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BOUNDS ON AREs OF TESTS FOLLOWING BOX-COX
TRANSFORMATIONS

By HANFENG CHEN'! AND WEI-YIN Lon?

Bowling Green State University and University of Wisconsin, Madison

Bounds on the asymptotic relative efficiency (ARE) of the Box-Cox
transformed two-sample ¢-test to the ordinary ¢-test are obtained under
local alternatives. It is shown that the ARE is at least 1 for location-shift
models. In the case of scale-shift models, a similar bound applies provided
the limiting value of the estimated power transformation is greater than 1.
If instead the Box-Cox transformed ¢-test is compared against the ordinary
t-test applied to the log-transformed data, then the ARE is bounded below
by 1 for all scale-shift models, regardless of the limiting value of the power
transformation. The results extend naturally to the multisample F-test. A
small simulation study to evaluate the validity of the asymptotic results for
finite-sample sizes is also reported.

1. Introduction. Standard linear model analyses of data usually assume
that the observations are independent and normally distributed, with constant
variance and with expectations specified by a model linear in its set of
parameters. In an oft-cited paper, Box and Cox (1964) suggested that these
assumptions can be weakened so that they hold after some suitable transfor-
mation of the observations. The power family of transformations is one
particular family which is amenable to analysis and appears to be quite fruitful
in applications. For example, Box and Cox applied their method to data from a
3 X 4 factorial experiment and showed that after a reciprocal transformation,
the sensitivity of their analysis of variance F-test was ‘““increased almost
threefold” [Box and Cox (1964), page 222]. Box, Hunter and Hunter (1978),
page 238, interpret this as “‘equivalent to increasing the size of the experiment
by a factor of nearly three.” Other examples can be found in Box and Cox
(1964) and Atkinson (1985).

Theoretical studies on several aspects of the Box—Cox method have been
reported in the literature. Hinkley (1975) and Hernandez and Johnson (1980)
investigated the asymptotic properties of the parameter estimates for the
one-sample problem. Bickel and Doksum (1981) examined the behavior of the
asymptotic variances of parameter estimates for regression and analysis of
variance situations. Doksum and Wong (1983) showed that in certain circum-
stances some tests have asymptotically the correct level and asymptotically the
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same local power as if the value of the transformation parameter were known.
Hinkley and Runger (1984) approached the problem from a conditional view-
point [see also Doksum (1987)], and Carroll (1980) looked at the robust choice
of transformations.

The present paper was motivated by Box and Cox’s suggestion that a mere
transformation can achieve the equivalent of a threefold increase in sample
size for a hypothesis test. The results of an analytical and numerical study are
reported here on the following simpler but common practical problem. Suppose
we have two sets of observations from distributions with support on the
positive half-line, and the distributions are assumed to differ by a location shift
at most. A natural test of the null hypothesis of no shift is the two-sample
t-test, which is optimal when the distributions are normal with constant
variance. Because the observations cannot take negative values, however, the
distributions can only be approximately normal at best. It is reasonable,
therefore, to ask if a transformation chosen to improve the normality of the
transformed data would enhance the sensitivity of the two-sample ¢-test. Note
that since the data are already assumed to be homoscedastic from the start,
any nonlinear transformation will necessarily cause them to be heteroscedastic
after transformation, if the null hypothesis is false. To avoid severe het-
eroscedasticity, the transformation must therefore be chosen to balance the
goals of normality and homoscedasticity as much as possible. Interestingly, if
the null hypothesis is false, the distributions after transformation could differ
by more than just a location shift, and the #-test, which is meant to detect
shifts in location, may instead lose its sensitivity after transformation. On the
other hand, if the null hypothesis is true, the two distributions would remain
identical after transformation, and hence the significance level of the ¢-test
applied to the transformed data will still be approximately valid, especially
with large samples.

It turns out that the transformation to approximate normality and ho-
moscedasticity more than offsets any perturbations in the shapes of the
distributions, because the transformed ¢-test is always more powerful asymp-
totically than the untransformed ¢-test. Thus Box and Cox’s expectation holds
quite generally. A parallel analysis for scale-shift models is also presented.
First we need some notation.

