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BANDWIDTH SELECTION FOR KERNEL
DENSITY ESTIMATION'

By SHEAN-T'soNG CHIU

Colorado State University

The problem of automatic bandwidth selection for a kernel density
estimator is considered. It is well recognized that the bandwidth estimate
selected by the least squares cross-validation is subject to large sample
variation. This difficulty limits the application of the cross-validation esti-
mate. Based on characteristic functions, an important expression for the
cross-validation bandwidth estimate is obtained. The expression clearly
points out the source of variation. To stabilize the variation, a simple
bandwidth selection procedure is proposed. It is shown that the stabil-
ized bandwidth selector gives a strongly consistent estimate of the optimal
bandwidth. Under commonly used smoothness conditions, the stabilized
bandwidth estimate has a faster convergence rate than the convergence
rate of the cross-validation estimate. For sufficiently smooth density func-
tions, it is shown that the stabilized bandwidth estimate is asymptotically
normal with a relative convergence rate n~!/2 instead of the rate n~1/10
of the cross-validation estimate. A plug-in estimate and an adjusted plug-in
estimate are also proposed, and their asymptotic distributions are obtained.
It is noted that the plug-in estimate is asymptotically efficient. The adjusted
plug-in bandwidth estimate and the stabilized bandwidth estimate are
shown to be asymptotically equivalent. The simulation results verify that
the proposed procedures perform much better than the cross-validation for
finite samples.

1. Introduction. Given a random sample X;,..., X, from a distribution
with the density function f(x), one is often interested in estimating f(x).
Silverman (1986) discussed many important applications of density estimates.
The most commonly used nonparametric method is the kernel estimator

n

fo(x) = (nB) ' L wl(x - X;)/B)

Jj=1

[Rosenblatt (1956)], where the kernel function w(x) is assumed to be a
symmetric probability density function and B is the bandwidth. The band-
width controls the smoothness of the resulting curve estimate. Selecting a
proper B is a very critical step in estimating f(x). Although in practice, one
can choose the bandwidth subjectively, there is a great demand for automatic
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(data-driven) bandwidth selection procedures. Some reasons of using auto-
matic procedures were given in Silverman (1985).

The most studied automatic selector is the least squares cross-validation
score function proposed by Rudemo (1982) and Bowman (1984). It was shown
in Hall (1983) and Stone (1984) that the minimizer of the cross-validation
score function is a consistent estimate of the optimal bandwidth, the mini-
mizer of the mean integrated squared error. The asymptotic normality of the
bandwidth estimate was established in Hall and Marron (1987a) and Scott and
Terrell (1987). From the asymptotic results, it is well recognized that the
bandwidth estimate is subject to large sample variation. In simulation studies,
it is observed that the selector tends to choose smaller bandwidths more
frequently than predicted by the asymptotic theorems; see Scott and Terrell
(1987) and Section 7. A density estimate with a smaller bandwidth tends to
show too many false features (structures) of the data. This difficulty is clearly
demonstrated in Figure 1. The solid curve is the kernel estimate with the
bandwidth selected by the cross-validation. More details about Figure 1 are
given in Section 7. The difficulty limits the usefulness of the cross-validation in
practice. Some studies about improving the cross-validation can be found in
Scott and Terrell (1987), Park and Marron (1990) and Hall, Marron and Park
(1989).

Since the only unknown quantity in the asymptotic mean integrated squared
error is [{ f”(x)}? dx [Silverman (1986), page 40], another approach attempts to
plug an estimate of [{f”(x)}*>dx into the approximation to get a bandwidth
estimate. This approach was studied in Woodroofe (1970) and Scott and Factor
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Fic. 1. A simulated example with n = 100. The dotted curve is the standard normal density. The
solid and dashed curves are, respectively, the density estimates with the bandwidths selected by the
cross-validation (0.156) and the stabilized selector (0.464).
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(1981). The plug-in method has an apparent advantage that the method does
not need an optimization program.

The main object of this work is to introduce several simple bandwidth
selectors which give much more stable bandwidth estimates. In Section 2, we
briefly discuss the automatic bandwidth selection problem and the cross-vali-
dation. Based on characteristic functions, an approximate expression for the
cross-validation bandwidth estimate is obtained in Section 3. The expression
clearly points out the source of variation. In Section 4, a stabilized bandwidth
selector ‘is proposed. Under commonly assumed smoothness conditions, the
convergence rate of the stabilized bandwidth estimate is faster than the
convergence rate of the cross-validation estimate. For sufficiently smooth f,
we get a quite remarkable result that the relative convergence rate of the
stabilized estimate is n~1/? instead of the rate n~/!° of the cross-validation
estimate. It is also shown that the stabilized estimate is asymptotically normal
and unbiased.

A plug-in estimate and an adjusted plug-in estimate are proposed in Sec-
tions 5 and 6. It is shown that the adjusted plug-in estimate is asymptotically
equivalent to the stabilized estimate. It is noted that the asymptotic variances
of the plug-in estimates attain the lower bound given in Bickel and Ritov
(1988).

The simulation results in Section 7 agree well with the theoretic ones. The
simulation study verifies that the proposed selectors perform much better than
the cross-validation for finite samples. The procedures developed here could be
useful in estimating the intensity function of a nonstationary Poisson process
[Diggle and Marron (1988)].

2, The cross-validation. A commonly used measure of the performance
of fg(x) is the integrated squared error

ISE,(8) = [{fu(x) - f(2)) dz

[Rosenblatt (1971)]. The integration above is over the whole real line. Unless
indicated otherwise, this convention is used throughout the paper. Let
MISE,(B) = E{ISE (B)} and A ,(0) = n*/®> MISE(n~1/%9). Under the assump-
tions of Theorem 1 in Section 3 [also see Scott and Terrell (1987) and Hall and
Marron (1987a) for some other smoothness conditions], A,(6) converges to

(2.1) A(0) =07 [w¥(x) dx + 4—104{[x2w(x) dx}zf{ f(x))? dx.

