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ON CONSISTENCY OF A CLASS OF ESTIMATORS FOR
EXPONENTIAL FAMILIES OF MARKOV RANDOM FIELDS
ON THE LATTICE

By Francis COMETS

Université Paris 7

We prove strong consistency of a class of maximum objective estima-
tors for exponential parametric families of Markov random fields on Z¢,
including both maximum likelihood and pseudolikelihocd estimators, using
large deviation estimates. We also obtain the optimality property for the
maximum likelihood estimator in the sense of Bahadur.

1. Introduction. Markov random fields (MRF) on the lattice and, more
generally, Gibbs distributions (GD), are known to provide pertinent models for
interacting particle systems in statistical mechanics. Recently, they have been
used in image processing to describe the local information shared by classes of
images; they yield a quantitative interpretation of some low-level tasks as
formulated by Geman and Geman (1984, 1987) and Azencott (1987). In this
application, parametric estimation for exponential families of MRF is a crucial
step. Usual estimation procedures are the maximum likelihood method—with
computational drawbacks— and the maximum pseudolikelihood method owing
to Besag [(1974) for the original coding method and (1977)].

When the interaction between variables is translation invariant, consistency
was proved in a general setup for the maximum likelihood estimator (MLE)
[Gidas (1991); see alsc the pioneer work of Pickard (1987) and the references
therein] and consistency of the maximum pseudolikelihood estimator (MPLE)
[Geman and Graffigne (1987)] for finite state space [see also Guyon (1986) and
Gidas (1986)]. Though the proofs are simple when the underlying (true)
distribution is ergodic, complications arise from the rich behavior of Gibbs
distributions: Phase transitions occur when there exist many GD for a single
value of the parameter. Then some GD are not ergodic, but they have
long-range dependence. There may also exist nonstationary GD, even though
the interaction is stationary.

In this paper, we give simple proofs of consistency for these estimators in
broad generality, with exponential rate of convergence. We will use large
deviation estimates for GD. These estimates imply that the spatial average of a
sample from any GD is no worse behaved than the same average from the
“worse’’ ergodic GD, and consequently, they overcome the previous difficulties
for general models and general estimators. This technique has been used in
another collaboration [Comets and Gidas (1992)] to prove consistency of the

Received October 1989; revised February 1991.

AMS 1980 subject classifications. Primary 62F10, 62M05; secondary 82A25, 60G60.

Key words and phrases. Maximum likelihood estimator, pseudolikelihood, Markov random
field, objective function, Bahadur efficiency, large deviation.

455

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Statistics. IINGIE ®

WWw.jstor.org



456 F. COMETS

MLE in the context of incomplete observations from a MRF. Our results in
this paper do not cover the case of a gaussian MRF, which is studied in great
detail by Kiinsch (1981).

For objective functions which are nice spatial averages, we prove in Section
3 that the maximizers are consistent estimators; this result covers both MLE
and MPLE.

Asymptotic normality may fail in the framework of MRF, at least for
standard normalization, precisely as an effect of phase transition. Therefore,
we formulate optimality in terms of exponential deficiency rate. We show in
Section 4 that the MLE is optimal and we discuss the effect of phase transition
on the optimal rate in Section 5.

2. Markov random fields and statistical models. Let 2  be a Polish
space (i.e., a metric complete separable space) and let Q = 2°2°. Then the set
F(Q) of all probability measures on (), equipped with its weak topology, is a
Polish space too. We will denote by Z(Q) the subset of stationary fields,

P(Q) = {Qe@(ﬂ)'Q07i=Q Vie zd),

where 7 is the shift operator, 7': O - Q, (¢ x) x;,; for x € Q. Let p be a

probability measure on 2" and let Q, = p®Z be the corresponding product
measure on (). We will consider GD parametrlzed by 0 € O, with ® = R™, and
specified in terms of m (known) energy functions UV, ..., U™.

