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NONPARAMETRIC METHODS FOR IMPERFECT REPAIR
MODELS

By MyLES HOLLANDER,! BRETT PRESNELL" 2 AND JAYARAM SETHURAMAN 2

Florida State University

In the age-dependent minimal repair model of Block, Borges and Savits
(BBS), a system failing at age ¢ undergoes one of two types of repair. With
probability p(2), a perfect repair is performed and the system is returned to
the “good-as-new” state, while with probability 1 — p(¢), a minimal repair
is performed and the system is repaired, but is only as good as a working
system of age t. Whitaker and Samaniego propose an estimator for the
system life distribution F' when data are collected under this model.

In the present article, an appropriate probability model for the BBS
process is developed and a counting process approach is used to extend the
large sample theorems of Whitaker and Samaniego to the whole line.
Applications of these results to confidence bands and an extension of the
Wilcoxon two-sample test are examined.

1. Introduction. Procedures for inference in reliability often assume an
i.i.d. model for (inter-) failure times. The i.i.d. assumption may be inadequate,
however, for modeling situations in which a failed item may be repaired, and
the imperfect repair models of Brown and Proschan (1983), and Block, Borges
and Savits (1985) attempt to overcome this difficulty in a mathematically
tractable way.

In the Brown-Proschan (BP) model, a device with continuous life distribu-
tion F is put on test at time zero. Upon failure, one of the two types of repair
is performed. With probability p, the device is returned to the “good-as-new”’
state (perfect repair), and we consider that its age is returned to zero. With
probability g = 1 — p, the device is returned to the working state, but is only
as good as a working item of age equal to the age of the device at failure
(minimal repair). Thus, if a minimal repair is performed on an item failing at
age t, the repaired item has survival function F(s|t) given by

F(s+1t)
F(t)y ’

where we use the notation G to indicate the survival function 1 — G of a life

distribution G. The process is continued after repair, with each subsequent

failure being followed by a perfect repair with probability p, or a minimal
repair with probability q. Under this model, Brown and Proschan showed that

F(s|t) = §20,
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the time between perfect repairs has distribution H, where H(¢) = F?(¢), and
the transformation from F to H was shown to preserve certain aging proper-
ties, such as the IFR, IFRA, NBU and DMRL properties and their duals, as
defined in Barlow and Proschan (1981).

Block, Borges and Savits (BBS)-extended these results by proposing a more
general model, where the probability of a perfect repair, p(¢), depends on the
age of the failed device; that is, p(-) is a measurable function p: [0, ®) — [0, 1].
Under the condition

p(t) '
(1.1) fm,m;f"(?) dF(t) = +e,

Block, Borges and Savits showed that for continuous F, the waiting time
between perfect repairs is almost-surely finite with distribution H given by

(1.2) H(t) =1-em| - [ t];z;

dF(s)}, t>0,

and the preservation results of Brown and Proschan were shown to hold under
suitable hypotheses on p(-).

Whitaker and Samaniego (1989) proposed an estimator for the life distribu-
tion when this model is observed until the time of the mth perfect repair. This
estimator was motivated by a nonparametric maximum likelihood approach,
and was shown to be a ‘“neighborhood MLE.” Whitaker and Samaniego
derived large-sample results for this estimator by following the methods of
Breslow and Crowley (1974).

In this paper we take the more modern approach of using counting process
and martingale theory to analyze these models. These methods yield exten-
sions of Whitaker and Samaniego’s results to the whole line, and provide a
useful framework for further work on the minimal repair model.

In Section 2, we develop an appropriate probability model for the BBS
process, and we provide a straightforward extension of (1.1) and (1.2) which
allows for discontinuous F. Some basic counting processes and an appropriate
filtration are then defined that permit us to study the model through the use
of martingale techniques. Following Gill (1983), we rederive and extend the
large sample results of Whitaker and Samaniego to the whole line in Section 3.
In Section 4, application of these results to obtain confidence bands for F
similar to those of Hall and Wellner (1980) and to extend the Mann-
Whitney—Wilcoxon two-sample test to the BBS model is explored.

