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IMPROVED INVARIANT CONFIDENCE INTERVALS FOR A
NORMAL VARIANCE

By CoNSTANTINOS GOUTIS! AND GEORGE CASELLA?

University College London and Cornell University

Confidence intervals for the variance of a normal distribution with
unknown mean are constructed which improve upon the usual shortest
- interval based on the sample variance alone. These intervals have guaran-
teed coverage probability uniformly greater than a predetermined value
1 — @ and have uniformly shorter length. Using information relating the
size of the sample mean to that of the sample variance, we smoothly shift
the usual minimum length interval closer to zero, simultaneously bringing
the endpoints closer to each other. The gains in coverage probability and
expected length are also investigated numerically. Lastly, we examine the
posterior probabilities of the intervals, quantities which can be used as
post-data confidence reports.

1. Introduction. In the problem of estimating the variance of the normal
distribution, there are two possible cases, depending on whether the mean is
known or unknown. When the mean is known, the structure of the problem is
relatively simple, since by sufficiency the data can be reduced to the sum of
squared deviations from the mean and every optimal point or interval estima-
tor must be based on this sufficient statistic. Hodges and Lehmann (1951)
proved that the point estimator that is a constant multiple of this sufficient
statistic is admissible under squared-error loss. For interval estimators, Tate
and Klett (1959) showed that the endpoints of the shortest 1 — a confidence
interval must be the sum of squared deviations from the mean multiplied by
the appropriate constants.

A more complicated problem is that of constructing optimal estimators for
the variance of the normal distribution when the mean is unknown, the
history of which is given in Maatta and Casella (1990). This history can be
traced back at least to Stein (1964), who showed that the usual point estimator
for the variance can be improved by using information about the size of the
sample mean relative to the sample variance. His estimation procedure can be
thought of as first testing the null hypothesis that the population mean is zero,
and, if accepted, pooling the sample mean and the sample variance. In this
way, whenever the population mean seems to be small, another degree of
freedom is gained and we are able to beat the usual estimator based on the
sample variance alone. Brown (1968) extended Stein’s results to more general
loss functions and a larger class of distributions, considering estimation of
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general scale parameters when the location parameter is unknown. He uses
the usual estimator s2 for scale parameter whenever the estimate, y, of the
location parameter seems large and a smaller multiple of s? whenever y seems
small. The relative size of s? is measured by the statistic ¢ = y2/s2.

Both Stein’s and Brown’s estimators are inadmissible, thus it is possible to
improve upon these estimators. Brewster and Zidek (1974) were able to find
better estimators by taking a finer partition of the set of possible values of ¢.
Their estimator is smooth enough to be generalized Bayes and, under some
conditions, admissible among scale invariant point estimators. Proskin (1985)
showed later that it is admissible within the class of all estimators.

The problem of the interval estimation of variance is, in many ways, similar
to the problem of point estimation. Tate and Klett (1959) calculated the
endpoints of the shortest confidence intervals based on s? alone. Cohen (1972)
was able to construct improved confidence intervals adapting Brown’s (1968)
techniques. Cohen’s intervals keep the same length but, by shifting the
endpoints toward zero whenever ¢ < K, some fixed but arbitrary constant, he
was able to dominate Tate and Klett’s intervals in terms of coverage probabil-
ity.

Shorrock (1990) further improved on Cohen’s result. In a manner analo-
gous to Brewster and Zidek, Shorrock was able to construct a smooth version
of Cohen’s interval. The resulting interval is a highest posterior density region
with respect to an improper prior and dominates the usual interval based on
s2 alone. For both Shorrock- and Cohen-type intervals, the domination is only
in terms of coverage probability since, by construction, the length is kept fixed
and equal to the usual length. Furthermore, the confidence coefficient remains
equal to 1 — a since asymptotically, as the noncentrality parameter A = u?/02
tends to infinity, the endpoints of the intervals coincide with the endpoints of
the usual interval. Stein-type improvements of confidence intervals for a
normal variance with unknown mean were also obtained by Nagata (1989) and
a multivariate extension of Cohen’s result is given by Sarkar (1989).