Let (X;,..., X,,) and (V,...,V,) be independent copies of a positive ran-
dom variable X, and let 7 > 0 and N = m + n. Let the variables Y;,...,Y, be
defined by ‘

(1) Y4=‘IJ»+TN71/2, j=1,...,n,

J

in which case we say that the X’s and Y’s follow a location-shift model. We
say they follow a scale-shift model if the Y’s are defined instead by

(2) Yj=(1+TN’1/2)V}, j=1,...,n.
Consider testing the hypotheses
(3) Hy:7=0 versus H;:7>0
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given that only the X’s and Y’s are observed and assuming that m /n — % as
m,n — o, for some k € (0,»). The analyses of models (1) and (2) can be
carried out simultaneously if we embed them in the more general model

(4) Y= (L+ey) (Vi +eyu),  j=1...,n,

where r >0, u >0, r +u > 0 and cy = 7N~ '/2 Clearly, the location-shift
and scale-shift models correspond to the cases (r =0, v =1) and (r = 1,
u = 0), respectively.

Giveni a number A, define

(X} =1)/A, ifr=#0,
X,(A) = :
log X;, if A =0,

with a similar definition for Y;(1). The value of A may be estimated from the
data by maximum likelihood or Bayes theory. We consider only maximum
likelihood estimation here and denote the estimate by A. Note that because the
data have support on the positive half-line, there does not in general exist a
value of A that makes the transformed data exactly normal, except when they
are log-normally distributed to begin with.

We consider the question of the relative efficiency of tests of (3) with and
without transformation. Doksum and Wong (1983) considered a related ques-
tion under the following assumptions. Suppose there exists a A; such that
X(A) =a + 7¢; and Y;(A;) = b + ¢, where the ¢,;’s have a common distribu-
tion symmetric about 0, and suppose that the maximum likelihood estimate of
A, exists and is consistent. Doksum and Wong gave an expression for the ARE
of the ¢-test of the hypothesis H: a = b based on the transformed data to that
based on the untransformed data. They therefore assumed that the popula-
tions differ by a location shift in the (unknown) transformed scale. Another
situation they considered was that the populations differ by a scale shift in the
untransformed scale.

We assume that the populations differ only by a location shift or a scale
shift in the untransformed scale because this is the standard framework used
in the literature on rank tests. Under these models, we establish sufficient
conditions for A — A, a.s. and for the asymptotic normality of N'/%(A — A,) in
Section 2. General expressions for the asymptotic relative efficiencies (AREs)
of the #-tests with and without transformation are derived in Section 3.
Because of the different model assumptions, our AREs in the location-shift
case are different from those obtained by Doksum and Wong (1983), equation
(3.3). However, the AREs in the scale-shift case are the same. Sharp bounds
for the AREs are obtained for the two-sample and multisample problems. The
bounds show, for example, that the Box-Cox transformed tests are always
more efficient asymptotically than the untransformed tests under location-shift
alternatives.

A similar conclusion does not hold in the case of scale shift, where it turns
out that the ARE is bounded below by 1 only if A, > 1. If one believes in a
scale-shift model, however, it may be more reasonable to apply the ¢-test to the
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log-transformed data instead of the original data, because the log transforma-
tion changes a scale-shift model to a location-shift one. We prove that the
asymptotic efficiency of the Box-Cox ¢-test is also always at least as good as
that of the log-transformed ¢-test for this situation. Numerical values to
demonstrate the size of the AREs are reported for some distributions in
Section 4. '

The results of a simulation experiment to study the accuracy of the asymp-
totic predictions for fixed sample sizes are reported in Section 5, and Section 6
presents generalizations of the theoretical results to the multisample F-test.

2. Asymptotic properties. Let X()) = m 'L X,(A), with a similar
definition for Y(A). Let s%(A) be the pooled estimate of variance of the
transformed data and let ¢,(A) be the ¢-statistic based on them, that is,

m

1 — 2 n —
) = 5| L (X - X)) + T {Bo) - Yo

2
’

ty(A) = (mn/N)Zsg{ (M) {T(A) - (1)},
The maximum likelihood estimate A is the minimizer of the function
JIn(A) = s} (X)) /2%,

where log(2) = N"HI, log(X,) + £7_, log(Y;)}. Clearly, if EX*" and
E log X are finite, then Jy(A) — J(A) a.s. under H,, where

Jo(A) = o*(M)exp(—2An),

o?(\) = Var{X(A)} and n = E log X. The minimizer of J,(A) will be denoted
by A,.

