position of
constrained points of minimum variance and quartiles of corresponding y and
d. The coordinates of the selected points are given in Table 1. The values with
an asterisk were chosen by the computer and the remainder were chosen by
the assessor. The matrix T defined in (5.1) is thus equal to

1 380 8 9 6 320 0 280
0 225 0 0 1 30 O 0
0 0 8 0 2 =30 O 0
0 0 0 35 1 0 0 0
0 0 0 0 -2 10 0 -—40
10 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

The quartile assessments of y and d at the design points are given in Table 2.
Values with an asterisk were suggested by the computer and accepted by the

TABLE 2
Median and quartile assessments at the elicited
points of constrained minimum variance

Point Yo.25 Yo.50 Yo.7s do2s do.50 dozs
X, 35 40 44 — — —
X, 33.3* 38 42.7* -4 —2* -1
X 29.4* 35 40.6* -8 -3* -2
X, 23.6* 30 36.4* -8 —-5* -2
X5 20.5* 27 33.5% -5 —3* -2
Xg 18.3* 25 31.7* -4 -2* -1
x,; 16.3* 23 29.7* -5 —4* -2
Xg 19.4* 26* 32.6* -15 -1 -05

*Suggested by computer and accepted by chemist.
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chemist as representative of his opinions. Only for the point x4 did the expert
change a value (d 5,) that the computer suggested.

The semi-interquartile range of a standard ¢-distribution with seven degrees
of freedom is 0.711. From (4.6) and (4.8), the quartile assessments give the
following respective values for S(y,1H,), S(dylHy), ..., S(ds|H,): 40.06, 4.45,
17.80, 17.80 and 4.45. These are the nonzero elements of the diagonal matrix
D, defined in (5.2).

The matrix V™! is obtained from assessments at design points x;, Xg, X,
and x4. Applying (5.5) and (5.7) yields

808.8 1.123 842.5
vl= 1.123 0.05617 2.247 |.
842.5 2.247 2477.0

Inverting this matrix gives the remaining elements of S(TB|H) [cf. (5.2)]. The
hyperparameter U = S(B|H,) is then obtained from (5.4), and equals

Constant  Temp 1 Time Gas 1 Gas2  Temp 2 Pres Temp 3
2112 -5.70 —-6.91 —-16.5 30.2 0.763 3.09 —0.459
-5.70 0.0179 0.0113 0.0103 —0.0985 —0.00356 0.00875 0.00156
-6.91 0.0113 0.360 0.0683 —-0.301 0.00160 —0.0944 0.00156
—-16.5 0.0103 0.0683 1.56 —-0.259 0.00092 0.0896 —0.00270
30.2 —-0.0985 -—0.301 —-0.259 1.54 0.0225 0.186 —0.0159
0.763 —0.00356 0.00160 0.00092 0.0225 0.00192 —0.0128 —0.00064
3.09 0.00875 —0.0944 0.0896 0.186 —0.0128 18.6 —0.0125
—-0.459 0.00156 0.00156 —0.00270 —0.0159 —0.00064 —0.0125 0.000634

The hyperparameter b is obtained from the assessed medians and coordi-
nates of the design points. Applying (5.9) gives

b’ = (111.7, —0.120, —0.88, —1.75,1.59, —0.029, —5.9, —0.012).

After the interactive elicitation interview, the chemist was given an explana-
tion of the implications of the derived hyperparameter values that defined his
assessed distribution. He thought the regression coefficient estimates repre-
sented his opinions quite well but, as one might have expected, the derived
value of the spread matrix U meant little to him.