A(9) has a unique minimum at 6,, where

05 =[w2(x) dx[{/xzw(x) dx} f{ f"(x)}zdx].

In the following discussion, B8, = n'/®9, and 6, = n'/8,,, where B,, is the



1886 S.-T. CHIU

minimizer of MISE (B). The optimal bandwidth 6,, is approximately equal
to 6,.

A common approach in automatic bandwidth selection is to obtain an
estimate of MISE ,(B) and to use the minimizer of the estimated risk function
as an estimate of B,,. Rudemo (1982) and Bowman (1984) proposed the least
squares cross-validation

CV(B) = [fi(x) dx — 2n™" Z fo, /(X))

where fB (x) is the kernel density estimate Wlth the jth observation deleted
from the sample Up to a constant shift, CV,(8) is an unbiased estimate of
MISE (B) [Scott and Terrell (1987)]. The statistical properties of BCV, the
minimizer of CV,(B), have been studied extensively; see Hall (1983), Stone
(1984), Hall and Marron (1987a), Scott and Terrell (1987) and references given
therein. It was established that 6y = n'/%8¢y converges to 6, in probability
and that n'/ 199y — 8,) is asymptotically normal. Note that the convergence
rate of Oy is extremely slow.

3. The source of variation. Based on characteristic functions, Theorem
1 below gives an important expression for écv~ The expression clearly points
out the source of variation and leads to the consideration of the proposed
procedures. The sample characteristic function is defined as

n
d(A) =n"1Y exp(irX;), -—o<A<w,
j=1
Also let ¢(A) = [exp(iAx) f(x) dx denote the characteristic function of f(x).
To make the discussion easier, we borrow the terminology ‘frequency’”’ from
time series analysis for A. Using the methods in Brillinger (1981), pages 19-21,
the cumulants of ¢(A) can be obtained by straightforward computation.

LemMma 1. Suppose X, ..., X, is a random sample from the distribution
F(x) and let ¢(x) be the characteristic function of F(x), then

E$()) = 6(A),
Cum{‘i’()‘l)ﬂi’()‘z)} = {#(A1 +43) — d(A)d(Az)}/n
and '

cum{$(1,),...,d(A,)} = O(n~**1).

From Lemma 1, $(A) is approximately complex normal [see Brillinger
(1981) for the deﬁnltlon] and so |#(A) — #(A)|? is, approximately, an exponen-
tial random variable with mean {1 — |¢(A)|%} /n.

Applying Parseval’s formula yields

ISE,(8) = (2m) " [|$,(A) — ()| dA
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[Rudin (1974), page 202], where d; (M) is the characteristic function of the

estimated density f (x). Letting W(/\) = [exp(iAx)w(x)dx and ¢ (A) =
H(A) — $(A) and notlng that ¢>3()¢) = $(A)W(BA), we have

185(2) = S0 =18(W)P(L — W(BN) + W2(BN)|ba(M) [
— 2Re{p(A)a(—1)H1 — W(BA)}W(BA).
Since E{$,(A)} = 0 and E{ld (M) = n 1 — 6V,
m MISE,(8) = [ 16(2) {1 - W(B1))" dA

(3.1) 3
n*[0 W2(BA) {1 —[¢(1)[*} da

Silverman (1986), pages 62-63, showed that = CV,(B) is approximately equal
to

(3.2) wCV,(B) = [:|J>(/\)|2{W2(ﬁ/\) — 2W(BA)} dA + 27 w(0)/(nB).

It is interesting to compare (3.2) with Mallows’ criterion for nonparametric
regression in Rice (1984). Comparing (3.1) and (3.2) yields

wCV,(B) — w MISE,(B) = B, + By(B) + B3(B) + B4(B),

where

B, =~ [lo(n)"da,
By(8) = [ 180" - (1 =160 F)/m|(W2(82) - 2W(B)} dr

By(B) = 2Re [ #(A)da(~1){W2(BA) ~ 2W(BA)} dA
and ’
By(B) = 2n™" [ W(BN)|o(A)[* d.
Theorem 1 shows that the behavior of By is dominated by Bj(B,,). The
proofs of this and other results are given in Section 8. The assumptions are

also described in that section.

THEOREM 1. Under Assumptions 1 to 3 given in Section 8 with K, > 6,

(Bov — Bon) = —Bj(Bon) /{m MISE;(Bo,.)} + 0,(n3/1°).
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From the definition of By(B), we see that
By() = [ 160 = {1 ~1e(0)F}/n |8 1V(BY) 2,

where
V(A) = —2{1 - W(A)}W'(A)A.

Therefore ﬁcv is approximately equal to a constant plus a weighted integral of
the process |$4(A)I%. A closer look at V(A) reveals that V(B,,A) has significant
amplitude at A = O(n!/®) and so |$,(A)|*> at A = O(n'/®) make the major
contribution to the variation of Bj(B,,). However, for smooth f(x), #(A) at
A = O(n1/5) has negligible effects on $(A) [relative to the noise level of Hd(M].
This observation suggests that we can reduce the variation in Bgy by modify-
ing these |#(A)|> which do not contain much information about f(x).

4. The stabilized bandwidth selector. In this section, we propose a
bandwidth selection procedure and describe its asymptotic properties. We first
find the random variable A which is the first A such that |(M)I* < c/n for
some constant ¢ > 1. As shown in Theorem 4 and the simulation studies in
Section 7, the choice of ¢ is not important when f is sufficiently smooth. Some
comments about the choice of ¢ are given in Section 7. To reduce the
variation, |#(A)|> at A > A in (3.2) is substituted by 1/n and we get the
stabilized bandwidth estimate by minimizing

S.(8) = [ 16 (W2(82) — 2W(BA)} dA
(4.1) 0

+ 71 [T(WA(BA) - 2W(BA)} A + 2mw(0)/(np).
A
The criterion S,(B) has an equivalent representation

S.(B) =m(nB) " [w(x)dx
(4.2)

+f0A{|‘7’(")|2 — n"TH{W(BA) — 2W(BM)} dA,

which is much easier and faster to evaluate than (4.1). Comparing (4.2) with
(2.1) or (3.1), we see that S,(B) use the second part of (4.2) to estimate the
bias term in 7 MISE (B).

