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COMPARISON OF TWO BANDWIDTH SELECTORS WITH
DEPENDENT ERRORS'

By C.-K. CHU AND J. S. MARRON

National Tsing Hua University and University of North Carolina,
Chapel Hill

For nonparametric regression, in the case of dependent observations,
cross-validation is known to be severely affected by dependence. This effect
is precisely quantified through a limiting distribution for the cross-vali-
dated bandwidth. The performance of two methods, the ‘‘leave-(2/ + 1)-
out” version of cross-validation and partitioned cross-validation, which
adjust for the effect of dependence on bandwidth selection is investigated.
The bandwidths produced by these two methods are analyzed by further
limiting distributions which reveal significantly different characteristics.
Simulations demonstrate that the asymptotic effects hold for reasonable
sample sizes.

1. Introduction. Nonparametric regression is a smoothing method for
recovering the regression function from noisy data. It has been well estab-
lished as a powerful and useful data-analytic tool. See the monographs by
Eubank (1988), Mueller (1988) and Hardle (1990) for a large variety of
interesting examples where applications of this method have yielded analyses
essentially unobtainable by other techniques.

The simplest and most widely used regression smoothers are based on
kernel methods. Kernel estimators are local weighted averages of the response
variables. The kernel function is a given function to calculate the weights
assigned to the observations. The width of the neighborhood in which averag-
ing is performed is called the bandwidth or smoothing parameter. The magni-
tude of bandwidth controls the smoothness of the resulting estimate of the
regression function. For independent observations, cross-validation is an at-
tractive data-based method for choosing the bandwidth, although it suffers
from considerable sample noise. See Hirdle, Hall and Marron (1988) for a
detailed discussion of this. For other bandwidth selectors, see also Rice (1984)
and Marron (1988).

However, if the observations are dependent, then the bandwidth selectors
designed for independent observations will not produce good bandwidths. For
instance, if the observations are positively correlated, then cross-validation will
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TWO BANDWIDTH SELECTORS WITH DEPENDENT ERRORS 1907

produce small bandwidths which result in rough kernel estimates of the
regression function. On the other hand, if the observations are negatively
correlated, then cross-validation will produce large bandwidths which result in
oversmooth kernel estimates of the regression function. See Hart and Wehrly
(1986), Chiu (1989), Diggle and Hutchinson (1989) and Hart (1991) for a
detailed discussion of the effect of dependence on bandwidth selection.

For dependent observations, a central limit theorem (CLT) for the cross-
validated bandwidth is given in Section 3 which quantifies the effect of
dependence on cross-validation by showing what this bandwidth converges to
and by giving the rate of convergence for the cross-validated bandwidth. The
rate of convergence is of the same order as that given in Hardle, Hall and
Marron (1988) for the case of independent observations, although the conver-
gence is now not to the optimal bandwidth. This quantification motivates a
modification of cross-validation to eliminate the dependence effect.

This adjustment is called modified cross-validation (MCV) and is simply the
“leave-(2] + 1)-out” version of cross-validation. See Hardle and Vieu (1987),
Vieu and Hart (1989) and Gyorfi, Hirdle, Sarda and Vieu (1989) for earlier
results on applications of this method to various settings involving mixing
data. Section 3 contains a CLT for the modified cross-validated bandwidth, for
each [ > 0. This CLT shows clearly how the effect of dependence on cross-
validation is alleviated as the value of [ is increased. The value of ! does not
appear in the rate of convergence.