The problem considered in this paper is, in some sense, the dual problem. In
Section 2 we construct intervals which improve upon the usual shortest
interval based on s2 alone, both in length and coverage probability. We keep
the minimum coverage probability equal to a predetermined value 1 — a and
shift the interval closer to zero whenever the sample indicates that the mean is
close to zero. By shifting we are able to bring the endpoints closer to each
other producing shorter intervals. Using a method similar to that of Brewster
and Zidek, we construct a family of smooth (1 — a) 100% intervals which are
shorter than the usual interval and, consequently, Cohen- and Shorrock-type
intervals. We also investigate the gain numerically. In Section 3, we investigate
the bounds on posterior probabilities with respect to some priors and point out
the use of these probabilities as frequentist confidence reports.

2. Construction of the interval. Let X = (X,X,) be a (n +p) X 1
vector so that X, = (X}, X,,..., X)) and X, = (X, ,,,..., X,,,,). We assume

n+p
that X is a random variable from a multivariate normal distribution with mean
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(0, ), where 0 is a vector of order n, p = (uy, s, ..., u,) is unknown and the
covariance matrix is o2 times the identity matrlx of order n + p. We are
interested in estimating the unknown parameter o2

Let s% =X X,, y>=X,X, and ¢ = y?/s2 By suﬁiciency, the data can be
reduced to (s2,X,). With the normality assumption we have that

s? y2 e
(2.1) = ~Xn and S5~ xp(d), A=,

central and noncentral chi-squared random variables, the latter with noncen-
trality parameter A; the latter density will be denoted by f,(x; A). If A = 0, we
will omit A from the notation and f,(x) will be the central chi-squared
density. The respective cumulative distribution functions will be denoted by
F(x;2) and F,(x).

We can th1nk of the problem as the general linear hypothesis, where y2
represents the model sum of squares and s? the error sum of squares in an
analysis of variance table. A simple version of the problem is estimation of the
variance from a sample X;, X,,..., Xy from a single normal population with
unknown mean. Here we have s? = L(X; — X)? and y? = NX?, where X =
Y X;/N and N — 1 central and 1 noncentral degrees of freedom with noncen-
trality parameter u?/o2.

The minimum length intervals, based on s? alone were tabulated by Tate
and Klett (1959) and have the form

1 1
(2.2) Cy(s?) = (—I;—n-sz, ;:sz),
where a, and b, satisfy
b,
(2.3) [Tfx)ds=1-a and f,,4(a,) = fura(bs).

Let K be a positive constant and 7(x) be an increasing continuous function
defined on (0, + =) such that 7(x) > x for every x. Define a confidence proce-
dure as follows:

Lo Lo ift>K
(24) I(s%,t,K) = bns ’ a,,s ’ ’
(¢1(K)82,¢2(K)82)’ lftSK’
where ¢,(K) and ¢,(K) are determined from the following equations:
$o(K) 1 K 1/a, 1) (K )
2, )R (=) de = —|F (=
(2:5) LK) f"“(x) "( x )dx 1/, f"“(x 2] =

and

2.6 - \p{E) B
(26) f"+4{¢1(K)} ”{qbl(K)} _f"“{%(K)} ”{%(K)}'
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If K = +o, the interval coincides with the usual one since 7(+x) = + o,
Note that the procedure defines a class of confidence intervals rather than a
single interval since the endpoints depend on an unspecified function 7. For
any given K and 7, we can choose ¢,(K) and ¢4(K) in a unique way. For the
most part, the values of K are only a means to an end, and for clarity of
notation we will sometimes omit K from the notation if no confusion arises.

The construction of I,(s2, ¢, K) is analogous to Brown’s (1968) point estima-
tor and Cohen’s (1972) confidence interval. We partition the space of possible
values of ¢ and whenever ¢ is smaller than a constant, we shift the endpoints
towards zero. In our case we keep the coverage probability, under p = 0, equal
to 1 — a. The following theorems establish that the new interval improves
upon Cy(s?).

THEOREM 2.1. The coverage probability of the procedure I(s%t, K) is
greater than the coverage probability of C.(s?). The probability is strictly
greater if A > 0.

ProoF. Note that the intervals differ only when ¢ < K. Working with the
joint probability it suffices to show
1 1
(2.7) Plo? € (¢y5% ¢ys?),t <K} > P{o-2 € (—5—32, 2—32),1,‘ < K},

which is equivalent to showing

¢2 1 K . l/an 1 K .
(2.8) /‘;)l fn+4(;)Fp(; 5 A) dx > fl/bn fn+4(;)Fp(;,)& dx
because of (2.1) and the independence of y% and s2. Expression (2.8) is an
equality for A = 0, and for A > 0 we will show that we have strict inequality.
For fixed y and A, define the function g, ,(w) as the solution to

g, {w) 1 K .
(2'9) Y ‘/1;) fn+4(x)Fp(x 7A)dx;
and define vy, and vy, to satisfy g'yl,O(l/bn) =g,,{1/b,) =1/a,. Let G(w) =
&,,0o(w) — g, \(w), and note that G(¢,) = ¢, — g,, (¢,) and G(1/b,) = 0.
We can establish (2.8) by showing that G satisfies the assumptions of Lemma
A.1, which implies ¢, > g, (¢,).