Before describing the theoretic properties of the estimate, we give the
motivation and some remarks about the procedure. As noted in the previous
section, the noise in the cross-validation estimate is mainly contributed by
I6(A)? at high frequency, which does not contain much information about
f(x). In order to reduce the variation, we have to identify the part which
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contains most 1nformation about f(x). We note that when |#(A)| is negligible,
IV = |$ ()%, which is approx1mately exponentially distributed with mean
1/n. Therefore we compare n|d(M)I? with a critical value, say 3 = —log,(0.05),
to decide when |¢(A)|*> becomes negligible.

In the statements of the theorems below, let 6,, = n'/°8,, and s = n'/%8g,
where B s Is the minimizer of S (B). Theorem 2 establishes the strong
consistency of 6.

THEOREM 2. Under Assumptions 1 to 3 given in Section 8 with K, > 5, és
converges to 0, almost surely.

Under assumptions a little bit stronger than the conditions of Theorem 1,
Theorem 3 indicates that fs has a faster convergence rate than the conver-
gence rate of Oy .

THEOREM 3. Under Assumptzons 1 to 3 with K, >6 and 1/10 <

When f is sufficiently smooth, Theorem 4 shows that 53 is asymptotically
normal and that the convergence rate is n ~1/2 which is much faster than the
rate n~1/1° of fy. Hall and Marron (1990) showed that the convergence rates
of the estimates of 8, have a lower bound n~'/2.

THEOREM 4. Under Assumptions 1 to 3 with 10 < K; < K, < 2K, — 10,
nt/ 2(0 — 8,,) is asymptotically normal with mean 0 and variance

02 = 4og{A"(oo)}‘2{[x2w(x) dx}4

X [[{fw(x)]zf(x) dx — {ff(4)(x)f(x) dx}z].

REMARK 1. Following the arguments of the proofs in Section 8, similar
results can be established under some other smoothness conditions of f. For
example, Theorem 4 holds for Gaussian and Cauchy distributions.

REMARK 2. Let J)s()t) be the sample characteristic function of the data
sX,...,sX, for some constant s > 0. Also let A, and S,(B) be the frequency
A and the stabilized criterion for the scale transformed data. Since ¢ (A) =
$(sA), A, =sA and S,(B) = S,(B/s)/s. Therefore the stabilized bandwidth
estimate is scale equivariant, and there is no need to rescale the data or to
adjust ¢ when the scale is changed.
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ReEMARK 3. The smoothed cross-validation, proposed in Hall, Marron and
Park (1989), can be written as

SCV(B) = (nB) ™" [w*(x) dax

+ ! {|¢()¢)| -n- } {1 - W(BA))2U%(ad) dA,

where U(A) is the characteristic function of a kernel u(x), and a is the
bandwidth for the kernel u(x). They showed that one can obtain a Vn
bandwidth estimate when u(x) is a sixth-order kernel. The best choice of «
depends on the unknown density, and is unavailable in practice. They sug-
gested replacing the unknown bandwidth with the best a for some ““‘reference
density.” The approach of using a reference density is also suggested in Park
and Marron (1990), Hall, Sheather, Jones and Marron (1991) and Jones,
Marron and Park (1991). Using the standard normal density as the reference
density is recommended in these papers. In order to make the procedure scale
equivariant, the data are rescaled according to some (estimated) measure of
the scale, such as the standard deviation or the interquartile range.

REMARK 4. The indicator function 1;_, ,{(A) can be viewed as the Fourier
transform of an infinite-order kernel with the bandwidth proportional to 1/A.
In fact, 1,_, ,(A) is the transfer function of an ideal low-pass filter; see
Brillinger (1981) for more discussion. The proposed estimation procedure
effectively solves the bandwidth selection problem in estimating the bias term
in MISE(B).

REMARK 5. Jones, Marron and Park (1991) considered the criterion
(43) w(nB) " [wi(x)dx + [T1A(N)[' (1~ W(BL)Wa(8)A) dA,

where a(B) = Cppn~23/%872 [= O(n~'/°) when B = O(n~'/%)]. Note that
E{l$,(M)I% = 1/n is not subtracted from |$(A)|? in the second term of (4.3).
They showed that with a proper Cyp [depending on f(x)], the minimizer of
(4.3) is Vn consistent and is asymptotically unbiased. The nice theoretic
property follows the fact that asymptotically, the leading term of the bias

A 16 (0 P{1 - W(BL))[1 — W2{a(B)A}] dA

+ n~1f°°{1 — W(BM)}W2{a(B)A} dA

does not depend on B. Let ,p be the minimizer of (4.3) and 8,y = n'/°8  mp-

Following the arguments for Theorems 1 to 4, it can be seen that 6 = 05 +
D, where Var(D) = O(n~') and D _is asymptotically uncorrelated with 6.
Therefore 63 uniformly dominates 8,p. The extra variation comes from a
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term analogous to D,(B) in (8.3), which is negligible only when the bandwidth
a =o(n"19)

5. The proposed plug-in estimate. Note that G = [{f"(x)}>dx is the
only unknown quantity in the right-hand side of (2.1). The observation leads
to the consideration of the plug-in method, which obtains a bandwidth esti-
mate by replacing G in (2.1) with an estimate of G. This approach was
considered in Woodroofe (1970), Sheather (1986) and Scott and Factor (1981).
The problem of estimating G was studied in Hall and Marron (1987b) and
Bickel and Ritov (1988).

Since

G = [{f"(x)} dx = (2m) 7" [X$(1)[* dA

and El¢(WV)I® =n"n — DI¢(A)I®> + n~1, one might attempt to estimate
Af"(x)}? dx by

(5.1) (27)‘1j)u4{|$()«)|2 ~1/n}da.