For I=1,...,m and finite VcZ¢ let I be a bounded continuous
function on ), which depends only on x, = (x;, i € V);I{¥) represent the
contribution of the variables X;, located in V, to the [th energy. For these m
interactions {I{’; V ¢ Z¢ finite}, we assume:

(2.1) translation invariance: ~ I{o 7! =D, forall i,V,1,

(2.2) summability: || Il = { [ (peam ] }
VioeV

where o denotes the origin in Z¢. Notice that we do not assume finite range for
the interaction.

For any A c Z? finite and any boundary condition (b.c.) y € 2% outside
A, the energy of a configuration x, € 2™, given the b.c. y, is, by definition,

(2.3) UP(xr/9) = L IP(%5 V),
V:VNA+Q

where x, V y is the configuration equal to x, on A and to y on A°. The Gibbs
specification corresponding to § € R™ is

(2.4) ma,0(Xp/Y) = ZA,y(g)_leXp(o : UA(xA/y))’

where U, is the m-dimensional energy vector and

(2.5) ZA,y(e) = /exp(() : UA(xA/y))Qp(dxA) = [EPM{GXP(O : UA(xA/y))}-
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We will use notations E for the expectation under P like above and ,x (resp.
;%) for x, (resp. x;).

The set () of infinite volume Gibbs distributions (GD) is the set of all
P, € #(Q) such that, for all ﬁmte A c 7%, the conditional distribution of P,
given ,x satisfies

(2.6) Py(dxp/pax) = 71'/\,«9(-’C/\//\x)Pm(d""/\)

for P,-a.e. \x € 2°~. This equation is known as the Dobrushin-Lanford-Ruelle
equation, and existence of solutions P, is well known under the assumptions
(2.1) and (2.2). A Markov random field (MRF) is a GD with finite range
interaction, that is, I;, = 0 if the diameter of V is more than some positive
constant. MRF have the Markov property in space.
We will consider a sequence of finite windows A, of observation, increasing
to Z%. For simplicity, we assume A, =[—n,n]? and we write x, for x, and
T, fOr my o, ... with a slight abuse of notation. The statistical problem may
be formulated as follows: We want to estimate § from larger and larger
windows A, and observations X, = (X, i € A,) from finite volume GD,

(2.7) Pooldin) = | fruo(n/in( @) ]p (2.,

where u, is an arbitrary distribution on 2°A». Hence, the sample may come
from some infinite volume GD P,—when u, = P,(dx,)—as well as from
different finite volumes ones with a whole family of limit point as n — .
Notice that we may add an isolated point to the space &, in order to cover GD
with free b.c. with formula (2.7). Note also that we do not consider the
estimation problem of the true underlying measure P, in the first case, which
cannot be solved in general from increasing pieces X, of a single realization of
P,.

The maximum likelihood estimator (MLE) 5,1,2 = én,z(Xn) is chosen to
maximize the (conditional) likelihood function

(28) ln,z(o’ Xn) =|An|_llog77n,0(Xn/z)

for some b.c. z. Here, |A| is the cardinality of A. Due to heavy integrals as in
(2.5), brute force computations are intractable here, but the MLE may be
approximated using stochastic algorithms, as proposed in Younes (1988).
Besag (1974, 1977) proposed to replace the expectation in (2.5) with a single
integral: The maximum pseudolikelihood estimator (MPLE) 6, , is, by defini-
tion, any measurable maximizer (possibly at infinity) of

(29) pln,z(o’ Xn) =|An|_llog I_I.!: Tr{i),O(Xi/i[Xn v Z])
LEA,

for some b.c. z. When possible, the b.c. in (2.8) and (2.9) are chosen to be
observed data, shrinking the window A, somewhat; this situation is covered by
out results below, with minor modifications.

We will assume the following: The model is identifiable if £(6) N £(6,) = &
for all 6,6, with 6 + 6,. This condition is equivalent to £(6) # (6,); see
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Georgii (1988). In the appendix of Gidas (1991) this condition is shown to be
related to the statistical mechanics concept of physical equivalence of the
interactions.

Now we state our first result: Let || - || be a norm on R™.