Let x, be a point such that G(x,) = 0 and let y, = g, o(x,) = g,, \(xo).
Since y, and y, are fixed, differentiating and simplifying shows

dG(w) |  _ fara(L/%0) [Fy(K/%9)  Fy(K/xg3 1)
dw lw=x0  fosa(1/%0) | Fo(K/y0)  F(K/yo;A) [

Since the chi-squared distribution has monotone likelihood ratio in the non-
central parameter and x, < y,, the term in braces in (2.10) is less than zero.
From Lemma A.2, ¢, < 1/b,, therefore G(¢,) is positive and (2.8) is estab-
lished. O

(2.10)
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THEOREM 2.2. The length of the interval I (s? t, K) is, with positive proba-
bility, smaller than the length of the usual minimum length interval Cy(s?).

ProoF. As before the intervals are the same if ¢ > K. When ¢ < K, the
length of the confidence interval, (¢, — ¢,)s?, is equal to (g, o(w) — w)s® by
(2.5) and the definition of y,. Let ¢ and ¢2 denote the numbers that satisfy
(2.5) and (2.6) for 7(K) = K and
211) - d[gy0(w) ~w] | _ fura(1/$1)F(K/9Y) | _

. dw w=¢9 fn+4(1/¢g)Fp(K/¢g)

Unimodality of f,,,(1/x)F,(K/x) (Lemma A.4) implies that the length, as
a function of w, has a unique minimum at ¢{. In order to prove that ¢, — ¢,
is smaller than (1/a,) — (1/b,) it would suffice to show that ¢? < ¢, < 1/b,.
From Lemma A.2, ¢, < 1/b,, so the result follows if the derivative of length,
evaluated at ¢,, is positive. Using the expression of the derivative and (2.6), it
suffices to have

F{E/¢) _ FlK/$5)
F{r(K)/¢$:1} = F{r(K)/ds}’
which is true by applying Lemma A.5 with x, = 7(K)/¢,, x5 = 7(K) /¢, and
B = K/7(K). Note that B is smaller than 1 because we have assumed 7(K) > K

and Lemma A.5 exploits the fact that gamma densities have monotone likeli-
hood ratio in the scale parameter. O

(2.12)

The coverage probability of the procedure I,(s2 ¢, K) depends on the un-
known parameter A and the length is a random variable depending on s2 and
t. The procedure can be further improved by taking a finer partition of the
values of ¢, the technique implemented in the construction of a point estimator
for the variance by Brewster and Zidek (1974) and in the confidence interval
constructed by Shorrock (1990).

Given K, = (K, K,), K, < K;, define the confidence procedure

1 1
(b—sz,a—sz), if t > K,
2.13) I(s%,t,K,)={ " b .
(@18) (50K =0 (4 (K)s%, 6y(Ky)s?), K, << K,
(¢>1(K2)sz,d>2(K2)s2), if t <K,,
where, for { = 1,2, ¢, and ¢, satisfy the equations

(2.14) f"’?(K‘)f,.M(l)Fp( o ) dx = fll/anf"“(l)F”(%) o

X

¢1(K1) X /b, X

bl Ky 1) (Kz) bo(Kp) (1) (Kz) '
2.15 Ve (22 ) ax = (=R =2 dx,
(2.15) sz)fm(x 5 ) = [ 5B S

016 1 F T(Ki)}_ ! F 7(K:)
(19 f"-*4{¢1(K,~)} ”{dn(Ki) "f"“{%(Ki)} ”{%(Ks)}'
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The proofs of the following theorems are omitted, since they use arguments
similar to those in the proofs of Theorems 2.1 and 2.2, together with the
results of Lemma A.3 and Lemma A.5.

THEOREM 2.3. The coverage probability of I,(s? t,K,) is greater than the
coverage probability of I,(s? t, K,).

THEOREM 2.4. If t < K,, the length of I,(s%¢t,K,) is smaller than the
length of I (s%, ¢, K,).

