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ASYMPTOTICS FOR DOUBLY FLEXIBLE LOGSPLINE
RESPONSE MODELS!

By CHARLES J. STONE

University of California, Berkeley

Consider a %4valued response variable having a density function f(-|x)
that depends on an Z-valued input variable x. It is assumed that 2" and %/
.are compact intervals and that f(-|-) is continuous and positive on
A X %Y. Let F(:|x) denote the distribution function of f(:|x) and let
Q(-|x) denote its quantile function. A finite-parameter exponential family
model based on tensor-product B-splines is constructed. Maximum likeli-
hood estimation of the parameters of the model based on independent
observations of the response variable at fixed settings of the input variable
yields estimates of f(:|-), F(-| -) and Q(-| - ). Under mild conditions, if
the number of parameters suitably tends to infinity as n — «, these
estimates have optimal rates of convergence. The asymptotic behavior of
the corresponding confidence bounds is also investigated.

1. Discussion of results. Consider a %<valued random response variable
Y having an unknown density function f(:|x) that depends on an Z-valued
input variable x; here 2" and % are intervals in R having positive length. It is
assumed that f(-] -) is continuous and positive on 2" X %. Let F(:|x) and
Q(-|x) denote the distribution function and quantile function, respectively,
corresponding to f(-|x). Let fixed inputs (design points) x,,...,x, € Z be
given and let Y;,...,Y, be independent random variables such that Y; has
density function f(-|x;) for 1 <i < n; here Y,,...,Y, are the response vari-
ables corresponding to the settings «x,,..., x,,, respectively, of the input vari-
able. Observations on these response variables can be used for inference
concerning f(-|-), F(-| -)-and Q(-] - ).

The classical approach is to assume a fixed parametric model f(-|6,,...,0x)
for the density function of Y and consider fixed parametric forms 6, =
h,(x; B,) for the dependence of 6,,...,0; on x. Normal linear models and
generalized linear models in which Y has a gamma distribution with known
shape parameter are of this form [see McCullagh and Nelder (1983)].

A refinement of the classical approach is to assume that 6, = h,(x) for
1<k <K, where hy,...,hg are unknown continuous functions on &/, ap-
proximate these functions by members' of some flexible /-dimensional linear
space # such as a space of polynomial, trigonometric series or polynomial
splines, and let J — », as n — .
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A further refinement is to choose a flexible K-dimensional linear space .
and a basis By, ..., Bg of ., approximate log f(:|x) by 6,B; + - +0xBx —
C(6,,...,0), where C(6,,...,0¢) is the normalizing constant, approximate
the dependence of 6,,...,0 on x by members of some flexible J-dimensional
linear space o# and let J, K — » as n — . This doubly-flexible approach will
be pursued in the present paper, with . and ## being spaces of polynomial
splines.

For theoretical purposes, 2" and % are required to be compact subintervals
of R. Let ./ be a standard linear space of spline functions of a given order
g =1 on %2 having dimension K > 2. (The functions in ./ are piecewise
polynomials of degree ¢ — 1 or less. If ¢ = 1, we choose them to be right-con-
tinuous on % and continuous at the right endpoint of % if ¢ > 2, they are
(q — 2)-times continuously differentiable on %) Let B,,..., Bx be a basis of
. consisting of B-splines [see deBoor (1978)]. Then B,,..., Bx are nonnega-
tive and sum to one on %"

Given 0 = (0,,...,0,) € 0, set s(y;0) = 0,B,(y) + -+ +0xBg(y) for y €
2, C(0) = log [exp(s(y;0)dy and f(y;0) = exp(s(y;0) — C(0)) for y € Z.
Also, set

0= {0=(01,...,0K)‘GRK:01+ +0K=O}-

Then f(-;0), 8 € O, defines an identifiable exponential family; it is referred to
as a logspline model since log f(-;0) € . The theory of such models was
developed in Stone (1990), which is a precursor to the present paper. Barron
and Sheu (1991) independently obtained results for logspline models as well as
for similar models involving polynomials and trigonometric series.