2. The model and the basic martingale. Let % be a cadlag (right
continuous with left limits) function. Throughout this paper, we will use the
following standard notation for right continuous functions with left limits:
h(¢ — ) represents the left limit of A at the point ¢, Ah(z) = h(¢) — h(t — ) is
the jump in & at ¢ and, if % is of bounded variation, A°(¢) = h(¢) — L, . ,Ah(s)
is the continuous part of 2 at ¢. We also let s A ¢ represent the minimum of s
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and ¢. Uniform random variables are to be taken as uniformly distributed on
the unit interval.

A life distribution F is a distribution function with F(0) = 0, and we denote
the corresponding survival function 1 — F by F. We call F a subdistribution
function when we wish to allow’lim, _,., F(¢) < 1; in this case, we still define
F=1-F, but we refrain from calling F a subsurvival function since this
contradicts common usage of this term in the survival analysis literature. By
convention, we will take F(x) =1 for all subdistributions, and we define

= inf{¢t € [0, x]: F(¢) = 1}.

The cumulative hazard function A of a life (sub) distribution F is defined
by

dF

and it is well known that

(2.2) F(t)= TT (1-dA) = exp(—Ac(t))sUt(l — AA(s)),

©,t1]

where the notation 77 o (1 — dA) represents a product integral. A review of
the theory of product 1ntegrat10n and its applications in statistics is given by
Gill and Johansen (1990). In the one-dimensional case considered here, the
right-hand side of (2.2) may be taken as the definition of the product integral.

A sequence of failure ages obtained under a model of perpetual minimal
repair may be defined as follows. Let F be a life distribution and let {X, =
0, X;, X,,...} be a record-value sequence based on F; that is, (X,);_, is a
Markov process with the conditional distribution of X, given X,,..., X,_,;
being given by F(¢|X,_,) = F(¢t)/F(X,_,), for t > X, _; and k& > 1. In the case
that AF(r;) > 0, we take X; = o for all j larger than the first £ for which
X, = 5. Thus, in any case, X, < X,_.,; whenever X, <, and we define
X, =1lm, ,, X,.

It is advantageous at this point to introduce perfect repair into this
structure through the use of independent uniform random variables. Let p:
[0,%] — [0,1] be measurable, with p(¢) =1 for ¢ > 75, and suppese that
{U,,U,,...} are independent uniform random variables, independent of
(X,)5_;- Defining 8, = I(U, < p(X,)) and v = inf{k: §, = 1}, where we take
inf@ = », we see that P(5, = 1|X,,..., X,,8,,...,8,_1) = p(X,). For contin-
uous F, with 75 = », observing {(X}, §,),...,(X,, 8,)} is equivalent to observ-
ing the minimal repair process of BBS until the time of the first perfect repair.
Note that » may be infinite in the case that F(rz — ) = 1.

Let H be the subdistribution function defined by

H(t) =P(X, <t,v<wm).

Assuming that F is continuous and that F(¢) < 1 for all ¢ < «, Theorem A.5
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of BBS states that

H(t) = exp(—[(o t]p(s)F_l(s) dF(s)|.

’

The following proposition provides a useful generalization of this result and
shows that in the more general setting the cumulative hazard function of H is
given by

dF
(2.3) Aut) = [ p(s) (=)

F(s-)

ProposITION 2.1. Under the model described above, H is given by

H(t) =1- T (1 - dAy)

©,¢]

(2.4) dF°(s AF(s
:l_e"p('io,ap(s)lﬁ(s(—;)g( PR : )))
Moreover, if either
(2.5)(i) AF(75) >0 [andp(75) = 1]
or
.. dF(s)
(2.5)(ii) F(rp=)=1 and p(s) = +o,

©,75) F(S —)

then H is a proper distribution function and hence v is almost surely finite.
Conversely, if H is a proper distribution, then either (i) or (ii) must hold.

A direct proof of this result is given in Hollander, Presnell and Sethuraman
(1989), where a conditioning argument is used to show that for ¢ < 75,

He) _
SO0 Zl [ j da(t,) -+ da(t)),

0<t;< -+ <¢j<t

where

d.
a(t) = [, (1=p(6) o

The result is then obtained from Theorem 4 of Gill and Johansen (1990). As
pointed out by a referee, the result can also be obtained through a thinning
argument applied to the nonhomogeneous Poisson process obtained from the
sequence of minimal repair times.

