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PRODUCT PARTITION MODELS FOR CHANGE
POINT PROBLEMS!

By DANIEL BARRY AND J. A. HARTIGAN

University College, Cork, and Yale University

Product partition models assume that observations in different compo-
nents of a random partition of the data are independent. If the probability
distribution of random partitions is in a certain product form prior to
making the observations, it is also in product form given the observations.
The product model thus provides a convenient machinery for allowing the
data to weight the partitions likely to hold; and inference about particular
future observations may then be made by first conditioning on the partition
and then averaging over all partitions. These models apply with special
computational simplicity to change point problems, where the partitions
divide the sequence of observations into components within which different
regimes hold. We show, with appropriate selection of prior product models,
that the observations can eventually determine approximately the true

partition.

1. Introduction. In one-dimensional change point problems, the se-
quence of observations X,..., X, observed at consecutive points in time, is
partitioned into b contiguous subsequences or blocks,

[ Xy X [ Koo Xiloo oo [Kiyanre 5 X

and a different probability model is assumed to hold within each of the blocks.
Part of the inference problem is specifying the partition into blocks.

We will assume that the partition is randomly selected according to a
product partition distribution: The probability of the partition p into blocks
ending at i,i,,...,%; is

p(p) = KCOilci1i2 TGy i
for some assignment of nonnegative cohesions c;; to the block of observations
between i + 1 and j foreach 0 <i <j < n.

Equivalently, the endpoints 0 = i,,i;,i,...,i, = # of the blocks form a
Markov chain satisfying

0<i,<i, . <n fori.<n,

i,=i,,,=n fori.=n.
Product partition distributions are defined for general random partitions,
not just ones consisting of contiguous subsequences, in Hartigan (1990). They
are called product distributions because the probability of a partition p into
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PRODUCT PARTITION CHANGE POINTS 261

subsets S, Sy, ..., S, may be written as the product

p(p) = Ke(S1)e(Sy) -+ e(S,)
for some set of nonnegative cohesions ¢(S) defined for each subset S of the
points 1,2,...,n. The constant K is chosen so that the sum over all partitions
is unity.

In the present case, the cohesions are zero for all sets not consisting of
contiguous points in time. Let ij denote the set of points i + 1,...,j for i <j
and let p;; denote the probability that the Markov chain of endpoints makes a
transition to j given i. Allow p,, = 1, to take care of terminating the chain. A
partition p is identified by the set of block endpoints i, = 0,i,,,,...,1,; the
number of blocks b = b(p) is obtained by finding b such that i, _, <n, i, = n.
The set of transition probabilities is a set of cohesmns for the product partition
distributions on contiguous sets:

r(p) =Poi,Piji; " Piy_yiy

An important quantity in practical computations is the relevance r(ij), the
probability that i and j are successive values in the chain, that is, the
probability that the block ij appears in the partition. The relevances may be
computed from the cohesions by a simple recursion requiring O(n?) elemen-
tary operations, given in a special case by Yao (1984).

Now suppose, that given the partition i,,...,7,, the observations in differ-
ent blocks are independent: there is a probability density f;; associated with
the block i + 1,..., j such that

f(XI,...,anio,...,in) = fOil(Xls“" th) ct f‘ib—lib(Xib—l"'l’.." Xib).

Any joint distribution on observations and partitions that satisfies the product
condition for partitions and the independence condition for observations given
the partition will be called a product partition model. Let X;; denote the
observations X;, ,..., X;. The element f;;(X;;) is called the data factor.

Given the observations Xj,...,X,, the partition i,,...,7, still has a
product partition distribution, with posterior probabilities p(p|X) determined
by the posterior cohesions f;;(X;;)p;;. There will be a set of posterior transi-
tion probabilities that may be computed from the posterior cohesions. Thus
product models on partitions give us a workable framework for making
inferences about change points based on the data X;,..., X,,. Even if the
initial probability model for partitions is not a product model, in circumstances
where the observations are sharp enough to dominate the prior distribution,
the posterior distribution for partitions will be usefully approximated by a
product model; such circumstances will occur if there are sharp changes in the
distributions across change points, or if there are long sequences of data values
in each subsequence.

In this paper we will investigate conditions under which the observations
X, X,, ..., X, do eventually dominate the prior cohesions c,;, so that the true
partition can be eventually approximately identified. These results suggest
that the cohesions be chosen so that ¢;; = (j — i)* for internal blocks and
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Coi = Cp_in = i¥*1, where k£ < —2. Such cohesions encourage the formation of
large blocks, so that if there are no change points, we are likely to draw that
conclusion.

2. Clustered parameters. A simple way to generate product partition
models is through clustered parameters: a sequence of parameter values
0,,...,0, ranging over some space ® is partitioned into b contiguous subsets
(or blocks) where the values are constant, that is, there exists a partition
p="C(gyi4...,i,) of the set {1,2,...,n} such that

0=i3<i;<iyg< " <ip=n,
n=iy=ilp =" =i,
and
0;=0; i, L,1<i<i,
for r=1,2,...,b. The parameter values change after the points
i1,19,...,1,_;. The value of the parameter in the block ij is 6, .
We construct a prior distribution for 6,,6,,..., 8, as follows.

