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RATE OF CONVERGENCE FOR THE WILD BOOTSTRAP IN
NONPARAMETRIC REGRESSION!

By R. Ca0-ABAD
Universidad de Santiago de Compostela

This paper concerns the distributions used to construct confidence
intervals for the regression function in a nonparametric setup. Some rates
- of convergence for the normal limit, its plug-in approach and the wild
bootstrap are obtained conditionally on the explanatory variable X and also
unconditionally. The bound found for the wild bootstrap approximation is
slightly better (by a factor n~!/4%) than the bounds given by the plug-in
approach or the CLT for the conditional probability. On the contrary, the
unconditional bounds present a different feature: the rate obtained when
approximating by the CLT improves the one given by the plug-in approach
by a factor of n~8/4% while this last one performs better than the wild
bootstrap approximation and the corresponding ratio is n~1/45, It should
be mentioned that these two sequences, especially the last one, tend to zero
at an extremely slow rate.

1. Motivation and background. Nonparametric regression smoothing
includes many techniques to estimate the regression function without making
assumptions about its shape. It is important to develop some ways of recogniz-
ing how accurate the estimation is. A way to do this is to construct confidence
intervals for the unknown regression function m at each point x. We will only
treat the case of univariate response variable Y and univariate explanatory
variable X. The case of multivariate X may be treated in a similar way.

A classical means of constructing confidence intervals for m(x) consists of
using the limit distribution of the properly normalized difference between
m(x) and some estimator. For the kernel estimator 7 ,(x) studied by Nadaraya
(1964) and Watson (1964), based on some estimate of the ISE or MISE
bandwidth, the limit distribution of (nh)/2(#:,(x) — m(x)) is N(B,V) [see
Hirdle (1990)], where

= 3¢8%dx f(x) T (m"(x) f(x) + 2m'(x) f'(x)),

V=f(x)_ch02(x),

where ¢y = fK(t)2 dt, dg = [t?K(¢)dt, c, is the constant such that hn!/®
tends to c, in probability and f is the dens1ty function of the explanatory
variable X. The confidence intervals naturally lay in the limit distribution and
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their accuracy depends on how fast the theoretical distribution converges to its
limit.

To use the bootstrap method is an alternative way to find confidence
intervals. The so-called wild bootstrap introduced by Hirdle and Mammen
(1989) is available for the regression case. It has been also used by Hardle and
Marron (1991) to construct simultaneous error bars.

Given the observed sample (X, Y)),(X,,Y,),...,(X,,Y,) of iid. observa-
tions, the method proceeds as follows:

1. Construct the residuals &; = Y; — /,(X),), i = 1,2,...,n, where i, is the
Nadaraya-Watson kernel estimator based on a bandwidth % of order n~1/5
which usually appears to be some estimator of the MISE or the ISE
bandwidth. ‘

2. For each index i, draw the bootstrap residual £} from a two-point centered
distribution in order that its second and third moments fit the square and
the cubic power of the residual £;. This distribution is found to be the one
that gives probability y = (5 + 5/2)/10 to the point a = £,(1 — 5'/2)/2
and1 —y to b =§,1 +5Y2)/2.

3. Define the bootstrap observation Y;* = (X;) + & for each i. At this
point, the bandwidth g has to be asymptotlcally larger than h as Hardle
and Marron (1991) have pointed out.

4. Finally, construct the Nadaraya-Watson estimator m%(x) based on the
bootstrap sample (X, Y¥), (X,, Y5),...,(X,, ¥;}).

The bootstrap approach consists of approximating the distribution of
(nh)Y*(,(x) — m(x)) by the bootstrap distribution of (nh)Y/2(h¥(x) —
1 (x)).

The content of the paper is a study of different rates of convergence for the
normal approximations as well as for those given by the wild bootstrap. Some
results are mentioned in Section 2; they are not proved here because of their
similarity to the proofs in Cao-Abad and Gonzalez-Manteiga (1989). On the
other hand, we will give the main ideas behind the proof of the main result
(concerning the wild bootstrap and also stated in that section) at the end of
this paper.

2. Normal and bootstrap approximations. In this section, we will
denote by f,(x) the usual kernel estimator of the density function f based on
a bandwidth 4 [see Silverman (1986)]. We will use the letter A for the classical
MISE bandwidth of order n~'/%. The bandwidth g involved in the bootstrap
resampling will be asymptotically larger than & as we will justify later. We also
denote by ® the standard normal c.d.f. and ¢ is the error present in the
regression setup, that is to say, Y = m(X) + &.

Several assumptions will be made.

AssuMPTION 1. The functions m(x) and f(x) are four times continuously
differentiable in their support.
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AssuMPTION 2. The kernel function is symmetric, nonnegative and satisfies
cx <, dyg <»and [K(t)dt < .

AssuMPTION 3. sup, E(e3|X = x) < c.
AssumpTION 4. inf, f(x) > 0, where the inf is taken over the support of f.

AssuMPTION 5. The functions u(x) = E(Y|* [ X =x),i =1,2,38 and o%(x)
= Var (Y| X = x) are twice continuously differentiable.