We will now describe the basic martingale structure needed in the sequel.
Define the counting process N* by

N*(t) = #{k: X, < t}



NONPARAMETRIC METHODS FOR IMPERFECT REPAIR MODELS 883

and the corresponding filtration (%*), . , by
F* =o({N*(s):s <t}).

Here we assume that our basic probability space ({2, &%, P) is complete, and we
take each #* to contain %, the o field consisting of the P-null sets of &
and their complements. Applying Theorem 18.2 of Liptser and Shiryayev
(1978), we see that the counting process N* has &%* compensator A* given
by
~ (dF(s|X,_1) dF(s)
a =1 [ > J — A(t).

k=100, tAX,,]F(s—|Xk D oKL tax, F(s —)

By Lemma 18.12 of Liptser and Shiryayev (1978), M* = N* — A is a 7p-
locally square-integrable martingale with respect to %*, with predictable
variation process ( M*) given by

(M*)(¢t) = j(o t](1 — AA(s)) dA(s).

REMARK 2.1. If AF(rz) > 0, then M* is actually a square-integrable mar-
tingale, which can be seen by applying Theorem 18.8(a) of Liptser and
Shiryayev (1978), with the integrand taken to be identically 1. More generally,
for any 7 < 75, applying the same result with I(¢ < 7) as the integrand shows
that the stopped process M*™ = M*(¢ A 7) is a square-integrable martingale.
Consequently, the localizing sequence for M* may be taken to be any se-
quence of constants increasing to (but strictly less than) 7.

Now let {U,, U,, ...}, §, and v be as before. Since the U,’s are independent
of #* for all t, M* is a p-locally square-integrable martingale with respect
to &, where

9;= 9;* VO‘({UI,Uz,...}).

Note here that X, is an %,-stopping time, so that Y(¢) = I(X, > ¢) is pre-
dictable. Let N(¢) = N*(¢ A X,) and

M(t) = [ Y(s)dM*(s) =N(t) = [  ¥(s)dA(s).
,t] ,1]
By Theorem 18.8(b) of Liptser and Shiryayev (1978), M is a 7g-locally
square-integrable martingale with respect to %;, with predictable variation
process (M) given by

(M)(t) = f(o’t]Yz(s)d<M*)(s) = f(o’t]Y(s)(l — AA(s)) dA(s).

ReEMARK 2.2. Even if H is a proper distribution, so that X, is almost
surely finite, we cannot, in general, claim that M is a square-integrable
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martingale. As an example, suppose that F is exponential and let p(¢) =
It > 1)t~ ! Then X, < » a.s., since H(t) =1 + (¢t~! — 1)I(¢ > 1), but

E([:Yz(s) d(M*)(s))A - j:H(s ~)dA(s) =1+ f:’s-lds = w,

so that M is not a square-integrable martingale [Theorem 18.8(c), Liptser and
Shiryayev (1978)].

These results for the case of observing a single BBS process are now used to
derive the basic martingale structure for our sampling scheme of observing n
such processes. Let (X;,);_;, 1 <j <n, be independent record value se-
quences from F and let {Uy: k=21, 1 <j<n} be independent uniform
random variables, 1ndependent of the X . We define N* and v; in the obvious
way and we let Y;(2) = (X, > 1), N(t) —N*(t ANX; )and M(t) =N, -

JV_

Joo,1Y;(s) dA(s). We also define N(z) = 1N @), Y(t) = 1Y @) and
(2.6) M(t) = 2 M;(t) = N(2) = [ Y(s) dA(s).

j=1 ,¢]
Let

Fi=o({N*(s):s<t,1<j<njU{Uy:k=1,1<j<n}).

From the previous results and the independence of the processes involved, we
see that each M; is a 7p-locally square-integrable martingale with respect to
%, and hence M is a 7p-local martingale. As before, the localizing sequence
may be taken to be any sequence of constants increasing to 7. In fact, since
we may take the localizing sequence for each M; to be the same sequence of
constants, and since the M; are independent, Lemma A.2 of Doss and Chiang
(1992) yields

(2.7) (M) = zn) (M)(8) = [ ¥(s)(1 - AA(s)) dA(s).
j=1 ,¢]

3. The Whitaker-Samaniego estimator. Henceforth we assume that
F is a continuous distribution and that the pair (F, p) satisfies (2.5). The
statistical model consists of observing n independent copies of the BBS
process, each until the time of its first perfect repair, X v Since the X v, are
almost surely finite, this sampling scheme is well defined and the continuity
assumption guarantees that there will be no ties in the data.