(a) The prior probability of p = (iy,iq,...,1,) is
b
p(p) = Hpi,_li,’
r=1

where the quantity p;; is the probability of a transition of endpoints from i
to J.

(b) Given a partition p with b components, 0;i0 iy - -+ 0;,_;, are inde-
pendent, with 6;; having density f;;(6,;) with respect to some measure on @
(which we will represent in integrals as d#@).

The joint distribution on partitions and parameters is a product partition
model according to the definition of Section 1. In this case, when we know the
parameters, we know the partition exactly.

The observations X;,..., X, are assumed independent given 6,,...,6,
having joint density I'T f(X;,16,). The joint density of observations and parame-
ters given p is a product of densities over the different blocks in p, with the
density in block ij being

j
fij(Xij:0:5) = kﬂlf(kaij)ﬁj("ij)-

Thus the joint distribution of the partition, the parameters and the observa-
tions forms a product partition model. The joint distribution of the partition
and observations is a product partition model with data factor
J
fii(Xi;) = f[ IT F(X:le)|f:;(6)de.
k=i+1
The conditional distribution of partition and parameters given the observa-
tions is also a product partition model with cohesions p;;f;;(X;,) and data
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factor the posterior density
J
fi(8:1%:;) = fij(oij)[kﬂlf(Xklﬂi,-)]/f,-j(Xij).

The product partition model thus offers a smooth machinery for handling
inferences about clustered parameters. We do the standard Bayes calculations
within each possible block ij, computing the posterior distribution of the
parameter values for each block using the observations in the block. We make
inferences about the unknown partition using the prior cohesions and the data
factor for each block which is equal to the marginal density of observations in
the block. And then we combine these two types of information in a final
product model conditional on the observations. .

A typical calculation for the combined model would be the conditional
density of 6, given the observations

f(0k|X)= Z fij(9k|Xij)"(ij|x),

i<k<j

where r(ij| X) is the posterior relevance of ij, the probability that the block ij
appears in the partition, given the data X. Thus in making inferences about 6,,
we will allow the data to adapt to the true partition; if it appears that
observations in a block about % are from the same density, then all those
observations will be used in making an inference about 6,; and the final
density will be an average of densities computed for blocks including k& and
weighted by the probabilities that those blocks are the correct ones for making
inferences about 6,

We will consider in some detail a change point model introduced by Duncan
(1956) and intensively developed by Yao (1984). Yao gives the recursive
formula for computing relevances from cohesions, which permits O(n2) com-
putations of posterior expectations.

In this model, observations X; are independently normal with means p;

and variance 2. The means u; change after points iy, i,,...,1,_;; the proba-
bility that u, ., = u; given all past means is 1 — p. The points i,i5,...,i5_;
define a partition of the observations composed of the sets 0i,i.iy,...,i,_in

with cohesions (1 — p)t=1p,(1 — p)z~1=1p ..., (1 — p)*~%-1"1 Second, the
different means u; are independently sampled from N(u,, 03); thus when the
partition p is known, the observations in different components are indepen-
dent, after averaging over the possible mean values u; in each partition. The
probabilities f;,(X;;) of the observations X;,,,..., X; thus conform to a
product partition model. A slightly different model is considered by Barnard
(1959) and Chernoff and Zacks (1964); in that model, the mean p; equals the
mean u,_; plus a random increment. This is certainly a plausible mechanism,
but.the independence of observations in different blocks is lost and the simple
calculations of the product model are no longer possible.

We consider the class of cohesions that ensure the final distribution of
X,,..., X, is stationary; the geometric distribution studied by Yao is a fruitful
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member of this class, but we propose a long-tailed polynomial distribution that
makes larger intervals of constant means relatively more probable. Using this
distribution, we show that if observations are actually sampled from a con-
stant mean, the posterior probapility of the event pu, =puy, = -+ =pu, ap-
proaches 1. And if the observations are actually sampled from a partition with
one change point, the posterior probability of partitions having components
close to the true components approaches 1. We speculate that the same result
will hold for any number of change points; thus preliminary evidence suggests
that the polynomial based cohesions give consistent inferences, successfully
approximating the true partition asymptotically.

3. Some examples.

ExampLE 1 (Normals). This is the case studied in Yao (1984). Let f(X;;6,)
be the normal density with mean 6, and variance o2. Let the prior density of
§;; be normal with mean u, and variance og.

Then
2 1/2
fi(X;) = (27‘_02)(,'—;')/2 ( (j—i)og +o?
T X, - )2 0'2[Zj (X — )]2
xexp| — 1=i+1\ 1 — Mo 0l&=1=i+1\ 0 )
202 20%((j —i)og + 0?)