THEOREM 2.1. Assume that the model is identifiable. Independently of z in
(2.8) and (2.9), we have YV ¢ > 0,3 ¢ > 0 and & > 0 such that

Pn,oo("én,z - 00" > 8) = cexp(— |An|8)

and

)

n, 00(

Note that exponential consistency holds for any underlying GD P, , , re-
gardless of lack of spatial stationarity, and is not affected by phase transition
phenomena, unlike the rate of convergence in the general ergodic theorem for
GD. If P, , = P,, as. convergence is a straightforward consequence of the
theorem and of the Borel-Cantelli lemma. Our result for the MPLE is more
general than those mentioned before that require finite state space 2" or
stationarity of P, . The theorem will be proved as a consequence of Theorem
3.1 in the next section.

We end this section with some well-known properties of MRF. We start with
a definition. Let x, € 2™~ and extend it by periodization outside A, into a
(periodic) configuration x™ € Q. Define R, , by

0, 2 — 00” > e) < cexp(—[A,l8).

(210) Rn,x = |An|_1 Z afix(") € ‘%(Q)
i€,
where 8, is the Dirac mass at point y € Q; R, . is stationary because x is

periodic yThe empirical field of X on A, is, by definition, the random distribu-

tion R, x.In this paper we will write spatial averages occurring in estimators
in terms of R, x.For example, the marginal distribution on 2" of R, x is the
empirical measure. Furthermore, using (2.1) and (2.2), one can check that

(2.11) |A, |7 UL(X,/y) = ER~xAy + e(n),
where

Ay(z) = ¥ IVIT'Uy(x)
V:Vao
and where the remainder term £(n) comes from the periodization, and is such
that lim , _, ,sup,lle(n)|| = 0. We now recall some facts.

Facr 1. p, (0) =|A,|” ! log Z, ,(6) is a convex function of 6, |p, ,(0) —
p, SO <o =@l Il and p(6) = hmn_,‘,o P, ,(0) exists umformly in y and
is 1ndependent of y.
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Fact 2. The relative entropy of P € #(Q) with respect to @,, given by
H(P) = lim |A,| 'E"[log{dP, /dQ, , }|
n—o

exists in [0, +]. Moreover, H is a linear, lower semicontinuous function on
Z(Q), with compact level sets {R € £(Q); H(R) < a} for all a > 0.

Fact 3. p(6) is given by the Gibbs variational formula
(2.12) p(8) = max{E9(6 - Ay) — H(Q); Q € Z(Q))

and the set Z,(0) of stationary GD is exactly the set of maximizers @ of (2.12)
(this is the Gibbs variational principle).

Fact 4. For all closed set & in &Z(Q) and all 6,,

limsup|A,| 'log P, o(R, x € F) < —inf(H,(R); R € &}

(2.13) "7
with H,(R) = —E®(6, - Ay) + H(R) +p(8,).

For a proof of Facts 1-3, see Georgii (1988); for Fact 4 (which is a large
deviation upper bound) see Comets (1986), Follmer and Orey (1988) and Olla
(1988) for complete generality. A, is a bounded and continuous function and,
consequently, H, is itself linear, lower semicontinuous (l.s.c.) and has compact
level sets.

REMARK 1. From Facts 2 and 3, we see that the infimum in Fact 4 is zero if
and only if &N £(6,) # J; otherwise, the P, , probability goes to zero. In
many statistical problems, the set & under consideration is often closed
half-spaces; then the infimum is zero if and only if % contains ergodic GD.
Therefore, the behavior of an arbitrary sequence of finite volume GDs P, ,
can be controlled with the behavior of the ergodic GD.

ReMARK 2. The function p(6) is called the pressure. By definition, p is
convex—as a limit of convex functions. In the appendix of Gidas (1987), it is
shown that the model is identifiable if the pressure is strictly convex.

3. Consistency of maximum objective estimators. In this section, we
prove the general consistency theorem (Theorem 3.1) and then show that it
implies Theorem 2.1.