Let T be the first failure age at which only one item is at risk; that is,
T = min{X,y: Y(X,,) = 1}, where the X, are the ordered values of the
observed failure ages of the n BBS processes. It is not difficult to see that T is
a stopping time. A natural estimator of A is the Aalen estimator A, given by

. J
(3.1) SORY Yg dN(s),
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where J(s) = I(s < T') and where we again take 0/0 = 0. Note that Y(X;)) is
the number of processes still being observed, or ““at risk,” just prior to X,
and

A 1
AW)y="Y —o—.
XpystAT Y(X(k))

With this notation, the WSE can be simply written as

2 1 A

X <tAT ,1]

ReEMARK 3.1. As noted by Whitaker and Samaniego, F puts no mass at
those failure ages at which only one item was at risk, excepting the first, or
smallest, of such ages; that is, F(¢) = 0 for all ¢ > T. Some insight may be had
into the difficulty of assigning mass to these points by considering the problem
of nonparametric estimation of F when n = 1. See also the small example and
discussion of nonparametric maximum likelihood estimation in Section 2 of
Whitaker and Samaniego. We also note that our choice of the cumulative
hazard estimator differs slightly from that of Whitaker and Samaniego, in that
we have chosen to allow only one jump of size 1. This is mostly for conve-
nience, although it is natural to do so, since any actual cumulative hazard
function, as defined by (2.1), has as most one jump of size 1.

Referring to (2.1) and (2.2), we see that
dFT(s) —
3.3 ATt= ——— and FTt=7T].—dAT,

(3.3) ®=Jo TG o) (1) =TT ( )
where we use the notation g7(¢t) = g(¢ A T'). The product integral representa-
tions (3.2) and (3.3), together with Duhamel’s equation [Gill and Johansen
(1990)] yields the identity
F(t) — FT(t) ) F(s-)

FT(t)  Jo,a FT(s)
The utility of (3.4) lies in the fact that it expresses (F — F)/F as a martingale.
To see this, note that from (2.6), (3.1) and (3.3) we have

~ J
A(t) = AT(t) = f(o , Yiz;

and since F(¢) = 1 and J(¢) = 0 for all ¢ > T, we see that (3.4) may be written
as

(3.4) d[A(s) = AT(s)].

dM(s),

| Ft)y-F@t) . F(s-)
(3.5) ——F(E— = j(‘o’t]m dM(S)

For any fixed 7 < 75, the integrand on the right-hand side is predictable and
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bounded by F~'(r) <, for all ¢ <r. Hence, (F — F)/F is a p-locally
square-integrable martingale, where we may again take the localizing sequence
to be any sequence of constants increasing to 7. Using (2.7), we see that

2

<FZF>(t) - [ o) d{M)(s)
F ©,:1\ F(s)Y(s)
(3.6)
F(s-)) dF(s)
"o\ F(s —) | F(s)¥(s)’

These results are of course very similar to those derived by Gill (1983) for
the Kaplan—Meier estimator. From here, arguments parallel to those used for
the KME yield the expected weak convergence results. The martingale repre-
sentation of (3.5) is the key identity used to prove these results, the first of
which corresponds to Whitaker and Samaniego’s Theorem 3.3.

We first need a consistency result for the WSE. Theorem 3.1 of Whitaker
and Samaniego establishes the almost-sure convergence of supy_; .., |F(t) -
F(t)| to zero. Alternatively, following Gill (1983), the martingale representa-
tion provides us with a simple proof of convergence in probability, which is
sufficient for our needs.

LEmMaA 3.1. sup,., SmVIFA'(t) — F(t)| = 0 in probability, as n — .

Proor. Let r < 7, and note that by (3.6), (F — F)/F)r) <
(nF3(r)[Y(r)/n]~L. This last expression converges almost surely to zero,
since n~'Y(r) » H(r —) > 0, and it follows from a corollary to Lenglart’s
inequality [see Example B.4.1 of Shorack and Wellner (1986)] that

sup |B(t) - F(2)| < sup [(F(¢) - F(2))/F(2)|

— 0 in probability, as n — .