However, the integral above does not exist since var{|¢(A)%} =n~? at high
frequency. The difficulty here is that (5.1) includes too much ¢(A) which is
dominated by the sample variation. 3

As suggested in Sections 3 and 4, we should modify ¢(A) at high frequency
when estimating functionals of @(A). Following the idea, we propose the
estimate

(5.2) G = 77—1j0A)«4{|</3()«)|2 ~1/n}da,

where A is defined in Section 4. The asymptotic properties of G are given in
Theorems 5 and 6.

THEOREM 5. Under Assumptions 1 and 2 with K, > 5, G converges to G
almost surely.

THEOREM 6. Under Assumptions 1 and 2 with 10 < K, < K, < 2K, — 10,
n%G — G) is asymptotically normal with mean 0 and variance of =

A [ f P (x) dx — {[f D(x) f(x) dx)?].

From Theorems 5 and 6, we get the following corollaries about the asymp-
totic properties of the plug-in bandwidth estimate

bp = {fwz(x) dx}l/5{fx2w(x) dx} _2/5(?_1/5.

CoroLLARY 1. Under the assumption of Theorem 6, ép converges to 0,
almost surely.
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COROLLARY 2. Under the assumption of Theorem 7, n'/ 2(§P - 6,) is asymp-
totically normal with mean 0 and variance o} given in Theorem 4.

REMARK 6. Since G does not depend on w(x), Theorems 5 and 6 and
Corollaries 1 and 2 do not need any assumption about w(x), except that
Jw*(x)dx < © and 0 < [x?w(x) dx < ». Corollary 2 might be useful in select-
ing the bandwidth for less smooth w(x), for example, the rectangle kernel or
the Epanechnikov kernel [Epanechnikov (1969)]. However, there is no guaran-
tee that n'/5g,, will converge to 6, without proper smoothness assumptions.

REMARK 7. Although the idea of the plug-in method existed for a long time,
the problem of selecting proper B and kernel in estimating G deters people
from using the plug-in method.

ReMARk 8. Bickel and Ritov (1988) gave an information bound for non-
parametric estimates of G. The asymptotic variance of the proposed estimate
attains the bound and thus is asymptotically efficient. Based on the results, we
conjecture that o is the lower bound for the asymptotic variance of any

nonparametric bandwidth estimate.

REMARK 9. The plug-in method discussed above is different from the
conventional plug-in methods referred to in Scott and Terrell (1987) and Park
and Marron (1990). Let G, = 7w~ YaA4{l¢(A)|> — 1/n}W%(ar) dA; Scott and
Terrell (1987) proposed the bandwidth estimate, which minimizes the biased
cross-validation

2
BCV(B) = 4—134{[x2w(x) dx} Gy + [w¥(x) dx/(nB).
The bandwidth estimate proposed in Park and Marron (1990) is the root of

5

n~Yw?(x) dx
 {rtu(x) dx)’6,”

where a(B) = Cpys3/1381%/13 and s is an estimate of some measure of the
scale of F(x). The constant Cp), depends on the unknown f, and the approach
of using a reference density was suggested. An interesting modification of Park
and Marron (1990) was given in Sheather and Jones (1990).

6. Adjusted plug-in estimate. As pointed out in Hall, Sheather, Jones
and Marron (1991), 6, — 6,, = O(n~%/%) and so 8, is not a Vn consistent
estimate of €,,. A method for adjusting the difference is suggested below. The
method is similar to the one considered in Hall, Sheather, Jones and Marron
(1991).
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From (3.1), we can write A,(8) = A(6) — R,(6), where

R,(6) = (24#)_1n_2/506j;wA6|¢(A) * dA [x?w(x) dx [x*w(x) d
(6.1)
+ n_1/5ff2(x) dx + O(n=3/5).

By a Taylor series expansion, we have
(6.2) R,(00) = — (6, — 90n)A':;(é)

for some 6 lies in between 6, and 6,,. (6.1) and (6.2) suggest the adjusted
plug-in estimate

(6.3) Oap = 0p + R, (05) /A7 (65),
where

R,(0) = (24m) "n2%0° ["{| 3 ()" - 1/n} da
(6.4) 0
X/xzw(x) dx/x“w(x) dx

and
(6.5) A (6) = 4—104(‘;{/x2w(x) dx} + O_Ifwz(x) dx — R,(0).

The estimates (33 and 5AP have the same limiting distribution. In fact, they
are asymptotically equivalent when the kernel function also satisfies some
proper conditions. This is the first result that establishes the asymptotic
equivalence of a plug-in estimate and the minimizer of an estimated MISE (B).

THEOREM 7. In addition to the conditions in Theorem 4, also assuming
JlxlPw(x) dx < w, then g — 8,p = o(n~1/2).

7. Simulation results and an example. We carried out some simula-
tions to compare the performance of the stabilized bandwidth estimate, the
cross-validation bandwidth estimate and the plug-in estimates. We first consid-
ered the case of the standard normal distribution. Two hundred replications
were generated for each of the sample sizes n = 25, 100, 400 and 1600. All
random variables were generated by the function RAND in Fortran 77 on a
SUN 4/60 computer. The Gaussian kernel is used throughout this section.
The bandwidth is the standard deviation of the Gaussian kernel.

For each sample, $(A) was evaluated by applying the fast Fourier transform
to the series

Y(t) = F(x,) - F(x,_1), t=1,...,2048,

where F,(x) is the empirical distribution function, x, = —» and x, = —16 +
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32t /2048. Three values of ¢ = 1, 2 and 3 = —1log (0.05) were used in defining
A and the stabilized criterion. Since CV,(B) often has multiple minima, the
global minimizers were obtained by searching over 301 equally spaced points
in proper intervals.

The kernel estimates shown in Figure 1 are based on a sample of size
n = 100. The dotted curve is the standard normal density. The solid and
dashed curves are, respectively, the density estimates with the bandwidths
selected by the cross-validation (0.156) and stabilizer selector (0.464). It
is clear that the density estimate with the bandwidth selected by the cross-
validation does not provide a satisfactory estimate. This example is not an
extreme case; the tenth sample percentile of ﬁcv is about 0.16.