There are other possibilities for overcoming the effect of dependence on
bandwidth selection. Marron (1987) proposed partitioned cross-validation
(PCV) for kernel density estimation to eliminate the sample noise inherent to
cross-validation. The idea of PCV is to split the observations into g subgroups
by taking every gth observation. For correlated data, as long as g is large
enough, the errors associated with each subgroup are essentially independent.
Marron (1987) mentioned that this method of cross-validation should effec-
tively overcome the dependence effect. While this is true, the resulting band-
width is poor for a surprising reason. In Section 3, a CLT for the partitioned
cross-validated bandwidth is derived, for each g > 1. The rate of convergence
of this bandwidth is faster than that for the modified cross-validated band-
width. This rate of convergence is of the same order as that given in Marron
(1987) for kernel density estimation. However, the asymptotic mean of this
bandwidth reveals that there is a significant distance between the partitioned
cross-validated bandwidth and the optimal bandwidth which minimizes the
mean average square error. In fact the limiting distribution of this bandwidth
is centered at the bandwidth which is optimal for no dependence, which is
different from the true optimum. Essentially, PCV does not work well because
it is too effective at removing the dependence.

When dependent observations are considered in nonparametric regression, a
convenient dependence structure for analysis is the class of ARMA processes
in time series analysis. Section 2 describes the regression setting and the
precise formulation of MCV and PCV. The asymptotic behaviors of bandwidth
estimates produced by MCV and PCV are given in Section 3. Based on the
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linear structure of ARMA processes, the results of this paper could be extended
directly to a more general dependence structure. Section 4 contains simulation
results which give additional insight into what the theoretical results mean.
Finally, sketches of the proofs are given in Section 5.

2. Regression model and bandwidth selectors. In this paper, the
equally spaced fixed design and the short-range dependence nonparametric
regression model is considered. The model is given by, for j = 1,2,...,n,

(2.1) Y, =m(x;) +¢;.

Here m is a smooth unknown regression function defined on the interval [0, 1]
(without loss of generality), x; are equally spaced fixed design points, that is,
x; =j/n, ¢; are an unknown causal ARMA process [see Definitions 3.1.2 and
3.1.3 of Brockwell and Davis (1987) for this process] and Y; are noisy observa-
tions of the regression function m at the design points x;. In this model, the
design points become closer together as the sample size increases, but the
error process remains the same.

To estimate the regression function m, we consider a kernel estimator as
introduced by Nadaraya (1964) and Watson (1964). Given a kernel function K
and a bandwidth %, for 0 < x < 1, the Nadaraya-Watson estimator is defined
by

n_lZ?=IKh(x - x;)Y;

(22) rr"z(x) = n_l}:,'-;lKh(x—xi) )

where K,(-) = h='K(- /h) [if the denominator is 0, take #(x) = 0]. See Chu
and Marron (1990) for the comparison of this estimator to other types of
kernel estimators.

The optimal bandwidth, 4 ,,, is taken as the minimizer of the mean average
square error (MASE) defined by

(2.3) dy(h) = E|n1 él(m(xj) ~m(x;))'W(z,)|,

where m(x;) are kernel estimators of m(x;). The weight function W is
introduced to allow elimination (or at least significant reduction) of boundary
effects by taking W to be supported on a subinterval of the unit interval [see
Gasser and Mueller (1979)].

For any [ > 0, the “leave-(2] + 1)-out” version of MCV is to choose the

bandwidth by minimizing the modified cross-validation score
1> (oA 2
CV(h)=n"1Y (mj(xj) - Y}) W(x;).
j=1

Here 7 ;(x;) is a “leave-(2] + 1)-out” version of /7(x;), that is, the observa-
tions (x;,,,Y;,;), -l <i <], are left out in constructing s(x;). For the
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Nadaraya-Watson estimator, 17 ;(x;) are defined by

(n—21- 1)'_1}:i:li—jl>th(xj - x;)Y;
(n - 2] - 1)_12,-;|,~_jl>th(xj - xi)

ﬁzj(xj) =

The amount of dependence between 7 ;(x;) and Y; is reduced as [ is increased.
Let ﬁMCV(l) denote the minimizer of CV,(h). When [ = 0, MCV is ordinary
cross-validation.

For any g > 1, PCV involves splitting the observations into g subgroups by
taking every gth observation, calculating the ordinary cross-validation score
CV,, (k) of the kth subgroup of observations separately, for £ = 1,2,..., g,
and minimizing the average of these ordinary cross-validation score

g
CV*(h) =g ! EICVO,k(h).