We will say that a function &,(6, x,,): ® X 2™ - R is an objective function
if there exists a continuous function K on 0 X £Z(Q) such that
(3.1) k.(0,x,) =K(0,R, ) +¢e(n),

Wi}}h lim, _ . &(n) = 0 uniformly for x, € 2™~ and for 6 in compact sets of O,
and
(3.2) vVeé,VPeLl(,),0,is the unique maximum of K(-, P).
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If, in addition, k,(6, x,,) is concave in 6 for all x,, k£, will be called a concave
objective function. A maximum objective estlmator is a random variable
6, = 0,(X,) maximizing k,(-, X,,). The reader may refer to Dacunha-Castelle
and Duflo (1982), Definition 342 7, Sections 3.2.3 and 3.3.4, for a general
theory of maximum objective esbimators.

THEOREM 3.1. Every maximum concave objective estimator 6, on ©® =R™
is consistent. For all ¢ > 0 and all 6,, we have

limsup|A,| " log P, ,(||6, -6,[ =€) <o0.

n—>o

REMARK. The concavity assumption is made here because the set ® of
parameters is the whole space R™. When @ is compact, this assumption can be
removed, using (3.1) to control the oscillation of %, in 6, uniformly with
respect to P.

Proor. Let ¢ >0, 6§ >0 and #(6,,¢) = {6; 16 — 6,|l = €}. Since k&, is
concave,

{18, - 6,] = ¢} < {36 € A(86,,8): ko(8, X,,) = k,(6,, X,,)}

(3.3) { K(6,R, x) = K(8, ) 5}

C max > bt

0e A6, ¢) ( n, X n X

for large n. In (3.3), we have used (3.1), the continuity of K and the

compactness of .”. Again from continuity and compactness, the function
max,c .o, . K(0, R) is continuous in R and the set

F(8,,8,8) = {R = 2,(0); max K(6,R)=K(6,R) - 5}

is closed in Z(Q). Then, Fact 4 yields

limsup|A,| " log P, (R, x € F(6,,¢,8)}
(3.4) now
< —inf{H,(R); R € F(6,,¢,5)}.

As & tends to zero, the closed set #(8,, ¢, 8} shrinks to #(6,, ¢, 0), and since
H, is lower semicontinuous, the last 1nﬁmum increases to mf{H (R); R €

F (00, ¢,0)}. Combining this with (3.3) and (3.4), we obtain
limsup|A,| ‘log P, of[|8 — 6, = ¢} < —inf{H,(R); R € F(6,,¢,0)}.

Moreover, the closed set %#(8,, ¢, 0) contains Z,(8) for [0 — 6,|l > & and then
is not empty. Since H, is lower semicontinuous (l s.c.) and has compact level
sets, the infimum of H, on this set is achieved at some point R,. According to
Fact 3, H,(R,) = 0 if and only if R, € Z(6,), which does not hold since (3.2)
implies f(o ) N %(,,¢,0) = <. Hence, inf{H,(R); R € (0,,¢, 0} =
H,(R,)is strlctly positive, which ends the proof. =)
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Proor orF THEOREM 2.1. We now prove Theorem 2.1 by checking the
assumptions of Theorem 3.1.
(a) The MLE 6, , maximizes the concave function

ln,z(a’ Xn) = |An|—110g Trn,O(Xn/z)

(3.5) =|A, 170 Uy(X,/2) = p,,.(8)
=EB~x0- Ay, — p(0) + &(n),

where ¢(n) goes to 0 uniformly in z and for 6 in compact sets, since we have
(2.11) and uniform convergence of p, , to p (from Ascoli’s theorem and Fact
1). Hence, K is here the continuous function K(8, R) = E*0 - A, — p(). Let
us check (3.2). If P € £(6,), the variational principle in Fact 3 implies that

K(6,P) — K(6,,P) =EF0- A, — p(8) — H(P) <0

from the variation formula, with equality if and only if P € (6). Therefore,
condition (3.2) holds if and only if the model is identifiable and [, , is a
concave objective function.