We can easily generalize and improve on I,(s? ¢, K,) by taking three cutoff
points and improve any interval based on a finite number of cutoff points by
adding an extra cutoff point. Working as in Brewster and Zidek (1974) and
Shorrock (1990) we can create a triangular array {K,,} that will fill up the
interval (0, +») and take the confidence interval that is the limit of the
confidence intervals based on K,,, as m tends to +. It is plausible that
the limiting interval will be better in terms of length than the usual minimum
length interval. However, the form of the limiting interval is not obvious, since
as we can see in equations (2.14)-(2.16), the numbers ¢,(K,) and ¢5(K,)
depend not only on K, and the function = but also on K. Hence for a given ¢,
the endpoints of the interval depend on all the cutoff points K; that are
greater than or equal to ¢.

We create a triangular array {K,} array as follows: For each m, define
K,=-(K,,...,K, ,-1,K, ) where 0<K, < -+ <K, <
K, , < +o. Furthermore we require lim,, . K,, ; =0and lim,, . K,, ,, =
+o and lim,, _,,max,(K,, ;- K, ;) =0.

As m — o, the endpoints of the intervals based on K,, tend to some
functions ¢,(¢) and ¢,(¢). In order to determine ¢,(¢) and ¢,(¢), we define

(2.17) K, o=inf(KeK,: K>t

Then for given ¢ and s, the confidence interval at the mth stage is
(6K, ;1)s% d(K,, ;1)s?), where (K, i) and ¢o(K,, ;) satisfy

i 1 Km i
f¢2(Km,t(t))fn+4(_)Fp( ’ (t)) dx
( 1K ity x x
2.18)
‘ 1 Km i
= ¢2(Km,t(t)+1)fn+4(_)Fp( » (t)) dx
¢1(Km,t(t)+l) x x
and
f { 1 }F T(Kmyi(t))
n+4
(2 19) * ‘;bl(Km,i(t)) P ¢1(Km,i(t))

-f { - }F{ (K, i) }
nd ¢2(Km,i(t)) P ¢2(Km,i(t))
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Now use Taylor’s theorem and replace F,(K,, ;,,/x) in the RHS of (2.18) by
its series expansion around K, ;. .1, keeping the first two terms. We obtain

i 1 Km i
¢2(Km,z(t))fn+4(_)F ( ,1(2) ) dx
X X

31K iy i
¢2(Km,i(t)+1) 1 Km,i(t)+1
=/ Fora| = |{ Fp| =202
(2 20) ) ¢1(Rm,z(t)+1) x X
. 1 K _.
m,i(t)+1
+(Km,i(t)-_ Km,i(t)+1);fp(*x—)
2 2
K,.»—K,, 1 K,
+( m,i(t) 5 m,L(t)+1) (_) f;(—)}dx,
X X

where K, is some number in the interval (K,, ;. K,, ;;)+1)- Bring the first
term of the RHS of (2.20) to the left of the equality, divide both sides by
K, ity = K, is+1 and take the limit as m goes to +o. By the construction of
the array the difference K, ;,, — K, ;;)+1 tends to zero and K,, ;,, tends to
t. Hence equation (2.20) becomes

d [ o0 1 t 0 1\1 (¢
(2.21) %[m food 3 )55 | - oo oo 5 ) 555 2

The limit of the RHS is justified because the remainder term disappears. Since
the derivative f, is bounded on finite intervals, the integral

o e ()

¢1(Km,i(t)+ 1) x x
is also bounded. Hence lim,, , (K, ;,, — K,, ;s)+1) = 0 implies that the re-
mainder tends to zero. Using Leibniz’ formula for the differentiation of the
integral, equation (2.21) can be written

do,(t) 1 t _ dy(t) 1 t
dr fn+4{ o.(2) }Fp{ é.(t) } Tdt fn+4{ da(2) }Fp{ ba(t) }

On the other hand, since we have assumed that the function 7 is continuous,
equation (2.19) becomes

2.24 ) Y EACR B sy AL
(2:24) fn+4{ ¢1(t)} P{ ¢1(t)} _f"”{ ¢2(t)} "{ 4’2(”}'

In order to solve equations (2.23) and (2.24) for ¢, and ¢,, we heed initial
conditions which are given by the equalities

(2.23)

1 1
(2.25) lim ¢,(t) = — and lim$y(¢) = —.
tosco b, P a,
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It is obvious that for different forms of the function r we have different
confidence intervals. We will denote the intervals by C (s? ¢). By the Lebesgue
dominated convergence theorem, the confidence coefficient of any interval
constructed in this way is 1 — a@. For the length of the limiting intervals, we
have the following result.