The extension to [0, ] is straightforward. O

Define Z = Vn (F — F)/F. The following weak convergence result can also
be found as Thecrem 3.3 in Whitaker and Samaniego (1989):

THEOREM 3.1. Let 7 < 75. Then Z -, B(C) in D[0, 7], as n — », where B
is standard Brownian motion on [0,») and B(C) is the process {B(C(¢)):
t € [0, 7]}, where

‘ dF(s)

ct)=[ m=—s—.
©,:1H(s =) F(s)
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Proor. It is immediate from (3.6), that Z is a square-integrable martin-
gale on [0, 7], with

o (Feo)) are)
@O =nf Ty Fors
J(s)

"~ Jo,aF(s)[Y(5)/n] dF(s)
J(s) dF(s)

FX(s-) - F¥(s -)
o o) (¥ (o) /]

F2(s -)

Using Lemma 3.1 and the fact that n~'Y(7) - H(r — ) > 0 almost surely, we
see that the second term on the right-hand side of this expression converges
uniformly to zero in probability as n — «. By the Glivenko—-Cantelli theorem,
n~'Y(s) converges uniformly to H(s — ) almost surely as n — =, and so, for n
sufficiently large, n~'Y(7) > H(r — )/2 > 0. Since Y is nonincreasing, we
have [Y(s)/n]™! < 2[H(r — )]~ for all s < 7, and the bounded convergence
theorem thus applies to give, for all ¢ < 7,

f J(s)
©.aF(s)[¥(s)/n]
It follows that (Z )(¢) - C(t) in probability, for all ¢ < 7.

In order to apply Rebolledo’s martingale central limit theorem [Theorem
B.5.2 of Shorack and Wellner (1986)], it remains only to show that Z satisfies

the strong ARJ(2) condition. Since AM = AN and the jumps of N are of size
1, we have

o [Z](¢) = L [AZ(s)I’I(|AZ(s5)| > &)

s<t

dF(s) - C(t), a.s.,asn — o,

2

F(s-)
F(s)[Y(s)/n]
Thus, the compensator 6°[Z] of ¢¢[Z] on [0, 7] is given by

2

\/-EFA(S -)
F(s)Y(s)

> 5\/5) dN(s).

,t]

. . [VF(s ) F(s-)
1zl _f«),t] F(s)Y(s) F(s)[Y(s)/n] > el |¥(S) dA(s)
Fs—)) 1 F(s-)
~Joo| F® | W 7T | Fayivcay/m] > o/ | M)

Now, we again use the fact that n~'Y(s) - H(r — ) > 0 to get that, almost
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surely, the indicator in the above expression is identically zero for n suffi-
ciently large, and hence that &°[Z1(¢) —» 0 almost surely, as n — o, for all
t € [0, 7]. Thus Rebolledo’s theorem applies to Z, and the theorem follows. O

The weak convergence results of Theorem 3.1 can be extended to D[0, 7]
following the methods of Gill (1983). The main result needed is analogous to
Gill’s Theorem 2.1 and can be proven in the same way. Note that (A dZ and
[Z dh are to be interpreted as the processes whose value at ¢ is defined as the
integral over the interval (0, ¢].

THEOREM 3.2. Let h be a nonnegative, continuous, nonincreasing function
on [0, 7] such that

[ R®)*dC(t) <.
,‘I'F)

Then the processes hZ, [hdZ and [Zdh converge jointly in distribution in
DI0, 75] to processes hZ,, (hdZ, and [Z,dh, where Z,, = B(C) and

hZ, = fhdZw + wadh.

COROLLARY 3.1.
Vn(F —F) -, F-B(C) inD[0,7;],asn — o.

Proor. This result follows immediately from Theorem 3.2 since

Tre w F(t
j;Fz(t)dC(t)=j; H(iz)

REMarRk 3.2. Note that no additional assumption is needed to obtain
Corollary 3.1 from Theorem 3.2. To obtain an analogous result for the KME,
some assumption such as (1.1) of Gill (1983) appears to be required.

dF(t) < j:FdF(t) - 1. O

COROLLARY 3.2. Let K=C/(1 + C). Then
K
Vw S (F~F) =5 BAK) inD[0,7;],asn ~,
where B® is a Brownian bridge on [0, 1].