The parameters u, o2, o must be estimated from the data with some care;
the EM algorithm [Dempster, Laird and Rubin (1977)] is helpful if the parame-
ters are estimated by maximum likelihood. A more difficult question is the
choice of the prior partition distribution, which we will return to in Sections 6
and 7.

ExaMpLE 2 (Binomials). Let
if X=1,
if X=0.

i’

0;,
f(X;6,) = {1 -9

Let 6,; have a beta prior density with parameters m, m,. Then

B(m, + Yi i X,my+j—i—X{_;1X)
B(my, mjy)

f,~j(Xij) =

ExampLE 3 (Regressions). Let {Y: 1 <i <n} and {X;: 1 <i < n} be two
time series and suppose we are interested in the regression of Y on X. Assume

Yi=ai+BiXi+ei, i=1’2’°"’n’

where the errors {e;} are i.i.d. N(0, 0?).
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Here 0, = (a;, B;) and a convenient choice for the prior density of 6;; is the
bivariate normal density. See Raiffa and Schlaifer (1961), Chapter 13, for the
technical details necessary to calculate f;(X;;) and E[6;|X].

Extensions to multiple regress1on change point problems are equally
staightforward.

ExampLE 4 (Histograms). Let X,,..., X, be a series of observations in the
unit interval. We wish to construct a histogram for these observations. Tradi-
tionally, we partition the interval (0, 1) into m intervals of equal size and take
the density in each of these intervals to be proportional to the number of
observations in the interval. But there may be benefits in allowing intervals of
different sizes in different parts of the data—Ilarge intervals when the underly-
ing unknown population density is small or changes.slowly, small intervals
when it is large or changes rapidly.

In a product partition approach, we construct a distribution over the set of
possible histograms as follows:

1. The intervals of the histograms are the intervals I, I, ..., I, with proba-
bility proportional to ITc(I;), where c(I;) is the cohes1on assoc1ated with
interval I;. For simplicity, the 1ntervals I; will be assumed to have end-
points on some discrete grid on (0, 1). Frequently the only possible values of
observations fall on such a grid.

2. If there are k intervals I, I,,..., I, in the histogram, the probabilities

D1, Pg, - - -» Dy, assigned to the intervals are sampled from a Dirichlet distri-
bution with parameters a(I,), a(l,),...,a(I,), where a is a measure on
(0,1). Thus py, ..., ps_ has density

p‘;z(l )~ 1

l"[a(O 1)] I—[ F[ (I )]

The probability density of the observations X, ..., X, given {I;} and {p;} is

n(l,)
p. J

(%)

i\l
where n(I;) is the number of observations in the interval I;. The probability
density of the observations given {I,} alone is

rla(0, ] Tla(l;) +n(1)]
M[a(0,1) +n] 7 T[a(I)]|ILI™Y

The distribution on {I;} given the observations is thus a product distribu-
tion with posterior cohes1ons

e(L)T[a(;) + n(1;)]
\LI"Or[e(L)]
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It is computationally feasible to compute the posterior probability that an
interval I lies in the partition. The estimated density at a point x is
a(I)+n(I) 1
= LA A — € p|X).
o) = T oy en nPd=e®

Thus if the data suggest that long intervals I near x are appropriate, the
density estimate will be close to the histogram estimate based on long inter-
vals. If the data suggest short intervals are appropriate, the density estimate
will be near the histogram estimate based on short intervals.

A plausible measure a is the uniform on (0,1) with total weight 1. We
would like to select the prior cohesions to discourage partitions with many
intervals. For example, ¢c(I) = A /N, where interval endpoints are of form i /N,
i=0,1,2,..., N. The expected number of intervals in a partition is then
1+ A; and the probability of %2 intervals in a partition is approximately
(A*~1/(k — 1)De~*. We might select A by maximum likelihood, or by beginning
with a prior distribution on A uniform over A = 1,2, 5,10, 20. Computations
would be done for each of these 5 values of A and averaged with respect to the
posterior probabilities of A given the data.

Finally, an optimal histogram would be the partition of optimal posterior
probability.

4. Computational procedures. Although there are 2" ! partitions of n
points into blocks of consecutive segments, the product partition model per-
mits calculations of necessary quantities in polynomial time depending on the

number of possible blocks (” ; 1), Similar recursive calculations are possible

for more general product partition models.
Define A(r,s) = EI1%. 1¢;;_,i,, Where the summation is over all sets of

integers r =i, <i; < - <i,=s. Then
A0,i)c;A(j,n
iy = A0 m)
A(0,n)

The quantities A(0, 7) and A(r, n) may be calculated in O(n?) steps using the
recursions

A(O, 1) = COI,
r
A0, 7+ 1) =co 1+ 2 M0, 8)c, 4
=1

and
An—1,n)=c,_q .,

n—1
AMr,n)=c,,+ Y c.A(t,n).

t=r+1

The posterior relevances are computed from posterior cohesions by the same
recursions. For each i there are O(n?) sets jk which contain i and so
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{E(6,|X): i =1,2,...,n} may be calculated in O(n?) steps. The above recur-
sions are given by Yao (1984).
Since for p = (iy,iy,...,1,), the likelihood of X and p is
ob

L(X,p) = Kr=l_11 { fi,._li,.(x)cir—lir}

the likelihood of X,
LX) = X L(X,p)
P

and its derivatives may also be calculated in O(n?) steps using similar recur-
sive formulae. These computations are useful in estimating the various nui-
sance parameters in the model.