THEOREM 2.5. For every t < «, the length (¢,(t) — ¢,(¢))s? is smaller than
1/a,) — 1/b,)s2

ProoF. Rearranging equations (2.23) and (2.24) yields

(226 dg(t) Flt/¢:(t)) _ deu(t) Fft/é:(1))
' di  F{r(t)/$(t)]  dt F(r(¢)/di(2)]

Using Lemma A.5 with x; = 7(¢)/¢$(8), x5 = 7(t)/do(¢), B = t/7(¢), we have
that d[¢,(2) — ¢(£)]/d¢t > 0, that is, the length is an increasing function of ¢.
But we know that

1 1
(2.27) lim [$5(¢) = $u(8)] = — —

a, bn

so for any ¢ < +, the length is strictly smaller than (1/a,) — (1/5,))s2. O

It is interesting to see how the endpoints of C,(s?¢) degenerate in some
special forms of the function 7(K). If 7(K) = «, then equation (2.7) becomes

1 1
(2-28) fn+4{ ¢_1(K_) } = fn+4{ ¢2(K) }

and, together with equations (2.5), implies that ¢,(K) and ¢,(K) coincide
with 1/b, and 1/a,, respectively. Therefore the interval based on one cutoff
point is identical to Cy;(s2). By taking more cutoff points we do not shift the
endpoints, therefore the limiting interval coincides with the usual minimum
length confidence interval based on s? alone.

On the other hand if we take 7(K) = K the endpoints after the first step
are ¢(K) and ¢3(K). It is tempting to choose such a function 7, since, if we
do so, we maximize the gain in terms of length at the first step. However, by
filling (0, +) with cutoff points, the defining limiting equations (2.23) and
(2.24) imply

ddy(t)  dos(t)
d dt

hence the interval has constant length. Because of the initial conditions, we
can conclude that

(2.29)

1 1
(2.30) o(2) — di(t) = — — b = Co-

a
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Substituting ¢,(¢) + ¢, for ¢,(¢), equation (2.24) becomes

2.31 - F, . 1 F t
(2.31) f"*“{«m(t)} "{¢1(t)} _f"”{fbl(t) +co} "{fbl(t) +00}’

which, surprisingly enough, is the defining equation for Shorrock’s interval. It
is interesting to note that every interval, based on a finite number on cutoff
points has length less than the usual or Shorrock’s interval but the limiting
length is equal to c,s2.

The partitioning construction can be implemented to construct improved
confidence intervals using the ratio of endpoints as a measure of volume. The
minimum ratio intervals based on s2 alone, tabulated by Tate and Klett
(1959), have endpoints satisfying

(282)  [“fux)dr=1-a and a,fy(a,) = b,fu(by)-

Building upon them in same way as for minimum length intervals, we
arrive at a slightly different set of equations:

do(t) 1 t d,(t) 1 t
(2.33) ar fn+4{ é:(2) }Fp{ é.(2) } - dt fn+4{ bo(2) }Fp{ do(t) },

(2.34) P { 1 P 7(t) 3 1 P 7(t)
' nr ¢1(t)} p{¢1(t)} _f"+2{¢2(t)} "{fﬁz(t)}’
with initial conditions
1 1
(2.35) lim 6,() = = and lim () =

The ratio of the endpoints can be shown to be smaller than the ratio of Tate
and Klett intervals while the converge probability is maintained above 1 — a.

It is interesting to notice that the construction does not heavily depend on
properties of the chi-squared densities. The most important property that was
used is the monotone likelihood ratio of the noncentral chi-squared in the
noncentrality parameter. Hence, extensions to the general case of estimating a
scale parameter when the location parameter is unknown are straightforward.
For a treatment of the general problem, see Goutis and Casella (1990).

We now investigate numerically the gains in coverage probability and
expected length of the confidence intervals with endpoints given by equations
(2.23) and (2.24). Previous relative risk calculations for the point estimator
[Rukhin (1987)] and the numerical results of Shorrock (1990) suggest that the
improvement is minimal for small values of p. However, the gains are sub-
stantial for small and moderate n and for p large relative to n.