Proor. Noting that
ey _ dC(t) _
om0

Theorem 3.2 implies convergence to K - B(C), and a check of covariances
yields the corollary. O

)
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These corollaries are used in the next section to develop asymptotic confi-
dence bands for F and to determine the large sample theory for an extension
of the Mann—-Whitney—Wilcoxon two-sample test to the current model.

4. Applications. The result of Corollary 3.2 suggests an asymptotic
100(1 — a)% confidence band for F of the form

(4.1) F+n 2 F/K,
where 2, is the upper ath percentile of the distribution of sup [B°(¢)|. Here we

let H(s—)= Y(s)/n, so that H is the empirical survival function of the
perfect repair ages, Xip--s X, , and we take K =1/ + C), where

42 Cn)=[ aF(s) =

' 0,1] }_}(s —)ﬁ(s) X<t Y(X(k))(Y(X<k)) - 1) '
This is of course analogous, when multiplied by FA(t) to the usual Greenwood
formula for the estimated variance of the KME. Since C(T) = , we take
F(t)/K(t) - KT - )/K(T —)forall £ > T. In general one could also define H
to be any estimate of H with cumulative hazard given by

n dF
(4.3) Au(o) = [ B(9)2 (s(i))

where p is some model-dependent, consistent estimator of p.

REMARK 4.1. In applications, there may be ties in the data. To construct
the bands in this case, T should be taken as the first age at which the number
of units failing is equal to the number at risk; that is, the first ¢ for which
ANC(t) = Y(¢). Also, F should be given by

. AN
7o = n(l - Y(S))
and K = 1/ + C), where
n AN(s)
€O = L 7o) (¥(e) - AN

Use of these bands on [0, 7], 7 < U is justified by straightforward argu-

ments to show that sup,_, ., IK(t)/F(t) — K(¢)/F(#)| > 0 in probability, so
that

A

L Z)r(ﬁ F)
F

.

Vn = (F - F)—\/_ (F F) +

| X

|

-4 B°(K) in D[0,7],as n — o.
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This justifies asymptotic confidence bands on the interval [0, 7] of the form

(4.4) F+n 2\ (K(r))F/R,

where A,(B) is the upper ath quantile of the distribution of sup, _, .z |B°®)I.
Of course, in particular, one would approximate K(r) by K(r), or, conserva-
tively, use A (1). Partial tables for the values of A (B) are provided by Koziol
and Byar (1975) and by Hall and Wellner (1980).

In order to rigorously justify the use of these bands on the whole line, it is
necessary o show that

A

K
(4.5) Vn =(F - F) >4, B°(K) in D[0,7z],as n > .
F

However, our early simulation studies with the BP model indicated that (4.5)
does not hold without additional conditions on (F, p). Unlike the analogous
result for the KME as given by Theorem 1.2(ii) of Gill (1983), (4.5) is not an
immediate consequence of Corollary 3.1, since in our case K/F is a nonde-
creasing function (as is K/F) and cannot, in general, be uniformly bounded in
t and n by a fixed constant. The corresponding function in the censored data
model, on the other hand, is nonincreasing and bounded by 1.

The monotonicity of K/F is implied by Proposition 4.1, which should be
contrasted with (1.2) of Gill (1983) and the accompanying remarks. Note that
application of the proposition to K/F is justified by the fact that H is
equivalent, on [0, T'), to the survival function specified by A, of (4.3), with p
taken as 1 at T and at all X;, , and 0 elsewhere. The proposition also applies if
I? is specified by (4.3) with p taken as some model specific estimator of p and

K =1/ + C), where C is defined by (4.2).

ProPOSITION 4.1. Under the BBS model, os described in Section 2, F/K is
a nonincreasing function, with

mq =
A
=i
A
—

(4.6)

Proor. Using the integration by parts formula given in Lemma 18.7 of
Liptser and Shiryayev (1978), we have for ¢ < 7,

(4.7)

) (fw,-)(I_j_IiII_ - %)) o
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But since dAy = pdA,
dH dF p—-1 dA
(48) — - == = =,
HA_. FH_. \(1-pAA)(1-AA)JH_

and since p — 1 < 0 and AA < 1, it follows that d(F/K) < 0 and thus F/K
is nonincreasing.