We assume there is a finite closed interval [a, ] over which the following
conditions are satisfied:

(5) EX* <, )€la,b],

(6) Ellog X| < o,

(7) E(X*log X)' <w, A€]a,b],
(8) A, Ao € (a,b),

(9) Ag is unique on [a, b],

(10) EX(A) <», Ae[a-1,b].

The first and second derivatives of a function f will be denoted by f’ and f”,
respectively.

LemmA 1. Assume conditions (4)—(7). Then under H, as well as H,,
JIn(A) = Jy(A) and JF(A) = J[(A) a.s. uniformly in A € [a, b].



AREs FOLLOWING TRANSFORMATIONS 1489

Proor. The basic idea depends on Rubin’s theorem [Rubin (1956), Theo-
rem 1]. It suffices to prove the case for Jy(A) since that for J;;(A) is similar.
Let

(x*=1)/A, A #0,

f(r,x) = log(x), =0.

For each fixed value of x, f(A, x) is a continuous monotone function of A.
Define g,(x) = max{|f(a, x)I, If(b, x)|}. Then |f(A, x)| < g(x), A € [a, b]. Let
S, =[—i,i]. For each i, f(A,x) is equicontinuous in A for x € S;. By Rubin’s
theorem, we see that with probability 1, X(A) = m L7, f(A, X,) > EX(A)
uniformly for A € [a, bl as m — .

Next define Alc, A, x) = A" H[(1 + e)¥(x + cw)]* — 1}, ¢ €[0,1], A € [a, b]
and

gao(x) = max{|h(0,a,x)[,|~(0,b,x)[,|h(1,a,x)[,[~(1,b,x)}.

Clearly, |h(c, A, x)| < gy(x) for ¢ € [0,1] and A € [a, b]. Another application of
Rubin’s theorem shows that with probability 1, n 'Y }_,h(c, A, V,) —
Eh(c, A, X) = EY()A) uniformly in ¢ € [0,1] and A € [a, b] as n — «. Because
lim, ,, EY,(\) = EX(A), we conclude that under H, and H,, Y()) =
n'L?_ k(e A, V,) > EX(A) a.s. uniformly for A € [a,b] as N — .

It is similarly proved that with probability 1 and uniformly in A € [a, b],

1 m 1 n
— X XP(A) - EX*()),  — X Y1) - EX*(A),
m =1 k=1

sZ(A) = o?(A), 2% - exp{2An}.
Therefore with probability 1, (1) = Jy(A) uniformly for A € [a, b]. O

THEOREM 1. Assume conditions (4)—(9). Then under H, and H,, (i) A
converges almost surely to A, and (ii)) NY*A — A,) has a normal limit
distribution.

Proor. By Lemma 1, Jy(A) = J,(A) a.s. uniformly on the interval [a, b].
Condition (9) and the continuity of J,(A) imply part (i) of the theorem. To

prove part (ii), apply the Taylor expansion to oJy( A) at A, to obtain
0 = Jy(R) = Jy(ro) + IFH(A*)(A = ),

where [A* — Ayl < |A — Ayl. Hence NVZA — Ay) = —[Jj(A DI INVZIG(A).
By part (i) of the theorem and Lemma 1, Jy(A*) — Jg(Ay) as. Since
N2J;(1,) has a normal limit distribution, N'/2(A — A,) also converges to a
normal limit. O

THEOREM 2. Assume conditions (4)—(9). Then under H, and H,, ty()) —
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Proor. Write
tn(A) =ty (Xo) = (mn/N)*(R = Ao)(mn/N) 2ty (40),
where [A* — Ag| < |A — A,| and
(mn/N) "2y (0) = sy (W) [sw(D{T'(2) = X'(1))
—{Y(1) = X())sn(1)].

By Theorem 1, (mn/N)V%A — A,) = Op(1), so it suffices to show that
(mn/N)~1/?t5(X*) converges to 0. It may be seen from the proof of Lemma 1
that the sample mean and variance of the transformed data, together with
their derivatives, converge a.s. uniformly in A. Further, according to Theorem

1, A* = A a.s. Therefore Y'(A*) — X'()*) - 0 as. and Y(X*) — X(X*) - 0 a.s.
Hence (mn/N)~'2¢y(X*) - 0 a.s. and so ¢, (1) — tn(Ag) = 0p(1). O

Define
&= TRk + 1) N(uEX' ! + rEXY)[Var( X(1))] 72
(11) = |+ DTINREX Y 4 rEXY) (Var(XN) T2, it # 0,
mhY2(k + 1) (uEX " + r){Var(log X)} 7, A =0,

and let “ -, "’ denote convergence in distribution.