5. Stationary product partition distributions. A product partition
distribution is stationary if the probability that i + 1,..., j all lie in the same
block in the random partition p depends only on j — i. Equivalently,

n—1
Y P{i,<i,i,,, >=j} dependsonlyon j—i.
r=0

LeMMA 1. Let J be an arbitrary random variable on the positive integers,
with finite average PJ. Define I, by P{I, = k} = P{J > k}/PJ. Let J,,dJ,,...
be independent realizations of J. Let X A n be min(X,n). Then 0,1, A n,
(I, +J) An,(I; +J;, +J,) An,... forms a stationary product partition
distribution.

The proof will be omitted. The variable J is called a jump variable. The
partition endpoints may be constructed from a renewal process 0, J,,J; +
Jy, ... as follows: shift the process by subtracting the integer N. Let IN be the
first value in the shifted process that lies in the interval [1,n] and define
IN, IY,... to be subsequent values of the renewal process that lie in [1, n].
Now let N — . The limiting distribution of the IV is the distribution of
ILnn( +JdJ)An,T +Jd;+dy) An,....

The transition to j given i has the distribution of J + i, with the modifica-
tion that all values of j greater than n are reset to take the value n.

Let g(j) = P{J =j} for each positive integer j. Let G(j) = L7_;g(i). Let
G, = L jg(h).

In this case, the transition probabilities for the change points are:

Do, = Z G(J)/Go,

Jjzn
poj=G(j)/Gy, 1<j<n,
Pin=G(n-1i), 0<i<n,
p;;=8(J—1), 0<i<j<n.
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Say that the function g has tail power k if g(j)j~* converges to some nonzero
limit as j — . A function with tail power %2 behaves similarly to a slowly
varying function with exponent k. If g has tail power £ < —1, then G has tail
power k& + 1.

For example, let J take value J, 1 <j <, with probability g(j) =
4/(j(j + 1Xj + 2)) having tail power —3. Then PJ =2 and I, takes the
value i, 1 <i < «, with probability 1/(i(i + 1)). The transition probabilities
are:

pOn = l/n’
Po;=1/(j(j + 1)), 1<j<n,
Din=2/((n —i)(n —i+1)), i 0<i,

pi;=4/((j—-D—-i+1)(—-i+2), 0<i<j<n.

Note that the transition probabilities p,; that do not involve endpoints 0, n
depend only on j — i, but that the endpomt transitions are somewhat differ-
ent. We imagine the renewal process starting in the remote past, hitting the
interval 1,...,n at some point I, for the first time, proceeding with stationary
transitions through i,,...,7,_;, then exiting beyond 7n; neither 0 nor n are
necessarily points of the renewal process, so the transition probabilities at
those points are not the same as the transition probabilities for interior points.
Although the transition probabilities p,; and p,_;, differ by a constant
multiple, they make the same effective contrlbutlon to product probabilities of
partitions.

6. Consistency when there are no change points. Let p, denote the
partition consisting of the single block 0n. The density of the observations
when this partition is true is f(Xlp,) = f.(Xo,). The change point model is
consistent for p, if, when the observations are sampled according to fy,,
p(pylX,,) = 1 in probability as n — .

Suppose that the prior distribution on p is stationary with jump variable
having density g. The following lemma will be used to bound the probabilities
that many jumps occur given the data. In the statement and proof of the
lemma, we use the same symbol C for the constant in inequalities, even
though different constants may be appropriate for the different inequalities.

LEMMA 2. Let g be nonnegative with tail power k < —2. Let a € [2/3,1).
There exists a constant C such that

n=1(G(i)\*(G(n -i)\" G(n)\"
= (5P (5= ) =l

(2)
forall n > 1;

n1g(i))\*(G(rn-i)\" G(n)\"
o B[ )

i=j

i=1
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foralll <j<n <o

(¢) > lf[ (g‘(/-:f) ) < CbL+/2—h)a [ng (g&—,{) ) ] (g‘gnf’_) )a

i+ 4r=nJj=1

“

for all b,n.

Proor. We prove (a) and (b) by replacing g(i) by i* and G(i) by i**?!
Then (g(i)/ Vi)* = i, where B =(k — 1/2)a < —1 and the results follow
from standard manipulations.