To complete the specification of the prior distribution for the linear model,
mixing weights must be determined [the P(H,) in (2.1)]. The independent
variables that might have no effect on the response are Temp 2, Pres and
Temp 3. In discussion, the chemist responded to straightforward questions by
asserting a one-in-five chance that Temp 2 would affect the response, and for
each of Pres and Temp 3, he assessed the probability at 0.1. Also, he felt that
if Temp 2 did affect the response, there was a probability of 0.2 that Temp 3
would, as well. Knowing whether Pres affected the response would not change
his probabilities of Temp 2 or Temp 3 affecting the response. These assess-
ménts enable the P(H,) to be determined. P(H,) = 0.004 and, for p;, = {6, 7, 8},
{7,8}, {6, 7}, {7}, {6, 8}, {8} and {6}, the corresponding P(H,) equal 0.666, 0.144,
0.054, 0.036, 0.074, 0.016 and 0.006, respectively.
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7. Concluding remarks. For a variable-selection problem, subjective
opinion can often usefully be modeled by a mixture of distributions and
structure imposed on the relationship between these distributions to reduce
the hyperparameters that must be elicited to a manageable number. The
structure adopted here seems sensible and a natural one to choose. With many
forms of mixture distributions, eliciting the parameters of the individual
distributions could be a formidable task. However, the properties of CMV
points make the elicitation task reasonably straightforward for the model
chosen here to represent subjective opinion. The assessment tasks that the
expert must perform are only marginally more complicated than those re-
quired to determine a single conjugate distribution, rather than a mixture. The
only difference is that, here, the expert must assume, in turn, that each of the
independent variables is certain to affect the response. The calculations to
form a prior distribution from the expert’s assessments are somewhat more
complicated than in Garthwaite and Dickey (1988), but this is inevitable if one
is to avoid asking the expert to make assumptions that are very unlikely or
even impossible, such as “H,, is true.” We have sought to make the assessor’s
task as simple as possible, regardless of added complexity in the calculations.

The example in the preceding section here and experiments reported else-
where [Garthwaite (1983), pages 130-136] indicate that the elicitation method
developed is a usable procedure for assessing prior distributions. Experts have
understood the elicitation questions and felt that they could answer them
meaningfully. In the main, they have also found formulating their opinions an
interesting task and have been favorably disposed to the idea of quantifying
their background knowledge in a mathematical form for use in the design
and /or analysis of their experiments. A drawback of the experiments we have
conducted is that there has always been a time interval between eliciting an
expert’s opinion and the expert conducting the envisaged experiment. During
the interval, the experiment has invariably been modified, either regarding the
equipment used or the independent variables that were examined, so that the
elicited distribution and empirical data could not be compared, nor combined
to form a posterior distribution.

Consequently, further empirical testing of the method is desirable in which
elicited distributions and data are compared. In such testing, posterior distri-
butions should be formed and the expert questioned about whether he or she
is comfortable with the effect of the prior distribution on the posterior. Indeed,
the posterior distribution formed from Bayes’ theorem can be compared to a
directly elicited posterior opinion distribution. Also, posterior predictive distri-
butions might be compared with those obtained from a noninformative prior
distribution, or perhaps, a simple model that requires fewer assessments but
which allows some prior information to be incorporated. Hierarchical models
in which B-coefficients are exchangeable could also be considered. Similar
comparisons should be made to examine the practical effect of using elicited
fvrior distributions in the design of experiments. In summary, empirical work

_conducted to date shows that the elicitation method developed here is a viable
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means of quantifying expert opinion, but further research is needed to demon-
strate the practical benefits it might give.

APPENDIX A

Proor or THEOREM 1. Without loss of generality, suppose H, specifies that
the last n; components of B are zero and the first r — n; components are
nonzero with probability 1. Conformably partition G = [S(BIH,)]"!, B and b
as follows:

G, Wi W B1 b,
G=|Wy,; Wy, Wy, B=|Bz], b=|b,]|,
Wy, W5 Wy Bs . b,y

where G;, Wy, and W,; are square matrixes with %, (r —k —n;) and n;
rows, respectively. Then f(B|H,, o) = f(BlH,, o, B3 = 0) and B, = (B}, BY).
Since f(BlH,, o) is a multivariate-normal distribution,

( Gy le)