THEOREM 3. Suppose that conditions (4)-(7) and (10) hold. Then under
Hy as well as Hy, ty(0) = N(£,, 1) and t5()) -, xi(8,), where 8, = £2 is
the noncentrality parameter of the noncentral x? distribution with one degree
of freedom.

Proor. Write
tn(A) = Ex(A) + 8y (R), |
Ev(A) = (mn/N)VAHY(2) = X(A) - [EY(A) — EX(A)]}/sn(A),
8n(A) = (mn/N)"*(EY(A) — EX(1)} /sy(A).

It follows that #y(A) -, N(0,1) and §y()\) - £, a.s. Hence tn(d) =5 N(£,1).
O

COROLLARY 1. Assume conditions (4), (5) and (10) hold. Then tn(D) =,
N, , D and t3(}) -, xi(8,).
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3. Asymptotic relative efficiency (ARE). The following notation is
introduced for convenience. Denote by ¢5: the Box-Cox t-test [i.e., the test
based on ¢ N(A)] and define

~ {U|A0|EX*0l{var(X*o)}‘”z, if A, # 0,

" | e EX{Var(log X)} "2, if Ay = 0,
(12) L
B - o|Ao|(EX*/EX){Var( X*0)} 7, if A, # 0,
o o (EX) Y Var(log X)) V2, if Ay =0

where o2 = Var(X).

THEOREM 4. Assume conditions (4)—(10). Then the ARE of tyc to the
ordinary t-test is ARE(tgs,t) = (pA, + qB)‘O)Z, where p = u/|rEX + ul and
q =rEX/|IrEX + ul.

PrOOF. Against a one-sided alternative, ¢y rejects the null hypothesis
whenever ¢,(A) is large. Given r and N, let B(cyld, M) be the power of test ¢
at the local alternative defined in (3) and (4) based on sample size M. Define
N’ to be the solution of the equation B(cyltgc, N) = Blcylt, N') and let
v = ARE(¢gq,t) = limy ., N'/N. From Corollary 1 and the definition of ¢, in
(11), we have

1-®(z,—¢,) = Al/iglooB(CNltBC’ N)

li t, N'
NlinooB(CN| ) )

Al{iglwﬁ([N’/N]I/ “enlt, N')

1- <I>(za - 71/2.51).

Thus y = &7 /£7. By (1), if Ay # 0, then (¢, /£,)* = (pA,, + ¢B, )* A similar
derivation holds for the case when Ao = 0. For the two-sided alternatlve the
null hypothesis is rejected whenever tN()\) is large. The proof is the same, but
with the normal distribution replaced by a noncentral y? distribution. O

COROLLARY 2. Suppose the location-shift model (1) holds. Then
ARE(tgc, t) = A2

COROLLARY 3. Suppose the scale-shift model (2) holds. Then ARE(tp,t) =
B AZO.

3.1. Bounds on ARE for location shift

THEOREM 5. In the case of location shift, suppose conditions (5)-(10) hold
and a <1 <b. Then 1 < ARE(tgg,t) < .



1492 H. CHEN AND W.-Y. LOH

Proor. By Corollary 2, ARE(tp, t) = Aﬁo. Suppose that A, # 0. From the
definition of A, in (12), it suffices to show that Var(X"e) < \2g%(EX 0~ 1)2.
Since Jy(1) > J(A,), we have

A ? Var( X*0)exp{—21,E(log X))} < o2 exp —2E(log X)}.
An application of Jensen’s inequality yields
Var(X*) < Ajo?[exp{(A, — 1) E log X}]* < Ao 2( EX*o1)?

as required. The proof for the case A, = 0 is similar.

To see that the bounds are sharp, let X be log-norm(0, y?), that is, log(X)
is N(0,7%). Then Jy(A) = A~2exp(A2y?){exp(A2y2) — 1} and Ao = 0. Hence
ARE(tpc, t) = vy~ % exp(2y?){exp(y?) — 1} which converges to 1 or = as y—0
or », respectively. O

3.2. Bounds on AREs for scale shift.

THEOREM 6. In the case of scale shift, suppose that (5)-(10) hold and
a <1<b. Then ARE(tgc,t) = 1 if Ay > 1, and 0 < ARE(tp,t) < » other-
wise.