Since F/K is nonincreasing, the upper bound in (4.6) is obvious. For the
lower bound, (4.8) implies that the measure defined by (HH_ ) 'dH -
(FH_)~ ' dF is a negative measure, and thus, by (4.7),

F(t) _ _ dH(u) dF(u)
E(t) 1t f(o,t)(F(u) B F(t))(ﬁ(u)ﬁ(u =) F(u)H(u-) )
_ dH(u) dF(u) ()
=1+ (o,t)F(u)(H(u)ﬁ(u 5 Fa) B -)) “Heo)

Note that the fact that K/F is nondecreasing implies that the suggested
confidence bands will decrease in width as ¢ increases. This is in contrast
to the similarly constructed bands based on the Kaplan-Meier estima-
tor [Hall and Wellner (1980)], which increase in width, and to the usual
Kolmogorov-Smirnov bands for i.i.d. sampling, which have constant width.
Intuitively, this may be seen as a consequence of the fact that relative to i.i.d.
sampling, the minimal repair sampling scheme yields additional information
about the tail of the distribution while right-censored samples yield less.

REMARK 4.2. We conjecture that
(4.9) L@ =p(s)) dA(s) <=

is a sufficient condition for (4.5), but we have not yet been able to prove this.
This condition is similar to Gill’s (1983) condition (1.1), which as noted earlier
in Remark 3.2, was needed to prove an analogue of Corollary 3.1 for the KME.
In fact, while Gill’s condition may be seen as a limitation on the amount of
censoring, (4.9) limits the amount of imperfect repair by forcing p(¢) to be
close to 1, and in light of the last proposition seems a natural condition since it
implies that K/F is bounded.

As an example, we have computed and plotted in Figure 1 the WSE and the
corresponding 95% confidence bands for the oft analyzed Boeing air condi-
tioner data, originally presented by Proschan (1963). The original data are
reproduced in Table 1. For this analysis, we have treated the intervals between
failures as interfailure times between minimal repairs. Proschan omits any
failure interval immediately following a major overhaul (indicated by * * in
Table 1), and we have omitted the intervals following such an interval from
our analysis, since it is impossible to determine the age of the unit after the
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Fic. 1. Confidence bands for Boeing data

overhaul. Thus the values below the #* *’s in Table 1 are not used. We have
treated the age at which a major overhaul occurs as the time of the first
perfect repair for that airplane. This affects planes 7908, 7909, 7910 and 7911.
For purposes of this example, we treat the last observed failure ages of the
remaining planes as the times of their first perfect repair. We have arbitrarily
chosen to compute bands for the interval from 0 to 500 h. Thus we apply the
formula of (4.7) with n = 18 and 7 = 500. Our program for computing the
confidence bands uses the tables of Koziol and Byar (1975) to look up A( R(),
after rounding K(7) to the nearest tenth. In this case K(500) is 0.867. The
plot shows clearly the decreasing width of the confidence bands.

REMARK 4.3. Justification of the use of the minimal repair model in cases
such as this is not immediate of course. For a critical discussion of minimal
repair models, see, for example, Arjas and Norros (1989) and Natvig (1990).

In Hollander, Presnell and Sethuraman (1989), we provide results of simu-
lation studies of the coverage probabilities of these bands on finite intervals
under the BP model, with various p and F. The tables of Koziol and Byar
(1975) were used to look up the appropriate value of A _(K(7)). In all the cases
examined, a sample size of 100 was adequate to insure a true coverage
probability at worst 1 or 2% less than the nominal coverage probability.

In the two-sample problem we assume that for i = 1,2 we observe n; BBS
procésses based on (p;, F.), each until its first perfect repair. In general,
we wish to test the null hypothesis H,: F, = F,, with typical one-sided
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TABLE 1
Intervals between failures of Boeing air conditioner systems