If n is not a multiple of g, then the observations Y}, j < gln/g], are applied
to construct CV*(k) and the rest of the observations are dropped out in
constructing CV*(A). The notation [x] denotes the largest integer which is less
than or equal to x. Here for simplicity of notation, assume n is a multiple of g.
The amount of dependence inherent to each CV,, x(h) is reduced as g is
increased. The minimizer of CV*(%) is denoted by A%. Since A%, is appropri-

ate for the sample size n /g, the partitioned cross-validated bandwidth BPCV( 0
is defined to be the rescaled A%y, Rpcve) = 8~ 1/5h% . This scale factor is
explained in Section 5. When g = 1, PCV is ordinary cross-valldatlon

3. Results. In this section, we shall study the asymptotic behaviors of
ﬁMCV(l) for any />0, and hpcv(g) for any g > 1. For these, using the
regression model (2.1) and the kernel estimator (2.2), we impose the following
assumptions:

(A.1) The regression function m(x) supported on the interval [0,1] has a
uniformly continuous and square integrable second derivative m”(x) on
the interval (0, 1).

(A.2) The kernel function K is a square integrable and symmetric probability
density function with support contained in the interval [ -1, 1]. Also, K
has a Holder continuous of order 1 second derivative. The function f is
said to be Holder continuous of order 1 if there is a constant b such that
If(s) — f(®)| < b - |s — t| for any s and ¢ in the domain of f.

(A.3) The weight function W is bounded, Holder continuous of order 1 and
supported on a subinterval of the interval (0, 1).

(A.4) The regression errors ¢; are obtained from e; by application of a casual
linear filter [see Definition 3.1.3 of Brockwell and Davis (1987) for the
filter]. Here e; are independent and identically distributed (iid) random
variables with mean 0 and all finite moments.

(A.5) The autocovariance function y(-) of ¢; satisfies 0 < L5_ _.y(k) < .
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(A.6) The total number of observations in this regression setting is n, with
n — », The “leave-(2/ + 1)-out” version of MCV is applied. The number
of subgroups of PCV is g. The number of observations of each subgroup
of PCVis n =n/g.

(A.7) For any ! > 0, the minimizer of CV,(k) is searched on the interval

H, =[an"Y% Bn~15) for n =1,2,... . For any g > 1, the minimizer
of CV*(h) is searched on the interval H, , =[an~'/% Bn~'/?], for
n =1,2,... . Here the constant « is arbitrarily small and B is arbitrar-
ily large.

Under the above assumptions, it is shown briefly in Section 5 that d,,(%)
can be asymptotically expressed as

(3.1) dy(h) = V(rh) ™" + Byh* + o((nh) ™" + R*),
where

V- £ vw)freyw,

k= —

B, = %(/uzK)Zf(m”)ZW.

Here and throughout this paper, the notation | denotes [du. For the compo-
nents of MASE, V(nh)~! and B,h* represent the variance and the bias
square, respectively. A consequence of (3.1) is that the optimal bandwidth % ,,
can be asymptotically expressed as

(3.2) hy = Cn~Y3(1 + 0(1)),

where

o= [am] "= £ om)repwlgen) (mw) ]

We now quantify the effects of dependence on MCV for each ! > 0 and PCV
for each g > 1, through the following limiting distributions which are shown
in Section 5. Let the coefficients Vyycy;, and Cycy;, be the coefficients V and
C with [Z5__.y(k)[K?] replaced by [L3_ _.y(k)/K? — 4K(O)L,.,y(k)] in
each case. Let the coefficients Vpcy(,, and Cpcy(,, be the coefficients V and C
with [Z%_ _.y(k)[K?] replaced by [Z5__.y(gk)/K? — 4K(0)L,. ,y(gk)] in
each case.