To prove (c), we first consider those partitions n = r; + -+ +r, for which
the maximal r; is r, (the overall sum will be less than the sum of contributions
where successively ry, r,, ..., r, are maximal and so it is less than b times the
contribution from the partitions where r, is maximal). Necessarily r, > n/b
and g(i)i~* converges to some nonzero limit, so

(rb) g(n)b(l/2)—k’

Vrs — " Vn
b (g(r,) “< b-1(g(r;))\ (8(n), 0 )"
r+ Z'+rb=n.1];[1( \/Z ) Cbr1+ z—i—:rb_lsn.l=1( \/’; ) ( ‘/; b(/) k)
b=1(g(r) “(g(n) _ )
Cb ———p1/D-k
= r.>0, Z,rb_1>01=1 \/Z ‘/;

j=

THEOREM 1. Let P, be some null distribution for X,,..., X,,,... . Suppose
that the prior distribution of the partition p is stationary with jump variable J
with density g having tail power k < —2. Suppose that for some fixed a €
[2/3,1), 6 such that 6L (g(j)/j)* < 1 and fixed C,

f(Xlp) e w Y
(1) Po f(xlpo)] < Co%® nijspV(j —-1) )

for all p. Then

'p(po|X) = 1 in Py-probability.

Proor. The notation PY denotes the expectation of Y with respect to the

probability measure P.
We will first prove that the probability of more than two change points is of
the same order of magnitude asymptotically as precisely two change points. We
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then prove that either one or two change points have negligible probability
compared to zero change points, so that zero change points occur asymptoti-
cally in probability.

Recall that & = b(p) is the number of blocks in a partition p having change
points i,,...,i,_;. Suppose b >'2.

Using inequality (1) and setting

L pOilg(ib—l_il)pi,,_ln/pOn
T (4(iper — 8)(n = dpoy) /n)
p(plX) _ f(Xle)p(p)
p(polX)  f(Xloo)P(po)’

» (p(p|X) )“ <t 7238, - ij—l)/V(ij —5) |
PGl X) | e g~ i) Vi) |

Now consider all partitions p’ with a given first change point i, and final
change point i,_,. Using Lemma 2(c) and the fact that (X« ;)* < (X u?) for
u;,>20and 0 <a <1,

a alb—-3
p(p'IX)) e b/ —hra| o (g(j))
Po(z:——— (T, )L 5% L |42

P(pol X) >2 j=1

1/2°

) Cé®

< T 3,

i1ip—1
where 3; < since 6L%_(g(j)/ Vj)* < 1. Because the power series con-
verges, all partitions of i,,7,_; together have the same order of probability as
the single block i,,i,_;.
We now collect all partitions p” with b > 2 by summing over i;,i,_;.
p("1X) \"
Po(z — | <30 TS,

p(polX)
G(i1)g(iy_1 — i1)G(n = iy_1)/(PonGo) |
(is(ip-r = i) (n = ip_y)/n)"?

=282[

G(n)
PonGo

Since G has tail power k + 1 and k& < —2, py, = L ;. ,G(j)/G, has tail
power k + 2, so that G(n)/p,, > 0 as n — ». Thus p{b(p) > 2|X} ap-
proaches zero in P -probability. The case b = 2 is handled similarly, with the

simplification that the product terms due to partitioning i,,i,_, disappear.
Thus p{b(p) > 2| X} approaches zero in P,-probability, as required. O

< 250( ) [by Lemma 2 (a), (b)].

We need to demonstrate that inequality (1) is satisfied in interesting cases.
Suppose that the clustered parameter model applies for r-dimensional parame-
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ters 6y,...,6,; the block parameters 6;; are assumed to have prior density
f(6). Under suitable regularity condltlons, if the observations X,,..., X, are
sampled from the density f(X|6,), the marginal density f,,(X,,) is approxi-
mately, for large n,

f(oo)n—l/zz""r/z‘[(eo)rl/zexi)[%n(én - 00)'1(00)(6;; - 00)]nf(Xi|00),

where |I (00)| is the determinant of the information matrix 1(6,) at 6, and 6,
is the maximum likelihood estimate [see Hartigan (1983), page 108, for
example]. The exponentlal component is distributed approximately as eXr/ 2,
the average value of e***/2 is (1 — a)~"/2,

Taking this approximation to be exact, with P, denoting sampling from the
density f(X|6,),

[ f(Xlp)
0 f(X|Po)

|_1/2] a(b—-1)

] = [ £(80)2m7/?| 1(0,)

X ‘/’7 : a(l _ a)—-r(b—-l)/Z’
nijEp (J - ")

Thus the inequality assumed in the theorem is met with

8 = [ £(8,)2w/2|1(85)| 7] (1 ~ a) 7,

provided that 6 (g(j)/vj)* < 1. If f(8,) is chosen small enough (so that the
prior density is not too highly concentrated at 6,), the inequality (1) will be
satisfied.