Proor. Suppose that A, > 1. Since J(A,) < J,(1), we have
N Var(X) /Var(X*0) > exp{—2(A, — 1) E(log X)}.
Jensen’s inequality gives
ARE(tg,t) = {E(X")/EX)*(E(X*1)) 2.

Since Cov(X*0™', X) > 0 when A, > 1, we get E(X"1) < E(X*)/EX, and
hence ARE(¢g¢, ) = 1.

The second part of the theorem is proved by considering the following
example. Let 6 > 0 and let X have support on the unit interval with density

(13) f(x) =06x"1, 0<x<l.

Then E(X*) =§/(8 + ), Var(X") = §A2/(5 + 2A)(5 + A)? and E(log X) =
—387 % Therefore ARE(tpc, t) = (8 + 214)/(5 + 2) with A, = 6 /v2. It follows
that lim; , y ARE(¢5¢,¢) = 0.

To see that the upper bound is infinite, let X be log-norm(w, y2).
Then A, = 0, independent of y2 In the case of scale shift, ARE(¢ge,¢t) =
{exp(y?) — 1}/y2 5 0w as y » . O

If one really believes that the data originate from a scale-shift model, it is
reasonable to first transform them to a logarithmic scale before applying the
t-test, since this transforms a scale-shift model into a location-shift model. Let
¢(0) denote the t-test applied to the log-transformed data. It is interesting to
compare the efficiency of ¢, against that of #(0). The next result shows that
ARE(¢pc, £(0)) is bounded below by 1 for the scale-shift model.
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THEOREM 7. In the case of scale shift, suppose conditions (5)-(10) hold
and a <0 <b. Then 1 < ARE(tg, t(0)) < .

Proor. From the proof of Theorem 4, we have ARE(¢y¢, #(0)) = (¢, /€)%,
where ¢, is defined by (11) with z = 0 and r = 1. Thus

ARE(tpe, t(0)) = (EX*)*A2 Var(log X ) /Var( X*).
Because A is the minimizer of J(A) on the interval [a, b], which contains 0
by assumption, it follows that J(A,) < J,(0), that is,
A2 Var( X*0)exp{ —2A,E log X} < Var(log X).
But Jensen’s inequality implies that exp{E log X*0} < EX*0. Hence

X2 (Var(X*)} ' Var(log X)( EX*)°
= Ny{Var(X*)) " Var(log X) (exp(E log X*))" = 1,

proving the theorem. The lower bound of 1 is achieved at the log-normal
distribution. It can be shown that for the gamma distribution with density
function

(14) f(x) =B%° texp(—Bx)/T'(0), x>0,6,8>0,
that A, —» 1/3 and ARE(¢y, ¢(0)) —» 1 as § — «, independent of 8. O

4. Numerical results. Numerical values of the AREs are computed for
the following distributions.

Gamma distribution. Tables 1 and 2 give values for the gamma density
(14). The AREs are scale invariant and so are independent of 8. The AREs of
tgc to the Wilcoxon and normal scores rank tests are included in Table 1 for
comparison. The reason that the ARE of the Box-Cox ¢-test to the normal
scores test is 0 when 6 = 1 is because the efficacy of the latter test is infinite at
the exponential distribution.

The low efficiency of ¢g- versus £(0) may be explained as follows. If the two
populations differ by a location shift, then the support of the distribution of
log(X) is the whole real line, whereas that of log(Y) is a half-line. If the left

TABLE 1
AREs for gamma distributions under location shift

0 Ao ARE(tgc,t)  ARE(#gc, £(0))  ARE(#gc,W)  ARE(#5q,NS)
1.0 0.265 11.44 0 3.81 .0
1.5  0.289 3.12 0.486 1.7 0.898
2.0 0.301 2.12 0.683 141 0.967
50  0.321 1.28 0.907 1.14 0.998
® 1/3 1 1 /3 1

Note: W and NS denote the Wilcoxon and normal scores tests, respectively.
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TABLE 2
AREs for gamma distributions under scale and location—scale shift (r = u = 1)

Scale shift Location-scale
0 Ao ARE(tgc, t) ARE(tg, t(0) ARE(tgc, t)
1.0 0.265 0.803 1.32 4.58
1.5 0.289 0.864 1.21 1.60
2.0 0.301 0.896 1.16 1.25
5.0 0.321 0.957 1.06 1.01
® 1/3 1 1 1

tail of the distribution of log(X) is sufficiently thick, as is apparently the case
here, it would be easier for the #(0)-test to detect a difference in means than it
is for the ¢yo-test.