The simulation results are summarized in Tables 1, 3 and 4. The rows with
B s,c are the results for Bs with ¢ = 1, 2 or 3. The Values inside the parenthe-
ses are the estimated standard errors of the sample averages. The standard
errors of the averages of the bandwidths can be obtained from the sample
standard deviations of the bandwidths. The optimal bandwidths, MISE (B,,,)
and the asymptotic standard deviations of the bandwidth estimates are given
in Tables 2 and 5. Figures 2 and 3 plot the estimated densities of the
bandwidth estimates for the normal density with n = 100 and 400. The
bandwidths of the density estimates are selected by the stabilized selector.
The stars indicate the locations of the optimal bandwidths. It is clear that B S
is superior to Bcv The sample standard deviations of 8 s agree very well with
the asymptotic standard deviations given in Theorem 4. The sample means of
BS are very close to the optimal bandwidths for n = 400 and 1600. The
average ISE (B) are also greatly reduced. We also constructed the normal
probability plots for j s> Which suggest that the normal distribution provides
an excellent approximation for the distributions of B S

Although it was established that Bcv is asymptotically normal, the density
estimates of Bcv in Figures 2 and 3 suggest that the dlstrlbutlons of ﬁcv are
skew to the left and that the normal distribution does not provide a good
approximation. For the regression case, a similar phenomenon was observed
and an explanation for it was given in Chiu (1990). Based on Theorem 1, we
can have an analogous explanation for the density case.

We apply the stabilized selector (with ¢ = 3) to the data set of the eruption
lengths of Old Faithful geyser in Yellowstone National Park, given in Weisberg
(1980). The data set is also available in Silverman (1990). Figure 4 shows the
estimated densities with the bandwidths selected by the cross-validation (0.101)
and the stabilized selector (0.215). While the density estimate with the band-
width 0.101 is too rough, it seems that the bandwidth 0.215 gives the right
amount of smoothness. In fact, the picture looks much like the ‘“best visual
fit,” chosen by a very experienced data analyst, Silverman (1986), Figure 2.8.

We next checked the performance of the stabilized selector when the true
density is not very smooth. We consider the x?2 distributions with degrees of
freedom % = 4,6,8,10, 12, 14. For each case, 200 replications were generated.
To make it easier to see the effect of smoothness of f on A and the
bandwidths B,,, Boy and Bg, we normalized each random variable by its
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TABLE 1
Summary of simulation results for normal density

n f E@ SampleSD E@ - B,,)? E{ISE, ()} E(A)

25 Boy 0.632 0.246 6.10(0.47) x 1072 3.00(0.24) x 102
Bs., 0.680 0.161 3.08(0.30) x 102 2.07(0.11) X 10~2 2.597(0.069)
Bs,2 0.682 0.144 2.58(0.26) X 1072 1.96(0.11) X 10~2 2.099(0.042)
Bs,s 0.690 0.132 2.40(0.25) X 1072 1.90(0.10) X 10~2 1.871(0.028)
Bap 0.723 0.126 2.86(0.24) x 102 1.91(0.10) x 10~2
Bp 0.624 0.129 1.68(0.21) X 10~2 1.89(0.11) x 102

100 Boy 0432  0.144  2.09(0.22) X 10~2 1.03(0.08) X 102
Bs: 0454 0070  4.90(0.56) X 103 7.01(0.35) X 103 3.025(0.077)
Bsz 0461 0059  3.72(0.36) X 103 6.71(0.33) X 10~% 2.512(0.040)
Bss 0464 0054  327(0.33) x 103 6.62(0.33) x 10~% 2.286(0.030)
Bap 0473 0051  3.41(0.31) x 103 6.58(0.32) x 10~°
Bp 0435 0055  3.09(0.41) x 107° 6.65(0.34) x 10~2

400 Boy 0319 0090  8.20(0.98) X 10~% 3.32(0.20) X 103
Bs: 0333 0027  7.16(1.10) X 10* 2.46(0.11) x 10~3 3.222(0.062)
Bs. 0335 0021  4.76(0.56) x 10™* 2.42(0.11) x 10~% 2.770(0.032)
Bss 0336 0020  4.24(0.37) x 10™* 2.41(0.11) x 10~% 2.589(0.018)
Bap 0338 0019  4.38(0.38) x 10~* 2.41(0.11) x 103
Bp 0324 0020  4.40(0.40) X 10~* 2.41(0.11) x 103

1600 Bcy 0240  0.055  3.03(0.47) x 103 9.56(0.56) x 10~*
Bsa, 0245 0011  1.29(027) x 107* 7.49(0.32) X 10~* 3.616(0.075)
Bs» 0247 0008  6.47(0.66) X 1075 7.43(0.32) X 10~* 3.091(0.028)
Bss 0247 0008  6.29(0.74) X 10~° 7.42(0.32) x 10~* 2.931(0.021)
Bap 0247 0008  5.77(0.54) X 107° 7.42(0.32) x 10~*
Bp 0241 0008  9.98(1.14) X 10°° 7.44(0.32) X 10~*

The number of replications for each sample size is 200. The estimates éS,c are the
stabilized estimates with ¢ = 1, 2 or 3. The values inside the parentheses are the estimated
standard errors of the sample averages.

TABLE 2

Optimal bandwidths, MISE(B) and asymptotic standard deviations of ﬁcv and
stabilized bandwidth estimate for normal density

n Bon Bo MISE,(B,,,) o(Bey) o(Bg)
25 0.610 0.556 1.37 X 1072 0.198 0.147
100 0.445 0.422 541 x 108 0.131 0.056
400 0.330 0.320 2.02 x 1073 0.086 0.021

1600 0.247 0.242 7.25 x 1074 0.057 0.008
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FiG. 2. The estimated densities of ﬁs (solid curve) and f;cv (dashed curve) for the normal
density withA n = 100. The sample size is 200 and the bandwidths selected by the stabilized selector
are 0.024 (Bg) and 0.04 (Bcy). The star indicates the location of B, = 0.445.
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FiG. 3. The estimated densities of ﬁs (solid curve) and ﬁcv (dashed curve) for the normal
density with n = 400. The sample size is 200 and the bandwidths selected by the stabilized selector
are 0.0085 (Bg) and 0.017 (Bcy). The star indicates the location of B, = 0.331.
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Fi1G. 4. Density estimates of the eruption length of Old Faithful geyser. The solid and dashed
curves are, respectively, the density estimates with the bandwidths selected by the cross-validation
(0.101) and the stabilized selector (0.215), respectively.

standard deviation. Note that the characteristic function of a y? distribution
with % degrees of freedom is ¢(A) = (1 — 2iA)"*/2 and so |$(A)® = O(A ).