The more natural null distribution is that according to p,, which is achieved
by selecting 6, at random from the density f and then selecting the sequence
Xy, X,,... from f(X]6,). In this case, when the approximation is exact,
we set

5 = sup| £(60)27" /2| 1(6,)] /] (1 - @) 72
0

It will be poss1ble to have condition (1) satisfied prov1ded that
f(00)271-’/ 21 (00)|_1/ 2 is everywhere small, which means that the prior density
is everywhere small compared to Jeffreys’ density.

We have made the argument that the inequality (1) should apply quite
widely in clustered parameter models, provided the prior distribution for the
parameter is sufficiently diffuse. Let us consider the Duncan model, where
the observations are independent normal with mean 6 and variance 1 and the
prior distribution for the parameter 6 is normal with mean 0 and variance oZ.
We will use the fact that

n+a n

< fora>0,n>n.n,.
(ny+a)(ny+a) = nin, ’ 12
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Let le = EkEink/(j - i):

nX2./2 ]

1
X = 2 —n/2 1 + 2 —1/2 [ — 2 —_——
for(Xon) = (2m) (1 + nog) exp 2 L XP+ 1+1/(no¢

Ll

fXp) |, [ nXZ./2 (j—i)X2/2 }

&) =7 |5 1/(nod) T, TH 1/ - 03)
y Vn
l_[ije,o Vj - ’
—nX3, (j—i) X3 ‘ o
T i/ned) tE TTIAG el S et Z Um0 RE

Thus

f(x|P) * 1-bagq _ o\ —(b-1)/2 Vn )
R fipy | =80 ]

and inequality (1) is satisfied with § = o5 “(1 — @)~1/2. For any prior distribu-
tion with tail power k, if o is large enough, then consistency will be achieved
when sampling from a normal with mean 6, and variance 1, or when sampling
from f,,(X,,), since the distribution of —nXZ, + T, ,(j — )X is xZ_, in
either case.

For example, if g(i) = 4/(i(i + 1)i + 2)) and a = 2/3, then £(g(i)/Vi)* =
1.39 and o, > 3.74 ensures consistency. Consistency may be achieved for
lower values of o, indeed perhaps for all o,.

7. Consistency for one change point. If the true partition contains
several change points, we cannot achieve consistency in the strong sense that
the distribution over partitions concentrates on the true partition, but only in
the weaker sense that each random change point is within 0,(1) of some true
change point. The following theorem makes this assertion precise for a single
change point. In the proof, we will use C for a generic constant that may take
different values in different inequalities.

THEOREM 2. Let the prior distribution of change points be stationary with
Jump variable having density g with tail power k < —2. Suppose that the true
partition p, has a single change point at m, where m/log(n) — «, (n —
m)/log(n) —» ». For any partition p, let i i,,, be the block of p that in-
cludes m.
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Let P, be a sequence of probability distributions, consistent with a single
change point: For each ¢, > 0, there exists a sequence of 0-1 variables Z,
such that P,Z,> 1 —¢,, and for some fixed a €(2/3,1), 6 such that
5% (g(j)/V7)* < 1 and fixed C, 0 < A < 1,

a/2
(2) P, Zn f(X |p)} Cab(m[_u AL/ =i )+ (A Gy =m)
)

fXlo,) ;e ,(J

Then Pn[p{maleij —m|>A|X}>¢e]l]—>0asA,n— x foreach ¢ > 0.

Proor. The theorem asserts that all the random change points will be
within O,(1) of the true change point, according to the posterior distribution
given X, for observations X taken according to P,. An obvious choice of P, is
just the true change point distribution with density fo,.(Xon) fnn(Xn,), but
other choices are plausible in parametric problems, where we might wish to
assume fixed different parameter values in the two true blocks. The sequence
Z, weakens the condition to accommodate cases where the inequality applies
once a small set of bad observations is excluded. To simplify the proof we will
assume the Z, are all equal to 1; the more general proof requires some small
extra manipulations based on the inequality P,{X € B} < P,Z {X € B} + ¢,.
The condition (2) differs from the similar condition (1) in the no-change point
case in the term AY/(@/(m=i+1/Gre1=m)) that is generated by the block in p
that includes m; the effect of this term is to inhibit the formation of such
blocks with boundaries far from m.

We will use the measure on partitions p of On defined by

HifEP(pif/”j — i) AL/ (=i )+ fGir i1 =m),
(pOm/l/’_n—)(pmn/Vn - m)

E,B= Y 51

pEB

Since, by condition (2), and using p(p,,|X) < 1,

. - p(pl
P,p*{p € BIX} < P",EB (meX)]

whenever E, B - 0 as n — «, then p{p € B|X} — 0 in P, -probability.
Consider the sets of partitions

B;; = {plij is a block in p},
B}; = {pli, j are change points in p}.

The set B;"j includes B;; but includes in addition those partitions in which

change points occur between i and j. It follows from Lemma 2(c), by summing
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over all partitions of i, that if i, j <m or i, j > m, then E, B}; < CE, B;,.
Thus a set B} is asymptotically negligible whenever B,; is asymptotically
negligible.