1/5

THEOREM 1. Under the above assumptions, if By > 0, Vycyq > 0 for
hovay and Veovigy > 0 for hpoveg), then

(3.3) nl/lo[ﬁMCV(l)/hM - CMCV(I)/C] = N(O,VARMCV(I))’
(34)  g¥°n"| hpovigy/ha — Crovigy/C| = N(0, VARpey(p)),
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where
Cucvr | [ 52 7
VARMCV(!) = C kZ Y(k) Cuy»
- —2/5
VARPCV(g) = Cg Z Y(k) CM
k= —o
and where
c ( 8 ) J(K*(K -L) - (K~ L))*/W?
M= \|== 1/5
IR WY (Ju*K)*(j ()W)
L Loy (J)y(J — ig)
Ce = w 2 82
[Z5-_v(gk)[K? - 4K(0)L, o¥(gk)]
Here L(u) = —uK'(u), * means convolution and K' denotes the first deriva-
tive of K.

REMARK 3.1. If Viycyy < 0, then BMCV(,) is at the left end of H, asymptot-
ically. If Vpey(,, < 0, then fzpcv(g) is also at the left end of H, , asymptoti-
cally. Theorem 2 of Hart (1991) gave a similar condition such that, with
probability tending to 1, cross-validation picks arbitrarily small bandwidths in
the case of positively correlated data. If B, = 0, then, asymptotically, % ,, is at
the right end of H,, and ﬁMCV(,) and ﬁpcv( o) are at the right or the left ends
of H, and H, , respectively, depending on the values of Vycy,, and Vpcy,)-

REMARK 3.2. The rates of convergence of k,,, A Mcvy and ﬁpcv(g) are of
the same order as those given in Hirdle, Hall and Marron (1988) and Marron
(1987) for the respective cases with independent observations.

REMARK 3.3. In the case of independent observations, the ratios Cycy;),/C
and Cpcy,,/C are equal to 1 for any values of / and g. However, when the
regression errors ¢; are a casual ARMA process, these two ratios have differ-
ent values. For MCV, if [ increases, then Cycy),/C converges to 1 at a
polynomial rate [see Exercise 3.11 of Brockwell and Davis (1987) for this
convergence rate]. This means MCV would produce a nearly asymptotically
unbiased bandwidth with respect to %, whenever / is moderately large. For
PCV, if g increases, then Cpcy,,/C converges to [y(0)/Z%_ _.y(k)]I'/® at a
polynomial rate. This means PCV would produce an asymptotically biased
bandwidth with respect to 4,,, no matter how large the value of g is. This
asymptotic bias is caused by the distance g/rn among the observations of each
subgroup. An immediate remedy for reducing this bias is to split the observa-
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tions into g subgroups by taking every gth cluster. Each cluster is composed
of { consecutive observations. Thus PCV would be able to reflect the depen-
dence structure of the data through that of each cluster. In this case, if g
increases, then Cpcy,,/C converges to [T, ., v(k)/L5%_ _.y(R)]'/®. A draw-
back of this approach is that it will often require too many observations.

ReMArk 3.4. Consider ¢; as observations on a weakly stationary process
which has a spectral density f(A), —7 < A < 7. Based on the results of Section
2.1 of Olshen (1967), ¢; are a moving average &; = L7__.;e;_;, where
L. _.¥? <~ and e; are orthonormal random variables, that is, E[e;e;] = ;.
In this case, Theorem 1 and Remarks 3.1 through 3.3 still hold if ¢, satisty

%= —wlky(R)| < o and e; have the same properties as they did in (A.4). Here

y(k) are defined by y(k) = E(e2)L7_ _ ¥, ,, for all integers k.

ReEMARK 3.5. The bandwidth selectors of Chiu (1989) and Hart (1991) are
modifications of Mallow’s criterion. Based on the parametric model of the
spectral density of &;, Hart and Chiu proposed methods to estimate the
unknown factors of this criterion. If their estimates of the unknown factors
converge to the true values with a rate n~!/2 (or somewhat slower than
n~1/2) then the limiting distributions of their bandwidth estimates are the
same as that of ﬁMCV( ;) for the case that [ is sufficiently large to get rid of the
dependence effect. This is based on the asymptotic equivalence of cross-valida-
tion and Mallows’ criterion. See Hirdle, Hall and Marron (1988) for this, in
the case of independent observations. However, if the underlying model of the
spectral density of ¢; is incorrect, then their methods can not be expected to

perform as well as MCV.