The endpoints of the intervals depend on a rather arbitrary function 7(¢)
and the numerical results show that dependence of both coverage probability
and expected length on 7(¢) is rather strong. For different functional forms we
have little feeling about what to expect, so we chose a wide variety of 7(¢)
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0.06 { — 2t
——————— t?+1
t+1

1.5t

0.00 4

NONCENTRALITY PARAMETER

Fic. 1. Expected relative improvement in length forn = 25, p = 10 and 1 — a = 0.95.

forms. The functional forms of 7(#) which seem to be optimal are moderately
or slowly increasing. Rapidly increasing 7(¢) have an effect only when n is
small. For large n only moderately increasing 7(¢) can change the coverage
probability and the length substantially.

In Figure 1 we see that the largest relative gain in length that we obtained
was about 5.3%. Figure 2 shows that the largest difference between coverage
probability and confidence coefficient was about 0.0033. The wide selection of
7(¢) makes it difficult to find an optimal functional form and suggests that
there may be other forms that perform better. However, among the intervals
we computed, none dominates the others in both coverage probability and
length.

The coverage probability and expected length were calculated by numerical
integration. The computations were performed on the Purdue University
Computing Center’s IBM 3090-180E computer using FORTRAN programming
language and IMSL subroutines. The graphs were produced on Cornell Uni-
versity’s IBM 3090-200 computer using SAS/GRAPH.

3. Posterior probabilities. The Brewster-Zidek and Shorrock estima-
tors are generalized Bayes rules, as are the intervals constructed here. The
posterior probabilities of these intervals are a natural candidate for a post-data
assessment of the confidence in these interval estimators. A question that
arises is how these probabilities compare with the nominal value 1 — «, the
predata coverage probability. We examine these comparisons and find that our
improved interval can have a post-data probability higher than 1 — «, allowing
a uniformly higher post-data confidence report.
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0.9535 4 — 2t

—_—— t7+1

S——-— t+1

0.9528 - / \ _— 1.5¢
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0.9514

<-4AHCrHOD>»@®ODT moe>»o3dImM<O0
(=]
o
~

0.9500

NONCENTRALITY PARAMETER

Fic. 2. Coverage probability forn = 25, p = 10 and 1 — « = 0.95.

Although the interval C.(s%¢) is itself generalized Bayes, its prior is ex-
tremely difficult to deal with. Because of this we examine the posterior
probabilities of C,(s? ¢) with respect to the Brewster-Zidek prior and with
respect to the prior

1
(3.1) 77.(0-2,#1,#2”"’MP) = F,
whose highest prosterior density region is the usual minimum length interval.

The Brewster and Zidek point estimator and the interval constructed by
Shorrock were shown to be Bayes rules with respect to the prior

1\7/2 o u)—_‘,p,% u®/2-1
(3.2) w(gz,p,l,p,z,...,p,p)=(—2) foexp(— ) du.

o 202 u+1

There are several versions of this prior depending on the setup and the
parameterization of the problem, but we can represent the posterior density as

fn+4(82/02)Fp(82t/02)
(s®/n(n + 2))F, .((n/p)t)’

where F, , denotes the F cumulative distribution function with p and n
degrees of freedom.

(3.3) m(o?|s?,t) =

TueoreM 8.1.  For p < 2, if yN(s?,¢t) is the posterior probability of C,(s2,t)
with respect to the prior given by (3.2), then yM(s%,t) > 1 — a.
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Proor. The proof again uses the construction of C.(s2¢) as a limit of
intervals based on a finite number of cutoff points. First observe that the
posterior probability of I)(s? ¢, K) of (2.4) with respect to the prior (3.2) is
greater than the posterior probability of the interval C(s2) for every ¢, with
strict inequality if ¢ < K. This follows from reasoning as in Theorem 2.1 and
Lemma A.5. Then we can show that the interval I,(s? ¢ K,) has posterior
probability greater than that of Cy;,(s?). Now by applying the Lebesgue domi-
nated convergence theorem we see that yM(s? t) is greater than or equal to
the posterior probability of Cy(s2). The latter will be denoted by vu(s2 t) and
by change of variables it is equal to

F (tx
(3.4) u(s* 1) =Lbn% -

We show next that y;(s%¢) > 1 — & for p < 2. The proof is based on the
observation that if a function has negative second derivative when the first
derivative is zero, then the only possible interior extremum is a maximum.
Checking the values of the function in the boundary points will give us the
lower bound of the function.