We need to show that Efli; - m|> A} - 0 as n, A approach «. (By
symmetry, this result will be true for ¢, _, if it is true for i; and therefore will
be true for all change points.) We have seen that cases with more than two
change points in Om or in mn may be reduced to cases with two or fewer
change points in Om or in mn, after replacing sets BY; with sets B,;. We need
to consider only the cases of (i) zero change points, (ii) one change point in 0m,
(iii) two change points, both in 0m, (iv) two change points, one on either side
of m, (v) three change points of which two lie in 0m and one in mn.

For example, the case of three change points in which one lies in 0m and
two in mn reduces to the case of two change points, one on either side of m,
since B}, may be replaced by B, ,. We cannot dismiss case (v) in the same
way, because if Bg; is replaced by B, , we can draw a conclusion only about
15, not about our target point i;.

Let B=(k +1/2)a < —1.

(1) Zero change points: Let p, denote the partition with no change point.
Noting that p,, ~ n**2, py; ~ i**L, p;, ~ (n — )*F*Y

nﬂ+a
E,py < C———AmCm/n,
mP(n —m)

Since m /log(n),(n — m)/log(n) — =, the exponential term will dominate the
polynomial term as n — » and so E,p, > 0 as n — o,

(ii) One change point, i; < m: Let p; be the partition with a single change
point at i;:
iy(n = iy) 1°

An—mYXm—i)/(n—iy)
m(n —m)

Enpil =< C[

Note that

Ar—mXm—=iy/(n=iy) o A(m—i)/2 4 A(n—m)/Z,

[_iL(n—il)

.
m(n_m)] <(1+m-i)"?

<n7#

Since (n — m)/log(n) — o, A"~™/2p1~B — (. Also, since A < 1,

Y (1+)) P2 <w,
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Thus
. o B
Y [ ty(n — 1) ] A —mXm—iy/(n—iy)
iy<m-alm(n—m)
<nplTRART™/Z 4 Y (1 +m - i) PAnTi/2
i;<m-—A

-0 as A,n - »,
Thus, when there is a single change point, E {|li;, — m|> A} - 0as A,n — =,
(iii) Two change points, i;,i, <m: Let p;; denote the partition with

change points at i, and i,:

Y. E,p;;,<CE,p;, usingLemma2(c).

iy
Thus, by the argument in (ii),

Efi,<m— A} = b E.p,;,~0 asA,n—>

i, iglig<m—A
Also
Y E,p,;,<CE,p, A~ using Lemma 2(b).
iglig—iy>A

Since L E, p;, is bounded, E{i; <i, — A} > 0 as A,n - ». Thus Efi, <
m—2A} > 0as A,n > =,

(iv) Two change points, i; < m <i,: Assume without loss of general-
ity that i; + i, < 2m. (Otherwise, by symmetry, we could show that
Efli,>m+ A} - 0 as A,n —» ».) Then

Alm—i)ig—m)/ig—i) < A(‘z—m)/2’

Sl 2\ 1B
Ltz ~ L)(r — 1) (iy — iy) " ACm—iXia=m)/ia=iv),
m(n —m)

Enpiliz < C

Efi,<m-A}< Y E,py,
iy—i>A
<Y CA=%(1 + i, — m) PAC2-™/2 [using Lemma 2(b)]
iy
-0 as A,n - o,
(v) Three change points, i; <i, <m <ij Let p,;,; denote the partition
with change points at i, i, and i4:
Z Enpi1i2i3 = CEnpizis,
31

so it follows from (iv) that E {i; — i, > A} > 0as A,n — .
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Since L; ;. <ip-alnpijiyi, < CE,p;,A”" and L E, p, is bounded,
Efi,<m—-2A} <EJfi, <iy—A}+Efi,<iz—A} >0 as A,n - ».
We have proved that i, is asymptotically close to m in each of these five
cases and all other cases are reducible to these, so the theorem is proved. O

We need to demonstrate that the powerful condition (2) used in the theorem
is satisfied in interesting cases. Under suitable regularity conditions, the large
sample behaviour of the densities f,,(X,,) is similar to the behaviour in
sampling from a normal distribution. We will consider only this case in detail.
The distribution P, takes the observations X,...,X,, from N(6,,1) and
independently, the observations X,,,,,..., X,, from N(6,, 1).