Let us define the following approximations of the values B and V:
n
B, = (k) *n () ' L Ki(x = X)) (m(X,) - m(x)),
i=1

n
V. = n7 hfy(x) F L o (x) Ky(x — X,)".
i=1
The following representation is useful in order to avoid randomness in the
denominator of certain ratios:

Mp(x) = m(x) = (y(x) — m(x)) ful(x) F(x) "
+(ma(x) — m(x))(1 - Fu(x) F(x) 7))
= Ly(x) + Op(n~%%),

where the linearization L, is given by
n
Ly(x) =n7'f(2) " ¥ Kp(x = X)(Y; = m(x)).
i=1
Let us denote by PY'X the probability conditional on the sample
(X}, X5,..., X,). Under Assumptions 1, 2 and 3 and making use of the
Berry-Esseen inequality [see Petrov (1975)], we can get a bound for the
distance between the conditional probability and the distribution N(B_,V.)

sup |PYX{(nh)"*(ih,(x) - m(x)) <2} — ®(V;/%(z - B,))|
(21) =
= OP( n _2/5) .
From this fact, and the usual variance and bias approximations, it is easy to
show that

sup |PYX{(nh)"*(ih,(x) - m(x)) < 2} - ®(V-/%(z - B))]
(22) = |
= 0p(n~1%).
Of course, expressions (2.1) and (2.2) cannot be used directly to find

confidence intervals for m(x). We have to estimate B and V and plug these
estimators B and V in (2.2). For instance, we can estimate all the unknown
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terms in B and V, depending on m and f, by using the kernel technique once
more. For this purpose, a common bandwidth may be used for all the terms
but it makes much more sense to choose an appropriate bandwidth for each of
them. In both cases, the bias and variance for each of the terms may be
calculated depending on the bandwidth used. The optimal bandwidth and the
order it gives can be computed by minimizing that function of the smoothing
parameter. It turns out that the dominant part of the orders comes from the
estimation of m". After the mentioned calculations, these approximations may
be found to be B — B = Op(n=%/%) and V — V = Op(n"2/%). This argument
together with (2.2) leads us to the following rate for the plug-in approach:

Sup|PY|X{(nh)1/2(ﬁLh(x) - m(x)) < z} - q)(V—l/2(z _ 3))| = 0p(n~15).

We may try to find a bound in the unconditional case for the approximations
already mentioned. Under Assumptions 1, 2 and 5, the following one can be
stated for the CLT approach:

sup||P{(nh)1/2(,hh(x) -m(x)) < z} — (V122 - B))| = 0(n~%%).

It happens again that B and V have to be estimated and, then, by using the
same kind of argument as above,

sup|P{(nh)1/2(,;Lh(x) - m(x)) <z} - ®(V-%(z - B))| — 0p(n~2).

Let us pay attention to the bootstrap approximation and define the wild
bootstrap bias and variance:

By = (nh)"n ()" E Ki(x = X) (A (X)) = %)),

Vi =n"thfy(x) 2L Ku(x — X;)%82.
i=1

As in the analogy between the bootstrap and nonbootstrap situations,
expression (2.1) can be reformulated in terms of the bootstrap distribution

sup
(2.3)

P*{(nh)"*((x) = g (x)) <2} — D(VF~%(z - B}))|

= 0p(n "%,

where P* is the probability measure under the wild bootstrap resampling plan.
This result can be proved using the Berry—Esseen inequality and Assumptions
1 and 2.

Making use of the approximations for bias and variance, we can state our
main result.
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THEOREM. Under Assumptions 1, 2, 3, 4 and 5, the approximation of the
bootstrap probability to the conditional one is given by

sup [PYX{(nh) " *(,(x) — m(x)) < 2)
(2.4) z

_P*<(nh)1/2(ﬁ1h(x) - ﬁlg(x)) < z}l = OP(n—z/g)’

where the bandwidth g is chosen to be of order n=1/°.

As a consequence of this theorem, a normal distribution fitting the boot-
strap in bias and variance can be used instead of the bootstrap distribution.
For this approximation the same bound holds

sup [PYX{(nh)"*(,(x) — m(x)) <z} — ®(V;*"V/*(z - BY))|

= Op(n™2%).

The wild bootstrap procedure can approximate the unconditional probability.
The following expression shows a sequence that bounds the approximation
error

s1:p|[l3°{(nh)1/2(rhh(x) ~ m(x)) < 2} — P{(nh) (i} (x) - (%)) < 2}

= 0p(n"1/%).

Observe that all the rates obtained above are not proved to be precise, in the
sense that the expressions on the left-hand side tend to zero no slower than
the sequences on the right-hand side. This implies that we cannot directly
compare the accuracy of the different methods by means of the rates already
obtained. A deeper analysis, for instance, by using Edgeworth expansions,
should be done to know the precise rates.

The choice of the bandwidth in the bootstrap resampling plan is worth
mentioning. This pilot bandwidth makes an oversmoothed estimation which is
needed to make the bootstrap work. In particular, it is seen in the next section
that the optimal asymptotic order of the bootstrap bandwidth is n~'/°.
Although we know the asymptotic expression for the pilot bandwidth, it
depends on the unknown curves. So some bandwidth selection methods must
be extended to this setup in practice.

3. Proof of the theorem. Computing bias and variance of each one of
the following quantities, it is easy to deduce that V,* — V = Op(n~?/%) and
V, = V = Op(n~%/%). Both facts imply that V¥ — V, = Op(n=?/%).

On the other hand, Hardle and Marron (1991) show that

EY¥((nh) ' (B% - B,)") = Op(h*(Cin"'g~° + Cyg*)),
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where C; = cx-dgo?(x) f(x)~! and

Cy = (3dg) ((m(x) F(x))"" = (m(x) F(x))") f(x) 2

This consideration leads us to
BX — B, = 0,(((nh%)(Cin g™ + C,g*))%)
= O,;((Cln‘lg‘5 + ng“)l/z)
and this order is minimized for
g = (5C,(4nCy) 1),

This means that the optimal bandwidth g is of order n~'/° and for this
bandwidth B* — B, = Op(n~2/%). As the standard normal density function
and its first derivative are bounded, then we can state

sup |®(V*~V2(z — BY)) — ®(V; V%(z - B,))|

= Op((B} — B,) + (V;f = V,)) = Op(n™%?).
From this result and expressions (2.1) and (2.3), follows (2.4). O
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