The results for & = 4, 8 and 12 are summarized in Tables 3 and 4. From the
tables, we see that E(A) decreases as the degrees of freedom (smoothness) of
the x? density increases. This demonstrates an important property of the
stabilized procedure that it is adaptive to the smoothness of f(x). As expected,
when the true density is not smooth enough, the stabilized procedure is more
biased toward oversmoothing than B.,. However, in terms of the mean
squared error or the averaged ISEn(ﬁ), the stabilized estimates still perform
much better.

From Tables 1, 3 and 4, we see that there is only little difference between
the stabilized estimates based on different c. For the cases of the normal
density, setting ¢ = 1 slightly reduces the bias but increases the standard
deviation by about 20%. For the cases of normalized x2 densities, setting ¢ = 2
or 3 yields slightly better results when & > 6. Reducing ¢ from 3 to 2 increases
only slightly the value of A. An intuitive reason here is that when |¢(1)| is
negligible, the chance that min, _, |¢(M)I? > ¢/n decreases exponentially as
p — . These empirical results are consistent with Theorems 4 and 6 that the
selection of c¢ is not important. This should relieve us from being overly
concerned with the choice of c¢. For most practical purposes, setting
—log,(0.15) < ¢ < —log,(0.05) should yield good results. When |¢(A)| decays
slowly [this can be seen from the plot of I<Z>()\)I2], a smaller ¢ can be used to
reduce the bias in the bandwidth and density estimates.
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TABLE 3

Summary of simulation results for normalized x? densities, n = 100

df. B E@B) SampleSD E@ - B,,)? E{ISE,(p)} E(A)

4 Boy 0264 0083  6.84(0.65) x 10~° 1.68(0.08) X 102
Bs., 0.293 0.048 3.40(0.28) x 1073 1.36(0.04) x 102 4.781(0.089)
Bs,» 0.298 0.046 3.67(0.31) x 1073 1.37(0.04) X 10~2 4.063(0.057)
Bs,s 0.308 0.048 4.66(0.38) x 103 1.39(0.04) X 102 3.633(0.050)
Bap 0.319 0.047 5.86(0.44) X 10~3 1.41(0.04) x 102
Bp 0.282 0.046 2.66(0.24) X 1073 1.35(0.04) X 102

8 fBey 0.352 0.107 1.15(0.12) x 10~2 1.10(0.08) x 10~2
Bs, 0.372 0.061 3.96(0.44) x 1073 8.25(0.41) x 10~% 3.747(0.083)
Bs.» 0.379 0.051 3.18(0.28) x 1073 7.89(0.38) X 10~% 3.111(0.048)
Bss 0.383 0.049 3.17(0.27) x 1073 7.83(0.37) x 10~% 2.834(0.036)
Bap 0.394 0.047 3.70(0.30) x 10~3 7.87(0.37) x 1073
Bp 0355 0.049 2.37(0.23) x 1073 7.77(0.37) x 103

12 Bey  0.405 0.101 1.06(0.10) X 10~2 8.94(0.49) x 103
Bs,, 0.409 0.055 3.51(0.31) x 1073 7.51(0.37) X 10~% 3.290(0.047)
Bss 0.407 0.052 3.21(0.30) x 1073 7.45(0.37) X 1073 2.869(0.046)
Bss 0412 0.048 2.99(0.28) x 1072 7.35(0.36) X 102 2.604(0.033)
Bap 0.422 0.046 3.39(0.30) X 10~ 7.36(0.35) X 103
Bp 0.384 0.048 2.35(0.30) X 1073 7.31(0.36) X 103

The sample size n is 100. The number of replications for each sample size is 200. The
estimates Bg . are the stabilized estimates with ¢ = 1, 2 or 3. The values inside the
parentheses are the estimated standard errors of the sample averages.

Finally, we study the performance of the plug-in estimates defined in
Sections 5 and 6. We considered the same cases and used the same data sets.
The estimates were obtained by setting ¢ = 3. The results are also given in
Tables 1, 3 and 4. It is interesting to see that for smaller sample sizes or
rougher densmes Bp = n ~1/5), is a much more accurate estimate of 3,, than
the estimates BS and B ap=n"Y 50 are. We note that the proposed band-
width estimates are slightly biased toward oversmoothing—caused by drop-
ping I(i>()\)|2 at high frequency. Although B, is designed for estimating By, the
bias in B, somewhat offsets the difference between B,, and B,. However, in
terms of the averaged ISE (B) the proposed estimates have essentially the
same performance.