Plane number
7907 7908 7909 7910 7911 7912 7913 7914 17915 7916 7917 8044 8045

194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 2564 493 18 209

41 58 60 48 56 87 1 102 12 5 100 14
29 37 186 29 104 7 4 72 270 283 7 57
33 100 61 502 220 120 141 22 603 35 98 54
181 65 49 12 239 14 18 39 3 12 5 32
9 14 70 47 62 142 3 104 85 67
169 24 21 246 47 68 15 2 91 59
447 56 29 176 225 77 197 438 43 134
184 20 386 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27
201 84 27 xx 21 16 88 130 14
118 44 = 15 42 106 46 230
* % 59 153 104 20 206 5 66
34 29 26 35 5 82 5 61
31 118 326 12 54 36 34
18 25 120 31 22
18 156 11 216 139
67 310 3 46 210
57 76 14 111 97
62 26 71 39 30
vi 44 11 63 23
22 23 14 18 13
34 62 1 191 14
* % 16 18
130 90 163
208 1 24
70 16
101 52
208 95

* * Omission by Proschan (1963) of any failure interval immediately following a major overhaul.

alternatives specifying [gF; dF, > 1/2 and two-sided alternatives specifying
JoF,dFy #+ 1/2.

A statistic which generalizes the Mann-Whitney form of the Wilcoxon
two-sample test statistic W to the current situation is

., . AN,
W=[0F1dF2= P Fl(s)pz(s_)_lT(s;)’

ANy(s)>0

where F, is the WSE, A N(s) is the number of failures at age s and Y(s) is the
number of items at risk at age s in the ith sample. This statistic is a natural
estimator of [JF; dF,, which is equal to P(X, < X,), where X; and X, are
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independent random variables, with X, ~ F;. Assuming continuous distribu-
tions, P(X; < X,) = 1/2 under H, and, in the one-sided case, significantly
large values of W provide evidence against H,, in the direction of [gF; dF, >
1/2. .

Although W is intuitively appealing, useful exact distribution or exact
moment results are difficult to obtain. If we assume that p, = p,, then
inference could be based on the use of the reference distribution obtained by

computing W for each of the ("‘:1 nz) possible arrangements of the observed

BBS processes into two groups of sizes n; and n,. In the general situation, we
can use the results of Section 3 to obtain the asymptotic result of Proposition
4.2. A complete proof of this theorem and detailed verifications of the subse-
quent remarks are provided in Hollander, Presnell and Sethuraman (1989).
The theorem could also be obtained as a consequence of the Wilcoxon example
in Gill (1989).

ProprosiTION 4.2. If F, and F, are continuous and the pairs (Fy, p,) and

(F,, p,) describe regular repair schemes and if n,,n, - » in such a way that
ny/(ny+ny) >1A,0<A<1, then

- 1 1
(4.10)  n, + nz[W— [0 F, sz] . N(O, Tot + T—of ),

where

of = 2 ["F(s) Fy()Cx(1) dFy(s) dFy(2),
(4.11) o
of =2 [ Fy(s) Fu(£)C(t) dFy(s) dFy(1).

Under the null hypothesis, Hy: F; = F = F,,
o _ o __ 1 e 73(3)
2 = . = — _
o; 2[0 F(t)Cl(t)([t F(s) dF(s)) dF(¢) 4j0 Fe ) dF(s),

which is consistently estimated by

1 . F3(s . 1 nF3(s)F(s =) AN(s
o LB a1 MEORG ) ANG)
47 Hy(s-) 4 AN®>0 Yi*(s)

For purposes of testing the null hypothesis in the large sample case, we thus
propose referring the test statistic

1\ /(e 2\"*
Z=(w__) a9, %
2 n; n,
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to a standard normal distribution. Here H; is the empirical distribution of the
perfect repair ages in the ith sample.

Under the Brown-Proschan model, the preceding expressions simplify
greatly if H, is assumed. If F, = F, = F, then H, = FP: and the asymptotic
variance in (4.10) reduces to

1, 1, 1 1 L2 1
AT I T a@ =y | T 1= \2a=py) )

The p,’s are of course consistently estimated by their MLE’s, p;, the ratio of
n; to the total number of failures in the ith sample, and for large samples, the
statistic Z’, given by

1 1 1 2
Z' = (W_ _) A + A )
2 [4n1(4 —b1)  4ny(4 - Pz)]

can be referred to a standard normal distribution in order to test the null
hypothesis. Note also that if p, = p, = 1, then we are in the usual ii.d.
two-sample model, the WSE’s reduce to the empirical c.d.f.’s, W is just a
multiple of the Mann—-Whitney form of the Wilcoxon rank-sum statistic and
the preceding convergence results reduce to the usual results for the
Mann-Whitney—-Wilcoxon test.
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