Let &# be a standard linear space of spline functions of a given order (which
is not necessarily the same as that of .»/) having dimension J > 1 and let
H, ...,H; be a basis of & consisting of B-splines. Let % denote the
collection of J X K matrices B = (B8;,) of real numbers B;,, 1 <j <J and
1 <k <K, such that ¥,8;, =0 for 1 <j <J, which can be regarded as a
[J(K — 1)]-dimensional subspace of RYX. Let pe #. For 1 <k <K, let
h(-;B) be the real-valued function on " defined by A ,(x;B) = L ;8;,H,(x)
for x € 2. Set h(x;B) = (h(x;B), ..., hg(x;B)) for x € £ and observe that
h(:;B) is a @-valued function on 2" Also, set f(ylx;B) =f(y;h(x;B)) =
exp(s(y; h(x;B)) — C(h(x;B)) for pe &, x € 2 and y € 2. Then f(-|x;B)
is a positive density function on % for B € & and x € Z. We refer to
fClx;B), x € 2 and B € &, as a logspline response model.

The log-likelihood function I(B), B € %, is defined by

1(B) = ¥ log f(Yilx;;B) = ¥ [s(¥;;h(x;;8)) - C(h(x;;B))], Be€ .

Set c(B) = £ ,C(h(x;;B)) for B € &. Then I(B) = L,;s(Y;; h(x;;B)) — c(B) for
B € #. The expected log-likelihood function A(B), B € &, is given by

AB) = BL(B) = L [s(y;h(x:;B)) f(ylx;) dy —c(B), BB
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The functions I(-), ¢(-) and A(:) can also be viewed as functions on R7X. For
B € 4, let I(B) denote the corresponding information matrix, which equals the
Hessian matrix of c¢(-) at B and is a positive semidefinite symmetric JK X JK
matrix. Thus ¢(-) is a convex function on & and I(-) and A(:) are concave
functions on #.

It is assumed that -# is nonsingular relative to the design set: If h € #
and h(x;) = -+ = h(x,) = 0,then A = 0 on Z" Then v'I(B)r > 0 for B € &
and r € # with 7# 0. Thus c(-) is strictly convex and I(-) and A(:) are
strictly concave on &.

Let B denote the maximum likelihood estimate of B; that is, the value of
B € # that maximizes the log-likelihood function. Then A[A} may or may not
exist. Under the nonsingularity assumption on #, if B exists, then it is
uniqug. Given x € &, con§ider the mAaximum likelihood estimate f(-lx) =
fClx;B) of f(-1x) and let F(-]x) and Q(:|x) denote the corresponding maxi-
mum likelihood estimates of F(-|x) and Q(:|x).

Similarly, A(-) has at most one maximum on #. It is easily seen that A(-)
does have a maximum on & and hence a unique maximum B* on &%. Consider
the function f*(-|-) on 2" X 2 defined by f*(ylx) = f(ylx;B*) for x € X
and y € 2. Let F*(:|x) and @*(-|x) denote the distribution function and
quantile function, respectively, corresponding to f*(-|x).

The knot sequences defining . and -# are allowed depending on r, but it
is assumed that they are o-quasiuniform in the sense of Schumaker [(1981),
page 216]: The ratios of the differences between consecutive knots are bounded
away from zero and infinity uniformly in n. We make the mild assumption on
the design points that there is an M > 0 (independent of n) such that, for n
sufficiently large (n > 1),

(1) M~'n[h¥(x)dx < ¥ h¥(x;) < Mn [h*(x)dx, he X

[The nonsingularity assumption on # is an immediate consequence of (1).]

Given a subinterval I of &, let |I| denote the length of I and set N(I) =
#{i: x; € I}. Under (7) below, in light of the o-quasiuniformity of the knot
sequence defining 5%, a sufficient condition for (1) is that for every & > 0,
there is an M > 0 such that for n > 1,

(2 Ml NCD
< Mn|I| for every subinterval I of 2 such that |I| > n®~1,

Let 9= # ® . denote the tensor product of -# and .; that is, the linear
space of real-valued functions on "X % spanned by functions of the form
h ® s as h and s range over &# and .7, respectively; here (A ® s)(x,y) =
h(x)s(y) for x € Z and y € %. Then I has dimension JK and the functions
H;®B,,1<j<dJand1 <k <K, form a basis of 7.