(b) The MPLE 5,,,2 maximizes the concave function

pln,z(a’ Xn) =|An|_l Z (0 ' l](i)[(Xi/i(Xn \4 Z))] —p(i),,-(X,,vz)(B))'

i€A,

Let us denote the continuous function p;, (6) of (6,y) € ® x Z 2~ py
p;(0, ). Using (2.2), one can check that

Uifx;/;x) — Uiy:/:y) = s(min{llj - i”;yj # xj})
and that
pi(0,y) —pi(0,x) = sg(min{llj =il y; # xj})

for all compact € c 0. In addition to (2.1), this implies that

Pl (6, X,) = ERnX{0 - Uyl x,/0%) = Po(8,0%)} + &(n)

=K(6,R, x) +&(n),
with ¢ as in (3.1). The function K is continuous and such that
K(6,P) - K(6,,P)
= EP(EP[(6 = 6,) - Uol(*0/0%) /0% = Pol(8,5%) + Po(6,50%))-

Let P € £(6,); the conditional distribution P(dx,/,x) is P-a.s. equal to
o1, 0{%0/0%)p(dx,) given by (2.4). From Jensen inequality we obtain

IEP[(G - 00) : l](o)/ox] < log[EP[exp((O - 00) ’ l](o))/ox]

= 10g{[ Z,,.(6,)] " [ exp(6 - Uio(dz,))

=po(0’ox) _po(eoyox)y P-a.s.,
with equality if and only if (8 — 6,) - U,(-/,x) = 0 p-a.s. Hence, K(6, P) —
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K(6,, P) < 0 with equality if and only if P(dx,/,x) = 7, «(x,/,x)p(dx,) for
P-ae. ,x. Since P is stationary, each conditional distribution P(dx,/,x) can
be written in terms of P(dx,/,x), and then

K(6,P) —K{(6,,P) =0 P € Z(0).
Here again, condition (3.2) is equivalent to identifiability. O

4. Optimality. For those parameter values where phase transition does
not occur, the MLE is asymptotically normal and efficient in the Fisher sense
[Janzura (1988); Gidas (1991)], but at phase transition points 6,, asymptotic
normality of MLE does not always hold, at least for standard deterministic
normalization (see the complete discussion in Section 5A). The Fisher informa-
tion matrix p;, ,(6,) may go to infinity as n — «.’On the other hand, some
other estlmators like MPLE, behave nicely for all parameter values [see
Guyon and Kiinsch (1990)] under ergodicity assumptions. It seems interesting
to develop a general approach to optimality.

Therefore, in this section we study efficiency of estimators, in the sense of
Bahadur [see Kester (1985) for a review]. We start with a bound, which is
somewhat analogous to the Cramér-Rao bound:

PROPOSITION 4.1. Let 8, be a consistent estimator of 8, depending only on
X, Then,

liminf|A, | 'log P, ,([|8, — 6,] > €) = —b(8,, ¢),
n—o

where

b(6,,¢) = inf{H, (R); R € £,(0), |0 - 6,] > ¢}.

Proor. The Shannon-McMillan theorem [Féllmer (1988), Theorems 3.37
and 3.38] states that

lim [A,| log(dR, /dP, ,)=H,(R),
R-as. for ergodic random fields R. From consistency of 6,, we have
lim, . R(l6, — 6, >¢)=1 for all R € £(0) and all § with |6 — 6, > &.
Then, Theorem 2.1 in Bahadur, Zabell and Gupta (1980) yields

(4.1) 1i’1L1[Li£f|1\,,|‘l log P, (6, — 6, > ¢) = —H,(R)

for all such R and 6. Moreover, any R € () is a convex combination of
ergodic elements of Z(6) [Georgii (1988)]. Since H,_is linear, this implies that
the infimum deﬁnmg b(6,, €) may be taken on ergodic fields R only. Hence
(4.1) proves the result.

The bound b(6,, ¢) is nondecreasing and positive for positive &, but may
have discontinuities in & due to phase transition. Letting b(6,,¢7) =
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lim .