ReMARK 3.6. A possible approach for practical choice of the value of [ is
based on an analogue of the mean square error [see Marron (1987) for the
discussion of this idea]. Using the asymptotic variance and the asymptotic
mean of ;;'MCV(I) /hy, given in (3.3), the asymptotic mean square error (AMSE)
of this ratio is defined by

(35)  AMSE(Ayevey/hu) = 75 VARyove + [Cumovay/C — 1]%

Theoretically, if there is a value !, which minimizes (8.5) over [ > 0, then [, is
taken as the optimal value of [ in the sense of AMSE. For positively correlated
data, the value of [ is as large as possible. In other cases, the value of /, may
depend on the unknown factors m and y(:). In practice, we may plug
estimates of the unknown factors into (3.5) to get an estimate [, of I,.
However, the performance of [, o derived by this approach needs further study.
The same ideas apply to g. Based on this plug-in AMSE approach, it is also
possible to choose between MCV and PCV, depending on which gives the
smallest estimated AMSE. The performance of this approach also needs fur-
ther study.
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4. Simulations. To investigate the practical implications of the asymp-
totic results for ﬁMCV(l) and ﬁPCV( o) presented in Section 3, an empirical study
was carried out. We shall first introduce the simulated regression settings. The
sample size was n = 200. The regression model (2.1) and the kernel estimator
(2.2) were considered. The regression function was m(x) = x3(1 — x)® for
0 < x < 1. The kernel function was K(x) = (15/8)1 — 4x2)®> for —1/2 <x <
1/2. The weight function was W(x) = 5/3 for 1/5 <x < 4/5. The same
functions m and K were also used in Rice (1984) and Hardle, Hall and
Marron (1988). The regression errors &; were an AR(1) process, that is,
g; = ¢&;_; + e;, where e, were pseudo iid normal random variables N(0, a?)
and &, was N(0,0%/(1 — ¢?)). The AR(1) parameters were ¢ = 0.6 and
o = 0.0071, although discussion of others is given in Section 6.2 of Chu (1989).
For the given m, K, W and ¢, based on (3.2), this value of ¢ made h,,
roughly equal to 1/2. The reason for choosing %, = 1/2 in this simulation
study is that, given any A in the neighborhood of 4 ,,, there were still several
observations used by the kernel estimates in CV,(k) and CV*(%) even when
large values of ! and g were considered. In this case, the characteristics of
MCV and PCV are more clear. For this combination of ¢ and o, 1000
independent sets of data were generated. For MCV, the values of [ were
0,1,2,...,14. For PCV, the values of g were 1,2,...,15. For each data set,
the values of d4(k) given in (5.4), CV,(k), and CV*(h) were calculated on an
equally spaced logarithmic grid of 11 values. The endpoints of the grid were
chosen to contain essentially all the bandwidths of interest. Here the value of
d (k) was empirically approximated by averaging d ,() over the 1000 pseudo
data sets, for each given value of A. The minimizers A, szCV(,) and A%y, of
d(h), CV,(h) and CV*(h), respectively, were calculated. After evaluation on
the grid, a one-step interpolation improvement was done, with the results
taken as the selected bandwidths. If these functions had multiple minimizers
on the grid, the algorithm chose the smallest one, respectively (the choice
could be made arbitrarily).

The sample variances, the sample bias-squares, and the sample mean
square errors (MSE) of the ratios h/h, were summarized. Here A denotes
i;'MCV(l) or hpcy) in each respective case. The sample bias-square of h/hy
was taken as the square of the average of the 1000 values of A /hy — 1. The
sum of the sample variance and the sample bias-square was taken as the
sample MSE. The numeric results are given in Table 1.