8. Assumptions and proofs. The conditions about f(x) and w(x) are
summarized in Assumptions 1 to 3. Since the bandwidth selection procedures
and the proofs are based on characteristic functions, it is natural to describe
the conditions in terms of ¢(A) and W(QA).
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Summary of simulation results for normalized x? densities, n = 400

df. B E(B) SampleSD E(B - B,,)? E{ISE, ()} E(A)

4 Bov 0.165 0.046 2.17(0.24) X 10~3  6.33(0.27) x 10~3
Bs1 0.190 0.026 0.94(0.08) X 1072 5.35(0.18) X 10~% 6.492(0.129)
Bs, 0.196 0.024 1.08(0.09) X 1072 5.37(0.18) X 10~3 5.550(0.080)
Bs,s 0.200 0.023 1.24(0.11) X 1072 5.38(0.18) x 10~3 5.082(0.065)
Bap 0.204 0.022 1.45(0.12) X 10~% 5.42(0.18) X 103
Bp 0.186 0.024 0.78(0.08) X 10~3 5.29(0.18) x 103

8 By 0.256 0.056 3.18(0.39) x 10~ 3.40(0.16) x 103
Bs1 0.261 0.026 6.74(0.76) X 10™* 2.91(0.12) X 103 4.494(0.084)
Bs2 0.264 0.021 5.25(0.56) x 107 2.87(0.12) x 1073 3.847(0.046)
Bs.s 0.266 0.021 5.40(0.29) x 107* 2.87(0.12) x 103 3.567(0.037)
Bap 0.270 0.020 5.83(0.54) x 10~* 2.87(0.12) x 10~3
Bp 0252 0.022 4.94(0.64) x 10~* 2.87(0.12) x 103

12 Boy 0278 0.067 4.57(0.62) x 1072 3.31(0.21) x 1073
Bs,, 0.284 0.026 6.66(0.71) x 10™* 2.60(0.11) X 10~3 4.052(0.076)
Bs» 0.285 0.024 5.64(0.62) X 10™* 2.57(0.11) X 1073 3.494(0.048)
Bs,s 0.287 0.022 5.01(0.55) X 10~* 2.56(0.11) x 102 3.253(0.035)
Bap 0.290 0.021 4.88(0.45) x 10™* 2.55(0.11) X 10~3
Bp 0273 0.023 6.36(0.89) X 10~* 2.57(0.11) x 10~3

The sample size n is 400. The number of replications for each sample size is 200. The
estimates Bs . are the stabilized estimates with ¢ = 1, 2 or 3. The values inside the
parentheses are the estimated standard errors of the sample averages.

TABLE 5

Optimal bandwidths, MISE(B) and asymptotic standard deviations of écv and
stabilized bandwidth estimate for normalized x? densities

n d.f. Bon Bo MISE,(B,,) o(Bey) o(Bg)
100 4 0.259 0.000 1.19 x 1072

8 0.355 0.309 7.40 X 10~3 0.051

12 0.386 0.353 6.56 X 1073 0.076 0.047
400 4 0.173 0.000 « 4.71x10°°

8 0.256 0.234 2.78 x 1073 0.034

12 0.283 0.267 2.45 x 1073 0.050 0.018

AssumMmPTION 1.
that M,[A| % >
for all A.

There exist pos1t1ve constants M,, M,, K; and K, such
> |¢p(M)|? = MyA|"¥2 as |A| - . Also assume |(A)Z> 0

AssumpTION 2. The density f(x) has a uniformly bounded derivative and
satisfies [,,5 p f(x)dx < O(M™ ") as M - .
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AssuMpTION 3. The kernel function w(x) is a symmetric probability den-
sity and satisfies [|x|°w(x) < ®. The characteristic function of w(x) satisfies
W) =03 and W) = 0(1"3) as A > o

Assumption 2 is a weak condition, which is satisfied by the Cauchy distribu-
tion. Assumption 3 is a standard one. Note that [|x|*w(x)dx <  implies
1 — W) = 27\ x2w(x) dx + O(A%) as A — 0. The part of Assumption 1 that
requires |p(A)| to decay fast is not strict. If [If(x)ldx and [IfP(x)|® dx
are bounded for I =1,...,k — 1, and f*®(x) is of bounded variation, then
|#(A)] = O(IA[**1). The other part that requires |¢(A)| to decay in some regular
way is a crucial one. We need this condition to ensure that the bias of the
proposed estimates caused by dropping #(A) at A > A is negligible.

We now proceed to prove the results in Sections 3 and 4.

Proor oF THEOREM 1. By a Taylor expansion, we have
Bj(Bov) + By(Bov) + Bi(Bov) = —(Bev = Bon )™ MISE,(B)
for some § in between By and B,,. Since Oy converges to 6, it is sufficient
to show that for B8 = O(n~1/%), By(B) is the dominant term. This can be
established by arguments analogous to the ones in Chiu (1988). O
We next establish the probability one bounds for A.

LEmMa 2. Under Assumption 1 and for any 6 > 0, A < n/%1%% with
probability tending to 1.

Proor. For any constant 6 > 8, > 0, let a = n'/¥1*% and b = n'/%1+%3,
Note that

(8.1) P(A > b) sP{aglAirslblé(A)lzm/n}
for any 6 > 8, > 0. Since

[Ba(0)] <ldW) | +[6(N)| <A+ e/n
for any ¢ > 0, the right-hand side in (8.1) is less than
(8.2) P{Lb(b—a)‘lléd(A)lsz >c’n‘1}

for some ¢ > ¢’ > 1. By applying the Chebyshev inequality [Chung (1974),
page 48], it can be shown that (8.2) is of order (b — a)* for any even integer
k > 0. Choosing % large enough to make k(1/K, + 8) > 1 finishes the proof.

0O
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Lemma 3. Under Assumptions 1 and 3 and for any 8 > 0, n'/X27% < A
with probability tending to 1.

Proor. It is sufficient to show that for any § > 0, with probability 1,

max |¢>d(/\)| < Mn~1/2+8
0<Ax<

for some constant M > 0. Let Aj=gn/N, j=0,...,N= n3. From Assump-
tion 2 and the uniform continuity of ¢(1), we have that

n max [$,(0)] = n max [54(1))]

converges to 0 almost surely. The lemma now follows from the fact that from
Lemma 1,

P{ maXNId’d(A )I > n—l/2+5} — O(Nn—ZkB) = O(n—2k8+3)
O0<j<
for any constant £ > 0. O

We now proceed to prove Theorems 2 to 4. Comparing (3.1) and (4.1) yields

S,(B) —m MISE,(8) = - [ “16(A)[* dA + Dy(B) + Dy(B)
+ Dy(B) + Dy(B) + Dy(B),

(8.3)

where
Dy(B) = ~ [ 16(W) (W2(BA) - 2W(B1)} dA
Dy(B) = 2Re ["6(X)ba(~A){W2(BA) - 2W(BA)} dA
Dy(B) = [M16a0)[" - (|80 )| (W3(82) - 2W()) ax
D(B) = 2n~* ["|6(2)'W(pA) dA

and

Dy(B) = n‘lfAmlrﬁ(A)IzWZ(m) dA.