(4.2) b(6,,¢”) = inf(H,(R); R € £,(0), |6 - 6, > ¢}

from the lower semicontinuity of H, and from (2.6).
The quantity C

b(8,, £'), we can derive

¢(6,,¢) = — limsup|A,| "log Pn,o,,( 6, — 00” > e),

n—o
sometimes called the inaccuracy rate, measures the deficiency of the estimator.
It may be used, in theory, to compare estimators. But from the practical point
of view, this rate involves some pressure function in our setup, and explicit
formulas or the equivalent for small ¢ as well as for the limit variance when
asymptotic normality holds are not available. We illustrate this with the
MPLE in the next section. We now state optimality of the MLE:

THEOREM 4.2. The MLE is inaccuracy rate optimal in the sense that

limsup|A,| ' log Pn,oo("én,z - 00" > e) < =b(6,,¢7)

n—>o

for all & such that b(6,,e7) < b(6,,®) = lim, _,, b(8,, ).

Optimality for the MLE is connected with optimality of the likelihood ratio
test in the sense of exact slopes [Bahadur (1971)]. Optimality for the MLE is
believed to hold in general exponential models, but does not hold when the
statistical curvature is nonzero. In Bahadur (1983), the MLE for parameters of
the finite state space Markov chain is shown to be locally optimal. In Section 5,
we discuss the influence of phase transition on the optimal rate b.

PROOF OF THEOREM 4.2. Let ¢ > ¢ > 0. Since [, , is concave,
(16, - 6,] = &) c { sup 1, ,(6,X,)= sup [, (6, X,,)}.
0.7(0,,¢) 0e.#(60,,¢)

We can repeat the same arguments as between (3.3) and the first inequality
after (3.4). Using here (8.5) and K(6, R) = EF6 - A;; — p(8), we obtain

(4.3) limsup|A,| 'log P, ,([6, .- 6, = ¢) < —inf{H,(R); R € #(0)},

n—o

where F(8) = F(0,, ¢, ¢, §) is defined this time by

F(5) = {R € #(Q); max K(6,R)> max K(0,R)- 5}.
0e.A(0,, ) 0e./(8,,¢")

At this point, we need the fact that the stationary random fields with
minimum entropy under linear constraints are Gibbs distributions. Though
well known for finite volume, this fact is—curiously enough—not emphasized
in the infinite volume case. Let us start with some definitions: The affine hull
of a subset B of R™ is the smallest affine space containing B, and the relative
interior ri( B) of B is the interior of B in its affine hull.
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LEMMA 4.3. Let A be a bounded continuous function from ) to R™,
B={t*A; R € #(Q), H(R) <} cR™

and let s be the convex function on R™ given by

£(t) = lim |An|_llog[EQP{exp Yot 'A°Ti}.
n—e i€A,
Then, for a € ri(B), the infimum inf{H(R); R € #(Q), E*A = a} is achieved,
exactly at all R € Z(t - A) with EFA = a and t such that the subdifferential
d4(t) of 4 at point t contains a. Moreover, the conclusion is true for a in the
range U ,d.(t) of dp.

The set (¢ - A) above is the set of stationary Gibbs distributions given in
(2.4) and (2.6) with energy ¢t - V, where the energy function V is such that

ProorF oF LEMMA 4.3. In order to prove the lemma, we write the varia-
tional formula in Fact 3 as .(t) = max {t - @ — A(a)} with A(e) = inf{H(R);
EEA = a}. Since H is affine and the constraint EFA = ¢ is linear in R, A is
convex; the (convex, proper, 1.s.c.) functions » and A are Legendre conjugate.
Therefore, we have ri(dom A) € U,d.(t) C dom A, with dom A = {a € R™;
Ma) < «}; see the beginning of Section 24 in Rockafellar (1970).

By definition, B is the domain dom A. Then, for @ as in the lemma, there
exists some ¢t € R™ with a € d.(t); in particular, £(¢) =t -a — A(a). Since
a € B and H is ls.c., the infimum defining A(a) is achieved at some point R,
and of course EFt-A — H(R) = (¢). The variational principle in Fact 3
implies that R € Z(¢ - A) and that we have, for all @ € Z(Q), E% - A -
H(Q) < ERt - A — H(R), with equality if and only if @ € (¢ - A). Hence, for
all @ such that E?A = a, we have H(Q) > H(R) with equality iff @ € Z(¢ - A).
This proves the lemma. O