Note that

(m+1/0¢)(n —m +1/0f) ( ‘1 )zm(n—m)
. <1+ —_—
n+1/0 n

)

nXOn/2
2

—-n - 1
fon(Xon) = (27) /2(1 +nog) 1/2exp[— PR 1+ 1/(n0'o)

X)) = Cog® exp| — T 1/(mod)  1+1/((n- m)0'02)

(J—1) m(n —m)
+ijZ€:p 1+ 1/((j - i)gg)](nijepvj - )
_ mX2, ~ (n—m)X2, iy (j-i)X2
1+1/(mog) 1+1/((n=m)og) 2, 1+1/((J - 5P

S(m_ir)}zz%m'*- Z (j—i)Xi?]'_mX(?m+(ir+l m)X””r“

Jj<m

+ Z (J_Z)Xf]— (n _m)Xr%tn + (ir+1 r) Llr+1

i>m
_(m_ir)Xizrm_(ir+l m)X
2 O 2 2 2
+ 00[_Xi,i,+1 + X m Tt X,,” +1]

The first six terms have their sum distributed as y2_, under P,. The remain-
ing terms involve the change point. By the law of large numbers, for observa-
tions in a set Z, where P,Z, > 1 — ¢,

of|-X2,,, + X2, + R, | <C forallipi,,,

mlr+1

iyl
(lr+1 - lr) i,i,H - (m - ir)Xz%m - (ir+1 m) mz,H

1 (m = i,)(irer — m)
<C-=(6,-6,)° ,
- 4( 2 1) ir+1_ir
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since IX,,”-r+1 - Xi,ml is greater than |6, — 6,|/2 when both m — i, and i, , —

m are large.
Thus

f(Xlp) 1°
i "Z’”[f(lem)
o (m =i )(iyey = m)

lry1 — Ly

1
< Coft=e(1 - a)1/2""2’exp[c -5 (02— 01)

X( m(n —m) )1/2a
;e ,(J—7) '

Condition (2) holds with A = exp(—(8, — 6,)?/8) and 6 = (1 — @)"/?/0§. As
long as the prior density is sufficiently diffuse, asymptotic consistency will hold
for a single change point.

8. Selecting the number of change points. Yao (1988) uses a version
of Schwarz’s (1978) criterion to estimate the number of change points when
the observations X;, i = 1,...,n, are independent normal N(y;, o?) with o
unknown and with the sequence of means u; changing values at R =56 —1
change points. Yao treats the unknown change points as unknown parameters
to be estimated, so that there are 2R + 2 unknown parameters altogether,
considering the unknown o2 the R + 1 = b unknown means u; and the R
unknown change points. The Schwarz criterion then selects that value of R
that minimizes

SC(R) = inlog(62) + R log(n),

where G2 is the maximum likelihood estimate of o2 given R.

The Schwarz criterion is derived as an approximation to the probability of
the data given a particular model, integrating out the unknown parameters. It
would be interesting to know conditions on the distribution over partitions and
of the distribution over parameters w and o, which would justify the above
expression as an approximation to the probability of the data given R.

Yao justifies the use of the criterion in another way, showing that the value
of R that maximizes the criterion converges to the true value of R with
probability 1, provided that it is known that R is less than some given value
R, and that the proportion of means in each block converges to some fixed
fraction as n — .

In one way, Yao’s result is stronger than statements of Theorem 1 and 2,
which assert merely that if there is a single block, it will be discovered with
probability 1, and if there are two blocks, at least two blocks will be discov-
ered. In another way, our theorems are stronger, in that they assert that all
the block boundaries will be close in posterior probability to the true block
boundaries. It is also true that Yao’s result applies only to the normal case
[Yao (1988), page 188].
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TABLE 1
For a sample of size 100, number of times each number of change points was selected in 100 trials
using Yao’s method and the average posterior probabilities in the product partition method

No change point

Change points 0 1 2 3 4+
Yao 89 6 5 0 0
Product partition 96 2 1 0 1

One change point, after observation 50, with ps; — pgso =1

Change points 0 1 2 3 4+
Yao 01 78 20 1 0
Product partition 44 24 14 8 10

One change point, after observation 50, with rg1 — Mo = 2

Change points 0 1 2 3 4+
Yao 0 90 9 1 0
Product partition 0 42 26 15 19

Nevertheless it may be instructive to compare Yao’s method of selecting
change points with the product partition method using the jump variable with
density g(i) = 4/(i(i + 1)(i + 2)). In Table 1, we compare the number of
times, in 100 trials, that Yao’s method selected various numbers of change
points, with the average posterior probabilities for those numbers of change
points under the product partition method; we selected o§ = 16, u, = X and
took o2 to be the maximum likelihood estimate. The sample size was 100.

It can be seen that Yao’s method is better at identifying the number of
groups accurately. As the size of the shift increases, Yao will more and more
surely select only two groups, whereas the product method using these prior
cohesions will always allow for the possibility that there may be more groups.
Perhaps this defect can be cured by specifying cohesions that inhibit the
formation of small groups; for example, in Yao’s selection criterion the number
of groups is bounded and all groups are required to be order n in size. But in
practical problems, we are often interested in small groups with sufficiently
large deviations, such as outliers, so an outright prohibition of small groups
should be avoided. In addition, errors in estimating means at each point are
serious when the group endpoints are inaccurately estimated and these errors
are less likely if the number of groups is overestimated rather than underesti-
mated or exactly estimated; more extensive simulation study has shown that
the mean square errors in estimating means are notably higher for the
Schwarz selection method than appropriate product partition methods, even
though the product partition method overestimates the number of groups.
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