Differentiating with respect to ¢, the first derivative of vy (s t) is

(n/p) f,,.((n/p)t)
F, .((n/p)t)

b, fn(x)xfp(tx) _ fn(x)Fp(tx) »
a, (n/p)fp,n((n/p)t) Fp,n((n/p)t) ’

where f,  denotes the F density with p and n degrees of freedom. Using the
explicit formulae for the chi-squared densities and simplifying, we can see that

fu(x)xfp(t2)
(n/p) fp,.((n/p)t)

Therefore substituting in (3.5) and making the transformation w = (¢ + Dx,
the derivative becomes

d
@l (s ] =
(3.5)

(3.6)

faspl (2 + )2}

(1) fy n((n/DYE) [ o cens @B
o (/20 sy Fren@) o = [ G S da .

The last expression is zero only when the term in braces is zero. Differentiat-
ing once more and ignoring the zero terms, the second derivative is negative if
and only if

(3.7)

an fn+p{(t + l)an}
by frip{(t + 1)b,}

Using the condition f,,,(a,) =f,,(b,), after substituting the formula for

(3.8)
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the chi-squared density and simplifying we have

3 9 a, n+p{(t + l)a’n} a('f/2)"1e—(tan/2)
( . ) bn fn+p{(t + l)bn} - bslp/2)"1e-(tbn/2)’

which, since a, < b,, is greater than 1 for every positive ¢ and p < 2.
Next we check the boundary points. Using (3.4) we have

(3.10) limy, (5%, 1) = ["f,(x) dx = 1 - a.
t— o0 a,
At the other endpoint, using I’Hépital’s: rule and (3.6),
(3.11) limyy (s, 6) = [*f,.p(2) dx,
t— a,

which for p = 1,2 can be shown to be greater than 1 — a. If P, denotes the
probability Pla, < x7 < b,}, where xZ is a chi-squared random variable with
k degrees of freedom, integration by parts yields

(3.12) P,=P, o+ 2{fk+2(bn) - fk+2(an)}-

Since f,,4b,) =f,.4a,), (3.12) implies P,,, > P, =1 —a. For p =1, we
use the variation-reducing properties of the chi-squared density [see Brown,
Johnstone and MacGibbon (1981) for definitions and details]. Suppose that
P,,, were less than or equal to 1 — a. Since lim, ,, P, = 0, for every C €

[P,,,, P,], the maximum number of sign changes of the sequence P, — C,
counting zeros as either + or —, would be at least three. But

(3.13) P, - C=E(l, ,,(x}) - C}

and, since chi-squared densities belong to the exponential family, we know
[Example 3.1 of Brown, Johnstone and MacGibbon (1981)] that the number of
sign changes of P, — C as a function of % cannot exceed the number of sign
changes of I, , (x) — C as a function of x. Hence we must have P, , >
1 — a, which implies yV(s% ¢) > y;,(s%,¢) > 1 — a, proving the theorem. O

The proof of the Theorem fails for p > 2 because we cannot show inequality
(3.8) to be true and also

. by,
(3.14) I}T;[anfw(x) dx =0,

which implies that, for sufficiently large p, the limit cannot be greater than
1 — a. Hence, we know that the posterior probability of the interval C(s?) is
below 1 — a for small ¢ and large p. However, we believe that the inequality
yN(s%,t) > 1 — a is always true because for small ¢ and large p, the endpoints
of C,(s?¢) are far from the endpoints of Cy(s?) and we expect their respective
posterior probabilities to differ substantially.

Using the usual generalized prior, we obtain a very different result for
C.(s2t).
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TueoREM 3.2. If yF(s%t) is the posterior probability of C.(s%t) with
respect to the prior given by (3.1), then yF(s%,¢t) <1 — a.

Proor. The posterior density with respect to (3.1) after integrating out p
is
n(n + 2) s?
(315) 77(0'2|s2,t) = T n+4(?)’
hence, after a change of variables,
(3.16) yP(s2) = [V (x) dx.
1/¢5(8)

Now if we differentiate with respect to ¢, applying Leibniz’ rule we get

dyf(sz,t)_d%(t)( 1 )f( 1 )

(3.17) dt dt dy(t) dy(t)
_dm(t)( L ) (;
i \6:0)) ")

Using equation (2.23) we can see that, since F,(t/¢4(t)) < F,(t/$(t)), the
derivative is positive which implies that the function y’(s2 ¢) is increasing in
¢. But lim, ,, ¢,(¢) = 1/b, and lim, ,, ¢5(¢) = 1/a,, so