Since the data are positively correlated here, most ordinary cross-validated
bandwidths ﬁMCV(O) and hpeyq, were at the left ends of the bandwidth
selection intervals. Hence the sample variances of A ycy,/h ) and fzpcv(l) /Py
were very small. As the values of ! and g increased, the magnitude of both
effects of dependence on MCV and PCV decreased and the values of A moved
away from the left ends of the bandwidth selection intervals. Hence the sample
variances of A /h,, increased. When the values of / and g were large enough,
the characteristics of MCV and PCV appeared, respectively. The bias-squares
for A ycv) /by decreased to 0 as [ increased further. However, the bias-squares
for hpoy(g)/hu converged te a nonzero constant as g increased further. In
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TABLE 1

The sample variance, bias-square and MSE of h mevey/hy and h pcvig)y/ b m
for the positively correlated data

Ratios Variance Bias-square MSE
ﬁMCV(,)/hM ! value
0 0.015217 0.340901 0.356118
1 0.094015 0.157793 0.251808
2 0.129529 0.066091 0.195620
3 0.142950 0.035485 0.178436
4 0.144861 0.022526 0.167387
5 0.150511 0.016509 0.167020
6 0.152457 0.013700 0.166157
7 0.153662 0.011340 0.165001
8 0.152041 0.010281 0.162322
9 0.154379 0.009622 0.164000
10 0.148788 0.008326 0.157113
11 0.148136 0.008082 0.156217
12 0.145901 0.007954 0.153855
13 0.142961 0.005565 0.148526
14 0.143305 0.004422 0.147727
hpcv(g)/hM g value
1 0.014969 0.342923 0.357892
2 0.051444 0.285233 0.336677
3 0.079858 0.186568 0.266425
4 0.082228 0.127764 0.209992
5 0.075802 0.091330 0.167132
6 0.072712 0.071990 0.144702
7 0.065812 0.059694 0.125507
8 0.063662 0.055051 0.118712
9 0.059589 0.049922 0.109511
10 0.056709 0.050466 0.107175
11 0.054767 0.049093 0.103862
12 0.054734 0.046613 0.101347
13 0.052097 0.046844 0.098941
14 0.046694 0.048023 0.094718
15 0.045878 0.048859 0.094738

contrast to the bias-squares, the variances for szCV(l) /hy stayed essentially
the same for all / and the variances of A pcy,,/h ) decreased. In this example,
the empirically best values of [ and g were nearly the biggest we tried, but
note there is little practical difference between these and more intuitively
appealing smaller values. Here PCV has smaller overall MSE than MCV (.e.,
PCV’s effect of reducing variability in the selected bandwidth was stronger
than MCV’s bias reduction), but this is not generally true. See Section 6.2 of
Chu (1989) for examples where the opposite is the case.

5. Sketches of proofs. The following notation and results will be used in
this section. Let the notation X, = 0,(p,) mean that, as n - =, |X, /p,| = 0
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almost surely, and uniformly on H, or H, , if p, involves h € H, or
h € H, , respectively. For all integers i and j, let Z; be iid random variables
with mean 0 and all finite moments, and a; and b, ; be real numbers such that
L7 _ola;l <@and £7__ X% __Ib;;| < w. Using Theorem 2 of Whittle (1960)
and Theorem A of Section 1.4 of Serfling (1980), then, for all positive integers
k, we have

k

% 2k %
(_Z_ aiZi) jSCI(~=Z_ a%) s

(5.1) - E

(5.2) E

- - 2k ] - - k
( > > bijZiZj) 502( )IEEDY bizj) ’
i=—o,i#j j=—o ] i=—o j=—0
where c; and c, are constants involving 2 and moments of Z. For the ARMA
process of ¢; given in (A.4), by Theorems 3.1.1 and 3.1.3 of Brockwell and
Davis (1987), ¢ ; can be uniquely expressed as a moving average ¢ ;=
YT oYie;j_;, for j =1,2,...,n, where ¢; are real numbers with L7_ly,| < oo,
Combining this with (5.1), (5.2), Fubini’s theorem, Minkowski’s inequality and
Theorem A of Section 1.4 of Serfling (1980), then, for all positive integers k,

we have
n 2k
Z E;
j=1

For any /> 0 and each x; with W(x;) # 0 or & <x;<1—h, under the
assumptions given in Section 3, we have the following asymptotic results:

(5.3) E = 0(n*).

n-1! f‘, Ky(x; —x;) =1+ 0((nh)™"),
i=1

(n-20-1)7"" ¥ Kyx;-x)=1+0((nk)™"),

ilimji>1
b = [n‘l ZlKh(xj —x;)(m(x;) - m(xj))]/[n_l i Ky(x; - xi)]
i= i=1
= h*m'(x)) [u?K + o(h?),

[ /[n_l élK,,(xj - xi)]

v =in"" Zn: K,(x; — x;)¢;
l i=1
=n! z"‘, Ky(x; — ), + 0,((nh) ""°) = 0,((nh)~*®).
i=1
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Proor oF (3.1). Since
dy(h)y=n"1Y bJ‘?W(xj) +n7 1Y E(vf)W(xj),
j=1 j=1

using the above asymptotic results of b; and v;, through a straightforward
calculation, then the proof of (3.1) is complete. O

Proor or THEOREM 1. We first give asymptotic expressions of szCV( 1 and
ﬁpcv( o) for each [ > 0 and g > 1. Through adding and subtracting the terms
m(x;) and m(x;), then CV,(k) can be expressed as

(5.4) CV(h)=n"! i e}W(xj) + D(h) + dp(h) — 2 Cross,(h)
54 j=1
+ Remainder,(4),

where
D(h) =dp(h) —dy(h),

da(h) = n-lj};(ﬁ»(xj) — m(x))"W(x,),
Cross,(h) = n-1 f‘,lsj(mj(xj) — m(x,))W(x;),
Remainder (k) = n~! zn) (7 ,(x;) — f(x,))
o X ((x;) + m(x;) — 2m(x,))W(x;).

Using (5.1) through (5.3), and the above asymptotic results of b, and v;,
through a straightforward calculation, then, as n — o,

(5.5) D(h) = o,(dy(h)),
(5.6)  Cross,(h) = 2(nh)_1(z_',ly(k))K(0)fW + o0y(dy(h)),
(5.7) Remainder,(h) = o,(dy(h)).

As n > ©, Vyoyqy > 0 and B, > 0, a consequence of (3.1) and (5.4) through
(5.7) is that the minimizer of (5.4) can be asymptotically expressed as

ﬁMCV(l) = CMCV(l)n_l/5(1 +0,(1)).
Using the results of (5.4) through (5.7), through a straightforward calculation,
then CV*(&) can be asymptotically expressed as

CV*(h) =n~! 2153W(xj) + Veovg(nh) "' + Byh* + 0,((nh) ™! + h*).
iz

This implies that, as n — o, Vecvgy > 0 and B, > 0, then the minimizer of
CV*(h) can be asymptotically expressed as

Ry = Cpovien ™ Y3(1 + 0,(1)).
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Since the optimal bandwidth &, is of the order n~'/% and A%, is of the order
n~1/% = g'/%n=1/5, then A pcy,,, is defined as Apcy, = &7V %hty.

Using the linear expression of the ARMA process ¢ j» asymptotic properties
given above and Proposition 6.3.9 of Brockwell and Davis (1987), the proofs of
(3.3) and (3.4) of Theorem 1 are essentially the same as the proofs of Theorems
1 and 2 of Hardle, Hall and Marron (1988) and Theorem 1 of Marron
(1987), respectively. The only difference is that ﬁMCV( 1) should be close to
Cymcvayn” /% and  hpoy,, close to Cpoyyn /%, not hy. The proof of
Theorem 1 is complete. O
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