ProOF OF THEOREM 2. It is clear that D,(B8) = O(n~ 1) and D(B) = O(n~Y).
From Lemmas 2 and 3, and noting that 1 — W(8A) = O(B82A?), we have that,
for any 0 < 7 < min{(K, — 5)/(4K,),(K; — 5)/{5(K; — 1)},

/A°°|¢(A)|2{1 — W(BA)}2da, /0A¢(A)J>d(—n{1 — W(BA)} dA
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and
[H{16a)F ~ Elda0[ )2 - Wipn)®

are of order o(n~*/%), almost surely and uniformly on n=%/5"7 < g < n~1/5+7,
Since MISE (8) > Mn~*/% for some constant M > 0,

lim {m MISE,(8) — S,(B) — C,}/MISE,(B) = 0

almost surely and uniformly on n~/%"" < B8 < n~1/5*7 where C, are some
random variables which do not depend on B. Since n=*/5/{S,(B) + C,} = o(1)
almost surely and uniformly for B8 outside (n~1/5~7, n=1/3+7), the minimizer
of S,(B) must be inside (n~1/°~7, n~1/5*7) for large enough n. Applying the
classical argument in Jennrich (1969) finishes the proof. O

Proor or THEOREM 3. By a Taylor expansion, we have
(84) DII(BAS) + D'z(és) + D%(és) + Df;(és) = - (és - BOn)T’ MISE/,I;(é)
for some B in between B and B,,. From Theorem 1, it is sufficient to show

that D(B,,) = o(n~"/1%) for j=1,2,3,4, which can be established by
straightforward computation. O

Since the D(B,,) is the dominant term, we give a precise description of its
asymptotic distribution.

LEMMA 4. Under the conditions of Theorem 4 and assuming B = n~'/%0
for some 0 > 0, n'/?B73D(B) is asymptotically normal with mean 0 and
variance

4 2
{ [rua) ax) [[ (FOY 1) ds = { [£92) F(x) d | ]
Proor. We first note that D4(B) = D,(B) + o(n~11/1%), where

2
Dy(B) = B [#*u(x) dx} [1*6(N)da(-2) dN.
It is clear that E{D,(B)} = 0. The variance of XM (—A) dA is equal to

2
(85) 17 [ [Mu8(-0)e(u)6(r - ) dadu - n Y (6P da)
Noting that (8.5) is equal to 47 2n = Y{ f @(x)}2f(x) dx — {[f P(x) f(x) dx)? gives
the asymptotic variance of D3(B).

To establish the asymptotic normality, it is sufficient to show that the
cumulants of n'/2873D,(B) of order & > 3 converge to 0. From Lemma 1, the
kth-order cumulant of n'/?8~3D}(B) is of order (n1/2B=3)*g3k p—k+1 — pl-k/2
which converges to 0 for £ > 3. O
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Proor orF THEOREM 4. Under the conditions of the theorem, it can be seen
that Di(B,,) = o(n~1/1%), for j = 1,3,4,5. Therefore Dy(B,,) is the domi-
nant factor on the right-hand side of (8.4). The theorem now follows Lemma 4.

O

In the proofs of Theorems 5 to 7, write
(8.6) w6 — 7 [{f"(x)}’ dx = D, + D, + D,
where

D, = —f:x‘lrb(A)Isz,

D, = 2Re ["Ng(1)$4(~)) dA
0
and

Dy = ["8{|&a(0)" = 1/n) ar.

Proor oF THEOREM 5. From Lemmas 3 and 4, we have that, for any
1/K, > 6 > 0, there exists a constant M > 0 such that |D,| <
Mn~E=50/K:=8) |D.| < Mn®/%171%% with probability 1. We also have, with
probability 1, |D,| < Mn~'/2 when K, > 10 and |D,| < Mn~1/2p~(K1/2-5+5)
when K, < 10. It can be seen that when K, > 5, D/’s converge to 0 almost
surely and the proof is finished. O

Proor oF THEOREM 6. From the proof of Theorem 5, we see that D, is the
dominant term in the right-hand side of (8.6) when 10 < K, < K, < 2K, — 10.
The asymptotic distribution of D, can be obtained by following the argument
in Lemma 4. O

Proor oF COROLLARY 2. By a Taylor expansion, we have
-2/5

0p— 0, = —5-1{fw2(x) dx}l/s{fxzw(x) dx} G %G - @)

for some G in between G and G. The proof is finished by noting that
-2/5

08{[x2w(x) dx}2/A”(00) = 5‘1{fw2(x) dx}l/s{fxzw(x) dx} G%/5,

[m]

Proor or THEOREM 7. From (6.2) to (6.5), we have

Oap = 80, = Bp = 00 + R,,(00) /A7(8) — R,,(85) /A1 (65)
for some 8 lies in between 6, and 6,,. The functions R (8), R, (6) and A (6)
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are defined in Section 6. Following the proof in Lemma 4, it can be shown that

fAAG{IJ)(A)IZ _ n—l} dA = O(n(_K1+7)/(K2+5))
0

for any & > 0. Therefore R,(8,)/A"(8) — R (6,)/A"(6,) is of order o(n~1/2)
under the conditions of the theorem. A

It is then sufficient to show that 6, — 6, and 65 — 6,, are asymptotically
equivalent. From Theorem 4, we have

n'/?(bg - 00.) = —n/?n3/5Dy(n'/5,) /{mA"(6,)),

where
Dy(B) = 2B 'Re [()A¢(A)$d(—A)V( BA)d),

and V(A) = —2{1 — WA)IW(A)A. Under the assumptions of the theorem,
V(M) = X{/x*w(x) dx}*> + O(A%). Noting that D,(B) = B3Df [x%w(x) dx)}? +
0O(B*) gives the result. O
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