(A.1) RIC:) W, W,

and

b, G, Wy - Wis
(A.2) C(BwlH;) = (b2) + (W21 W, Wos P

To show (i), we use (3.4): The a-CMV point under H,, is {a’, a’ G1;"(W;5, W )Y
while an a-CMV point under H; is any point whose first (» — n,) components
equal (&, a’'G;'W,,). Hence the a-CMV point under H, is also an a-CMV
point under H;. To show (ii), we first establish that if x is the CMV point
under H,, then S(3|x, Hy)) = S(y|x, H;) and C(3|x, H)) = C(3|x, H,). The
former clearly holds, since S(ylx, H,) and S(yIx, H;) both equal a' Gl 'a +
w/n, from (3.5). For the latter, we have

C(ylx, Hy) = (b}, by, by){a, & Gt (Wyy, Wy3))

It is straightforward (but tedious) to show that C(¥|x, H,) also equals this by
putting C(3lx, H,) = {C(B)|H,)} (@, a’ G1;'W,,), using (A.2), and putting

-1
G11 W12
W21 sz
- ~IW,,| ! (G — W Wi5lW,, | 'Wowat |
[Gu W12W22 W21] [ 11 12¥22 21] 1222
_ -1 _ _ -1 .
_[sz _W21G111W12] W21G111 [sz _W21G111W12]
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Both f(y|x, Hy)) and f(¥|x, H;) are t-distributions on v degrees of freedom,
and hence they must be identical since their spreads and centers are equal.
This demonstrates (ii). O

Proor oF THEOREM 2. Let x; be the a-CMV point under H,. Then
f(lx)) = f(3lx,, H,) for i = 0,1,..., h (Theorem 1). Let I be the magnitude
of the interquartile ranges of these distributions. Then for all c,

c+1 _ 1
[ rG1x, Hy) dy < 5

Hence if x, is any point whose first 2 components equal a, the definition of an
a-CMV point implies

c+I , _ _ I
[ Glxe, Hy) dy < <

Moreover, the inequality is strict if x, differs from x; in any component that
corresponds to a nonzero B-coefficient under H;. Hence if x, # x,, then for
all c,

h c+1 LIS | 1
L [T fGIxy, H)P(H) dy < ¥ S P(H;) = 3,
i=0"¢c i=0 2 2
so the interquartile range of f(y|x,) exceeds I. But, by definition, the a-CMV
point is the point at which the interquartile range of the predictive distribu-
tion of ¥ is minimized, subject to the constraint. Hence the a-CMV point
isx;. O

APPENDIX B

ASSESSING @ AND v. To determine the hyperparameters w and v, the
expert is first asked to imagine that two separate experiments will be con-
ducted at the same design point. Let Z; be the response in the first experi-
ment minus the response in the second experiment. The expert assesses the
median of the unsigned difference |Z,|, the assessment being denoted by ;.
The expert is asked to imagine that the observed difference was Z; = z; and
that two further experiments are to be conducted at a single design point, Z,
being the difference in the responses these yield. The median of the unsigned
magnitude of Z,|Z; = z; is elicited, %, being the expert’s assessment. The
value of v is then determined from

kq q,,[ v+1

ky 4,41 (aq,,)2 + v

where a = z;/k,; and ¢, is the semi-interquartile range of a ¢-distribution
"with unit spread and v degrees of freedom. (In the implementation of the
method, the computer chooses z; so that « = 1/2 and a table stores the
corresponding values of %k,/k, for various values of v, thereby simplifying

1/2
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calculations.) After v has been determined, w is obtained from the equation,
w = (kl/qu)z/z‘

APPENDIX C
DERIVATION OF (5.5) AND (5.6). To estimate g jand g, j=m+1,...,71;
i=m+1,...,r, only assessments at the CMV points x,,,X,, , 1,...,X, will be
used. The first m components of each of these points equal 1,a,,as,...,a,,

so the linear model can be restricted to design points that satisfy this con-
straint. Putting o = x/,,8, the linear model E(Y) = B; + B, X, + -+ +8, X
becomes