We now end the proof of the theorem. Using the above notation with
A = Ay, inequality (4.3) for § = 0 reads
limsup|A,, |~ log P, 4[4, . - 6,] = )

n— o

< —inf(H,(R); R € %(0)}

(44) .
= - 1nf{—00 -a+ A(a) —p(6,);
a
max |0-a—p(0)]>= max |0'a—p(6 }
ee/(@o,s)[ a - p(6)] oe/(ome,)[ p(9)]
Clearly, the infima are achieved at some points R € #(0) and e with

We claim that R is a GD; this will follow from the lemma, if we check that
the point a lies in the range of dp (we have , = p). Since a belongs to the
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convex set dom A, there exists a sequence a,, in ri(dom A) with lim gowly =0
and lim, ., A(a q) = Ma). Using the lemma we see that there ex1sts 6, and
R, with a,€9p(8,), R, € £(6,) and [ERqAU— a,. From the variational
pr1nc1ple in Fact 3, 1t follows that Z(6) ¢ F(0) for 0 € A(6,, ¢), and then
Hy(R) < b(8,,e7) < b(6,,) by assumption. This implies that H,(R)) <
b(00,00) for large q, Whlch shows boundedness of the sequence 6, and then
existence of a limit point 6, € R™. Since the graph of dp is closed [Theorem
24.4 in Rockafellar (1970)], we obtain that a € dp(8,), and then the desired
claim: R is a GD [in fact, R € £,(6,)].

Let 6, with (16, — 6l < ¢, § € A(6,,¢) and 6’ € A(6,, ') with &' < [6, 6,].
The variational principle in Fact 3 shows that E9A;, is tangent to the convex
function p at point 6,, when @ € £(0,). The strict convexity of p (cf. Remark
2 at the end of Section 2) implies that K(8, Q) < K(¢',8), and then @ ¢ %(0).
Therefore,

inf{H,(Q); @ € #(0)} = Hy(R) > inf{H,(Q); @ € £(6), |6 - 0, > &)
=b(0,,¢')

from convexity again. As ¢’ 7 ¢, b(6,,¢') » b(6,, £7), and the first inequality in
(4.4) shows the theorem. O

5. About the inaccuracy rate. In this section, we discuss the inaccu-
racy rate and the effects of phase transition.

A. From (4.2), (2.13) and from convexity, we can rewrite the optimal
inaccuracy rate

b(8,,¢7) = inf{(6 — 6,) - E*Ay — p(68) +p(6,); R € £(6), 16 — 6,| = ¢}.

Recall that in the previous formula, E*A;, belongs to the subdifferential 9p(6)
of p at point 6. We give now approximations of 5(6,, ¢ ~) for small &, in various
situations.

(i) The regular case occurs when p is twice continuously differentiable in a
neighborhood of 6,. In particular, we have p’(9) = EFA, for all R € £(9).
From the Taylor formula,

(5.1)  b(6,,67) ~£2/2inf{t*p"(6,)t;t € R™ |t = 1} as e — 0.

It is known that the MLE is asymptotically normal and Fisher efficient in this
case [Janzura (1988); Gidas (1991)], when p”(6,) is invertible:

(5.2) |ALY3(B, . — 6,) 5222 #(0,2"(6,) 7).

(ii) First-order phase transition occurs in the nearest neighbor (n.n.) Ising
model, for B, > B, and h = 0. In this model, we have binary variables X; and

U(x/y) = B/23*x;x; + B3**x,;y, + h ) x,,

ieA

where 3* ranges over i and j in A with |i —j| =1, and 3** over i € A,
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Jj € A° with |i —j| = 1. Hence, we set p = (1/2X6,; +8_,), 6 = (B, h), and
Ay = (x[x, +x_, +x, +x_,1/2,x,) where u =(1,0) and v =(0,1). The
pressure function p is not differentiable in the second direction at 6, = (83,, 0),
but has an expansion at the neighborhood of 6,; The one-sided limit
lim,_, 5o p"(0) exists [Lebowitz (1972), and the exponentlal decay of the
correlations under P, , for 6 =(B,0) with B > B, is equal by symmetry to
limg_,, 4<op"(0) and will be abusively denoted by p”(6,). Then, p"(9) is
continuous on R* X R, and Taylor expansion leads to

p(8,) = p(8) + (8, — 8) - EFeAy + 1(8, — 6)*p"(6,)(8, — 6) + o(ll6, — 8I°)
for arbitrary R, € £(6), since R, is unique for & # 0 [and p'(6) = EFeA]
and since only the second component of E??A,, depends on the particular R,
when A = 0. From this expansion, we still obtain the equivalent given in (5.1).