(318)  maxyP(s%1) = limy(s%1) = ["fy(x)dx =1 a,
t t— o a,
which completes the proof. O

A consequence of the above bounds on the posterior probabilities is that
there are no positively biased or negatively biased relevant betting strategies
[in the sense of Robinson (1979)] if we quote confidence 1 — a. Hence the
confidence interval C,(s? ¢), with associated confidence 1 — a, has reasonable
conditional properties. However, if we attach confidence y(s2% ¢) to C.(s2,t),
we obtain a procedure with even stronger conditional properties. This latter
procedure provides a frequentist inference that is more data-sensitive than the
statement of 1 — a confidence and exhibits good behavior against conditional
criteria. For definitions and a formal introduction of the conditional properties
using a betting based theory; see Robinson (1979) and for details about the
conditional properties of C,(s% ¢), see Goutis, Casella and Maatta (1989).

APPENDIX

Lemma A.l. If a differentiable function f(x) defined on the real line has
f'(x) < 0 whenever f(x) = 0 and there is an x, such that f(x,) = 0, then f(x)
is positive for x < x, and negative for x > x,,.
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Lemma A.2.  If ¢(K) is defined by (2.5) and (2.6), then ¢,(K) < 1/b, for
any choice of v and K.

Proor. From equation (2.5), we see that neither of the sets (¢,, ¢;) and
(1/b,,1/a,) can be a proper subset of the other. Therefore we may have the
following cases:

(i) 4)1 < l/bn < ¢2 < l/an,
(ii) ¢‘l < ¢2 < l/bn < l/an’
(iii) 1/, < ¢, <1/a, < ¢s,
(v) 1/b, < 1/a, < ¢; < ¢,
W) 1/b,=¢,<1/a, = ¢,.
We will show that cases (iii), (iv) and (v) are vacuous. Using the unimodality
of f,.41/x)F,(r(K)/x), from Lemma A.4 and equation (2.6), we have for
every x € (¢, d,),

1 (K 1 K
(A1) fn+4(;)Fp(_(x—)) > frsa ¢_)Fp T(¢ )
and for every x € (0, ¢,),

1 (K 1 (K
(A2) fn+4(;)Fp( (x )) <fn+4 ¢_)Fp (4) )

and f,,1/2)F,(7(K)/x) is increasing in x.
If1/b, < ¢, < 1/a,, then equations (A.1) and (A.2) imply

(A-3) fara(b,) Fp(7(K)b,) < f,.4(a,)F(7(K)a,),

which contradicts f, . 4(b,) = f, . (a,) since F,(r(K)x) is increasing in x and
b, > a,. Hence case (iii) is not possible. By similar arguments we can show
cases (iv) and (v) to contradict f,.,,(b,) =Ff,,4(a,), hence we must have
¢(K)<1/b,. O

Lemma A3. If ¢(K,) and ¢(K,) are defined by equations (2.14)-(2.16),
then ¢(K,) > ¢(K,).

Proor. The proof is similar to that of Lemma A.2. There are five possible
cases and using similar arguments, cases (iii), (iv) and (v) imply that

&9 ool ey |2y <h{aes |5 3R)

' " ba(Ky) [P\ d(Ky) | T 0u(Ky) [P $:( K1) ’
analogous to equation (A.3). Now, by using equation (2.16) with i = 1, (A.4) is
equivalent to

F(r(K)/6(K)) _ Fylr(Ky) /6o Ky)
Fp{T( K1) /é4( K1)] h Fp{"'( K,)/da( Kl)] .

(A.5)
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Applying Lemma A.5 with x, = 7(K,)/¢(K,), x, = 7(K,)/d,(K,) and B =
7(K,)/7(K,) (note that B < 1 since the function 7 is increasing), we obtain
the necessary contradiction. O

Lemma A4. If f, and F, denote, respectively, the chi-squared probability
density and cumulative distribution function with k degrees of freedom, then
for any integers n and p and positive constant M, the function
fo+4(/2)F,(M/x) is a unimodal function of x.

Proor. Straightforward calculation. O .

LemvA A5. Let F, be a chi-squared distribution function with p > 1
degrees of freedom. If B < 1 and x, > x,, then

Fp(Bxl) S Fp(sz)
F,(x) Fy(xy)

(A.6)

Proor. It follows from the fact that the gamma densities have monotone
likelihood ratio in the scale parameter [see also Lemma 4.2 of Cohen (1972)].
O
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