Log-normal distribution. The AREs when X is log-normal(u, y?) are given
in Tables 3 and 4. These AREs are independent of u. The value of ARE(¢g, ¢)
increases with the skewness parameter y2 Since A, = 0, we have
ARE(tyc, t(0)) = 1 here.

Uniform distribution on (0, h). Assume without loss of generality that
h = 1. Then Jy(A) = exp(21)/{(2A + D(A + 1)?}, A, = 1/V2, and for location
shift, we have ARE(¢g¢, t) = 1.173 and ARE(¢y(, t(0)) = 0. For scale shift, the
corresponding values are ARE(¢g., t) = 0.802 and ARE(¢g, £(0)) = 2.41.

TABLE 3
ARE:s for log-normal distributions under location shift

2

Y
0.10 0.50 0.75 1.00
ARE(tgg, t) 1.29 3.53 6.68 12.70
ARE(tpc, W) 1.10 1.35 1.52 1.73

Note: W denotes the Wilcoxon test; ARE(¢pg, £(0)) = 1 in this
case because Ay = 0.

TABLE 4
ARE(tge, t) for log-normal distributions under scale and location—-scale shift
(r=u=1)
v2
0.10 0.50 0.75 1.00
Scale 1.05 1.30 1.49 1.72
Location-scale 1.16 2.14 3.15 4.68

Note: ARE(tgc, t(0)) = 1 in this case because Ay = 0.
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TaBLE 5
AREs for inverse Gaussian (Wald) distributions under location shift

o Ao ARE(tgc,t)  ARE(#5c,W)  ARE(#po,NS)  ARE(tg, £(0)
20  —0.0502 2.87 1.31 0.963 1.04
30  —0.0383 2.10 1.23 0.980 1.02
40  —0.0304 1.77 1.19 0.987 1.01
50  —0.0256 1.59 1.17 0.991 1.01

Note: ¢ denotes the shape parameter; W and NS are the Wilcoxon and normal scores tests,
respectively.

Inverse Gaussian (Wald) distribution. Table 5 gives AREs under location
shift for the inverse Gaussian distribution with shape parameter ¢ and density
function

f(x) = (d/2m) *x~% 2 exp{—(1/2)$(x — 1)°/x}, x>0, > 0.

The fact that all the values of ARE(¢ge, t(0)) exceed 1 in the table is not a
coincidence, as the following theorem shows.

THEOREM 8. In the case of location shift, suppose conditions (5)—(10) hold
and that a < 0 < b and Ay, < 0. Then ARE(¢g,t(0)) > 1.

Proor. The definition of A, implies that J,(0) > J,(A,), which gives
Var(log X) > A, 2 Var( X*) exp( —21,E log X).

From the assumption that A, < 0, we have Cov(X"°, X~!) > 0, which by
Jensen’s inequality yields

EX* !> EX™EX ' > exp(A E log X)EX ',
Therefore by Corollary 2,
2
= X2 Var(log X)(EX"~'/EX~)*/Var(X*) > 1. O

In view of the preceding result and the small values of ARE(¢q, £(0)) in
Table 1, it is natural to ask whether the ARE can be greater than 1 for some
distribution with A, > 0. Such an example is provided by the distribution with
density function (13). Assume that § is large so that the moment conditions
are satisfied. Direct computation gives A, = 8/v2 and ’

ARE(t50,£(0)) = (1 + 2/V2)(1 + 1/v2)°[(8 - 1)/(8(1 + 1/¥2) - 1)]*

-1+ Y2, 6 — oo,
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5. Simulation results. A simulation experiment was carried out to com-
pare the small-sample performance of the tests for the case of log-normal
distributions under location shift. Table 6 gives the simulated levels and
powers of the ¢y, t and W tests for (m, n) = (20, 30) and (30, 50), at nominal