(C]‘) E(Y) =a+t Bm+1§m+1 + :Bm+2§m+2 + o +ﬂr§r’
where ¢; = X

X forj—m+1m+2

The CMV p01nts x X X, transform to the (r — m + 1)-dimension-
al vectors m,,,M,,.1,- ..,n,, Where M, =(1,0,0,...,0) and, for j=m +
L...,r, m;=Q, xjm+1 X malre s Xj xmj_l,aj—xmj,xjﬁ -
Xy jrtse - - xJ »— %, »Y. The MV point for the model in (C.1) is m,, and
Npstr- M, are CMV points. The components of m; that are constrained are
the first component, which is constrained to equal 1, and the (j — m + Dth
component, which is constrained to equal a; X, j The spreads of the
predlctlve distributions at these points are given by S(m;, Hy) =
S(ylx;, Hy) = S(3,;/H,) for j = ,T.

Let G = [SUa, B,yi1r-- -5 B, }IH )] 1 Since (1,0,0,...,0) is the MV point
for (C.1), (3.4) implies that the off- dlagonal elements of the first row and
column of G are zeros. Hence

g, 0 0 0
0 gm+1,m+1 gm+1,m+2 gm+1,r
G = 0 gm+2,m+1 Em+2, m+2 gm+2,r ,
0 gr,m+1 gr,m+2 gr,r

where g, | = [S(alH, o)1~ L. To estimate this matrix, we first note that « = x’,,8,
)

(C.2) 811 = [SGnlH) —w/n] ™
From (8.5),for j=m+1,m+2,...,r,

-1
_ g 0 1
S(yhlj’HO):(l i mj)( 0 gjj) (a ~m )+w/n
so g ;=(a;—x, 1)2/{S(yln,, H,) — (gi1 + w/n)}. Equation (5. 5) follows

because S(ylm;, Hy) — (gi1 + w/n) = SG,|H,) — SG,,/Hy) = S(d,|H,) -
2w/n, from (4.8).
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From (3.4) and the positions of the CMV points M, 1; Mmi2s-- 5Ny WE
havethatfor i=m+1,m+2,...,r;j=m+1,m+2,...,r;i #J,

-1
81,1 0 1
xj,,.—xm,i=(0,gj,,~)( 0 gj,j) (aj_xm,f)’
and (5.6) follows.

PROOF THAT A IS NONSINGULAR. Partition A as

Ay Ap
A= )
(A21 A

where A, and A,, are m X m and (r — m) X (r — m) matrixes, respectively.
From the choice of design points [(4.1) and (4.3)], A,; = 0, so the determinant
of A equals |Aj| - |A,l. Also, A;; is a diagonal matrix whose diagonal
elements are nonzero (they equal 1,ay — x; 5,...,@,, = X,,_1 ,), 50 |Ayy| # 0.
Consequently, if |A,,| # 0, then |A| is nonzero and hence A is nonsingular.
During the elicitation procedure it is checked that V.= S({B,, 1, .- -, 8,)H})
is a positive-definite matrix. We relate A,, to V. Define the square matrix

Q =(q; ;) by
9;,; = Bm+j,m+j
and
qj,i = gm+j,m+j(xm+j,m+i - xm,m+i)/(am+j - xm,m+j)

for j=1,2,...,r—-m;i=1,2,...,r — m; i #j. Comparison with (5.7) indi-
cates that (Q + Q')/2 = V™1 Since V is positive definite, 0 # &'V~ =
[W QWY + (W Qw¥)1/2 for any nonzero vector . Consequently, ¥ Qs + 0 for
any nonzero vector ¥, so Q is nonsingular and |Q| nonzero. If, for j =
1,2,...,r —m, the jth row of A,, were multiplied by g, ., n+;/(@p; —
%, m+;)» the matrix Q would be obtained. Hence

rem Qi — xm,m j
Ayl - 1QITI [ = ]

Jj=1 gm+j,m+j
Since |Q| # 0 and (a
[Ag,l # 0.

)# 0 for j=1,2,...,r — m, we have that

m+j — Xm,m+j
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