The question of whether asymptotic normality holds for the MLE under some
P, or not remains completely open in this case.

REMARK. The Curie-Weiss model is the infinite-dimensional approxima-
tion of the Ising model, and it shares the quahtatlve behavior of MRF. In this
model, let ﬁ be the MLE of % assuming B is known; Comets and Gidas
(1991) show that IA,1Y %(h, — h) converges to the mixture of a gaussian
distribution [with variance given by p”(6,)] and of a Dirac mass at point 0, at
first-order phase transition points. Note that the infinite volume GD is not
extremal in this case.

(iii) Second-order phase transition occurs in the n.n. Ising model without
external field (k= 0), in d = 2 dimensions, at point B, = B,. From the
celebrated Onsager formula for p(B), we compute that b(8,, &) ~ Ce®log1/e
for ||Bll = |Bl. This should be compared with the result from Gidas (1987), that
for periodic boundary conditions, (|A,lloglA,)'/%(8, — B) converges to a
gaussian distribution under P, .

B. In this setup, a major difficulty is to compute, explicitly enough, the
inaccuracy rate of general estimators; this amounts to computing some pres-
sure function (different from p). In the nongaussian framework, Onsager’s
formula is the only explicit formula, up to now, for the pressure. For instance,
we can obtain, with computations similar to those in the proof of Theorem 4.2,
the inaccuracy rate ¢ of the MPLE:

~c(8,,¢) < liminf|A,| 'log P, ,([6, . - 6,] > ¢)
n—o
< limsup|A,| " log P, ,([,,. = 6,]| = ) < —c(6,,¢7)

with
¢(6,,¢7) = inf(H,(R); R € 2,(Q):30 € A#(,,¢),

(5.3)
IER(IJ{O)(XO/OX) - lE“.’.{O)’e[l](o)/oX]) = 0}‘
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The above condition on R is that the normal equation for the MPLE should be
satisfied in expectation. Note that we can write b(6,, £) in analogy with (5.3),
like

b(8,,¢7) = inf{H,(R); R € #(Q):30 € #(6,,¢), EFA, € dp(0)}

based on the integrated form of the normal equation for the MLE.

Lemma 4.3 implies that the minimizers R in (5.3) are GD, R € 4(¢t - Ay +
s - [Uy,y — E™@9{U,,,/,x}D, where t,s € R™ are subject to the MPLE normal
equation given in (5.3). Then, the rate c(6,, ) can be expressed in terms of
the corresponding pressure function (on R%™). This new pressure function is
rather complex compared to p, and so ¢ is compared to b. Hence, comparison
of estimators through the inaccuracy rate is not realistic.

.

C. We end with a remark: First-order phase transition may cause disconti-
nuities of b(6,, ¢) in e. To illustrate our purpose, let us consider the n.n. Ising
model, with 6 = (8, k). Our theorems do not require for | - || the full proper-
ties of a norm; they remain valid with ||0|| = max{(2 — r)h™*, rh~,|BI} for all
r €(0,2). Let B, > B, + 1. For small enough positive h,, Hy(R) achieves its
maximum for R € £(6) with 6 in the rectangle with boundary B8 = B, + 1,
h =0 or h = 2, on the open segment line (A = 0, |8 — B,| > 1) only. Then, if
r=1/h, and ¢ =1, we have b(6,,¢7) < b(6,,¢) due to the jump in the
magnetization E®x, through this segment line.

One can easily imnagine such a jump in the rate, when || - || is the usual
norm, provided that the critical set of parameters coincides with a piece of
sphere.
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