TABLE 6
Simulated levels and powers of the Box—Cox t-test (¢ g¢), Wilcoxon rank test (W) and the ordinary
t-test (t)
"/2
010 - 0.50 0.75 1.00
Shift = 0.0 m =20 tpe 0.056 0.058 0.056 0.058
n =230 (EY) (-0.008) (—0.003) (—0.004) (-0.003)
¢ 0.054 0.051 0.048 0.046
w 0.051 0.051 0.050 0.049
m = 30 tBe 0.055 0.053 0.055 0.053
n =50 (E}) (-0.009) (—0.005) (—0.004) (—0.004)
¢ 0.054 0.049 0.049 0.045
w 0.050 0.048 0.049 0.049
Shift = 0.1 m = 20 tBe 0.224 0.106 0.097 0.093
n =230 (EX) (-0.027) (-0.050) (—0.053) (-0.056)
¢ 0.186 0.069 0.055 0.047
w 0.122 0.068 0.064 0.059
m = 30 tpe 0.318 0.131 0.119 0.115
n =50 (EX) (-0.029) (—0.055) (-0.057) (-0.059)
¢ 0.259 0.071 0.058 0.050
w 0.167 0.079 0.070 0.070
Shift = 0.2 m =20 tpe 0.627 0.240 0.204 0.186
n =30 (EX) (0.029) (-0.057) (—0.064) (-0.068)
¢ 0.543 0.121 0.081 0.063
w 0.345 0.121 0.101 0.088
m = 30 tBe 0.812 0.340 0.286 0.269
n =50 (E}) (0.028) (—0.062) (—-0.068) (-0.070)
¢ 0.725 0.148 0.096 0.070
w 0.497 0.165 0.136 0.123
Shift = 0.3 m =20 . 0.913 0.432 0.354 0.317
n =30 (EX) (0.130) (-0.038) (—0.052) (-0.059)
¢ 0.858 0.211 0.131 0.092
W 0.631 0.210 0.166 0.140
m =30 tpe 0.985 0.600 0.505 0.461
n =30 (EX) (0.129) (—0.042) (—0.055) (-0.061)
¢ 0.962 0.279 0.161 0.110
w 0.821 0.306 0.242 0.209

Note: The populations were log-normal(0, y2) under location shift. The nominal level for all tests
was 0.05, and 40,000 Monte Carlo trials were performed, giving a maximum simulation standard
error of 0.0025. For each sample size, the same simulated samples were used to obtain the level
and power of the tests. Average values of A are given in parentheses.
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TABLE 7
Simulated powers of the Box—Cox t-test (tg¢), Wilcoxon rank test (W) and the ordinary student
t-test (t) for sample sizes adjusted according to Table 3

2

N
0.10 0.50 0.75 1.00
tsc 0.63 0.24 0.21 0.19
(m,n) (20, 30) (20, 30) (20, 30) (20, 30)
t 0.63 0.26 0.23 0.22
(m,n) (26, 38) (71, 106) (134, 200) (254, 381)
w 0.37 0.14 0.13 0.12
(m,n) (22,33) (27,41) | (31, 46) (35,52)

Note: The populations used are log-normal(0, y2) with location shift 0.2. The nominal level for all
three tests is 0.05. Each result is based on 10,000 Monte Carlo trials, giving a maximum
simulation standard error of 0.005.

level 0.05. Estimated values of EA are given in parentheses. The #(0)-test is
not included because it is asymptotically equivalent to ¢g. since A, = 0. The
following conclusions may be summarized from the table:

1. The significance levels of the ¢z -test seem to be somewhat high when
(m,n) = (20, 30), although they get closer to the nominal values (within
two simulation standard errors) when (m, n) is increased to (30, 50).

2. The power of the ¢yc-test dominates that of the other two tests uniformly
over the cases considered, by as much as more than four times the power of
the t-test when (m, n) = (30, 50), y2 = 1, and the location shift is 0.3 units.

To check on the relevance of the AREs in Table 3 for finite-sample sizes,
another simulation was conducted with m = 20 and n = 30 for ¢ in the
log-normal location-shift case. The sample sizes of the #- and W-tests were
modified according to the AREs in that table. Specifically, the sample sizes for
the ¢-test were (m,n) = (20 ARE(¢g, ¢), 30 ARE(¢5¢, t)), and those for the
W-test were (m, n) = (20 ARE(¢5q, W), 30 ARE(¢5¢, W)). If the asymptotic for-
mulas hold at these sample sizes, the powers of the three tests should be about
the same. Table 7 gives the results which can be summarized as follows:

1. The formula for ARE(¢g, ¢) is quite accurate for the values of y? shown in
the table. :

2. The formula for ARE(¢5c, W) underpredicts the relative efficiency at the
sample sizes considered, that is, the ty.-test is more efficient relative to the
Wilcoxon test than their ARE suggests.

6. More than two samples. The efficiency results for the two-sample
Box-Cox t-test are extended to the one-way analysis of variance F-test in this
section. For each i, let X;;,..., X;, be independent copies of a positive

variable X, which satisfies conditions analogous to (5)-(10). Given c¢; =

™n;i2>0, u; 20 and r, > 0 with (7, u,,r) # (1j,u;,r;) for some (i, ),
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define Y;; = (1 +c¢)(X; +cu;),j=1,...,n;,i=1,...,]. Let N = rin

and assume that there exist k,,...,%; such that ¥/_,k, =1 and n,/N -

k; €(0,0),i=1,...,1. Consider testing the null hypothesis Hy: 7, = -+ =
= 0 versus local alternatives with 7, > 0 for some i. Let Y.(\) =
’IZ LY (), YO = N2, Y., RSSH(A) CIn Y0 - Y()\)}2

and
I n _ 9
SH(M) = 5 g gl{Yi,»(A) RO
The ANOVA F-statistic based on the Box—Cox transformed data is given by

Fy(A) = (I- 1>*1RésH(A>/Sﬁ(A>.

Let log(2) = N'T/_ 27 log(Y;;), 0*(A) = Var{X(A)}, n = E log(X) and de-
fine Jy(1) = SN()\)/Z2A and JO(/\) = ¢2())/e®". Finally, let A and A, be the
minimizers of Jy(A) and J(A), respectively. The Box-Cox F-test rejects H, if
Fy(A) > F,_ \N—I,a» Where F;_; n_, , is the upper a-quantile of the F- dlstrl-
bution with / — 1 and N — I degrees of freedom.

We collect together here generalizations of the previous results to multisam-
ples. The proofs are omitted since they are similar to those for the case of two
samples.

THEOREM 9. A — A, a.s. and NV2(A — A,) = Op(1).
THEOREM 10. Fy(X) — Fy(X,) — 0 in probability.

THEOREM 11. Let ¢&; = 7(u; EX* ™' + r,EX%), ¢ = ©!_ k& and
I
(15) 5%(Xo) = [Var(X(a))] ' T ki(& — £).
i1

Then Fy(A) =, (I — 1)" %2 (6%(A,)) under the null as well as alternative
hypotheses.

THEOREM 12. The asymptotic relative efficiency of the Box—Cox F-test, Fp,
against the ordinary F-test, F, is ARE(FBC, F) = 8%y /8%1), where §%*(\,)
is defined in (15).

CoROLLARY 4 (Location shift). Assume thatr, = --- =r;=0. Then

ARE(Fye, F) = Var(X)(EX"~1)* /Var{X(),)).

COROLLARY 5 (Scale shift). Assume thatu, = -+ =u;=0. Then

ARE(Fyg, F) = Var(X)(EX*/EX)’ /Var{X(1,))}.
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Since the AREs are the same as those in the two-sample case for both
location and scale shifts, the previous bounds apply. For example, consider the
following result.

THEOREM 13. In the case of location shift or scale shift (the latter with
Aog=1),1 < ARE(Fy, F) < .

7. Discussion. The purpose of this paper is to provide some answers to
the practical question of whether one should first transform the data before
carrying out a two-sample #-test. Based on the theoretical and simulation
results reported here, the answer is clearly “yes,” at least for location-shift
models.

It may seem strange that we are advocating a transformation of the data
before applying the ¢-test in the case of location shift, because on the trans-
formed scale the model is no longer one of location shift, whereas the ¢-test is
designed for the latter. Two reasons may explain why our results are counter
to this kind of intuition.

1. While the #-test is designed for location-shift alternatives, it is really
efficient only when the populations are normal. The literature on rank
tests, for example, contains numerous examples of alternative tests that are
superior to the #-test, sometimes by a large margin, for nonnormal popula-
tions. In the situations considered in this paper, where the data are
distributed on the positive real line, the extent of deviation from normality
may be large.

2. Because power transformations are monotone, the transformed ¢-test is
consistent even if the model after transformation is not one of location
shift. If we recall that the Box-Cox transformation is chosen to make the
transformed data satisfy the normality and homoscedasticity assumptions
as closely as possible, it should not be surprising that the ¢g--test performs
satisfactorily against the ¢- or #(0)-tests under the location-shift and scale-
shift models, respectively, for nonnormal populations.
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