Given a real-valued function g(:| - ) on 2" X %/, set

lg(] )|l = sup supg(ylx).

xeye
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Also, set 8, = inf,. lllog f(:] - ) — tll.. Under the o-quasiuniform condition
on the knot sequences, 8, — 0 as J, K = »; see Schumaker [(1981), Theorem
12.8] for this result and for an upper bound to 3 in terms of the smoothness
of log f(-] -)

Since f(-|-) is continuous and positive on the compact set Z X %,
log f(-| - ) is bounded and continuous on this set. Under (1) and the o-quasi-
uniform condition on the knot sequences, it was shown in Stone (1989) that

8 log £(-1-) —log f*(+|*)ll. = O(55).
It follows from (3) that

(4) IFC-1) = £*C1) e = 0(85),
(5) IFC-1-) = F*(: )]l = O(35)
and

(6) lRC-1) — Q*(:)ll. = O(55).

[In (6) the supremum is over p and x with 0 <p < 1and x € £']
From now on, it is assumed that

(7 JK = o(n/?7¢)  for some & € (0, 3).

This is slightly stronger than the assumption JK = o(Vn ), which arises in
Portnoy (1986, 1988).

In Section 2 it will be shown that B exists except on an event whose
probability tends to zero with n. There the asymptotic behavior of g will also
be determined.

In Section 3, it will be shown that

(8) fOlx) = F*(ylx) = Op(VIK/n),

(9) J1F6lx) = F* o))" dy = 0p(IK/n),
(10) max| £ (y1x) = £*(v}x)| = Op(VIK (log JK) /),
(11) max| F(ylx) = F*(ylx)| = Op(y7/n)

and

(12) max|Q(plx) — @*(pl)| = Op(VI/n).

In(8), x € 2 and y € % are fixed, while in (9), (11) and (12), x € & is fixed.
The order of magnitude VJK in (8) is plausible: There are about n/(JK) trlals
per unknown parameter 8;,, so the asymptotic standard deviation of the B
should be proportional to y/J/K/n . In light of the local support of the B-sphnes
the asymptotic standard dev1at10n of F(ylx) should have the same order of
magnitude as that of the B
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Suppose that 8, = O(J Pt + K~P2), where p, > 3 and p, > 3. Set
2 Y= p _ P2
prt+pyt’ 7t pi(2p+2)  pitpat2pips

p_—_

and
p Py

p2(2p +2)  py+py+2ppy

Let a, ~ b, mean that a,/b, is bounded away from zero and infinity as
n — o,

Suppose that p > 1. Choose / and K such that J ~ n”t and K ~ n"2. Then
8= 0(n~P/CP*?) Also JK ~ n/®P*D 50 (7) holds. By (4) and (8),

(13) FOlx) = F(ylx) = Op(n~P/@P+D);

by (4) and (9),

(14) f[ f(ylx) - f(ylx)]2 dy = Op(n=2P/@P+2)) — O, (n~P/®+D),

Choose J and K such that J ~ (n/log n)"t and K ~ (n/log n)”2. Then
8= 0((n/log n)‘p/(z"*z)),

Also JK ~ (n/log n)*/**Y, s0 (7) again holds. By (4) and (10),

(15) max| £ (y1x) = F(ol) | = Op((n/10g n) 7/ *?).

Y2 =

Suppose p, > 3 and p, > 2p,/(2p, — 1) and set a =p,/[p,(2p, + D]
Choose J and K such that J ~ n/@P1*D K=1 — O(n~%) and (7) holds. Then
8= O(n~P1/@P1+D) By (5) and (11),

(16) max | F(y|x) — F(ylx)| = Op(nP1/@P1+D);
y

by (6) and (12),

(17) m:X|Q(plx) — Q(plx)| = Op(n—Pr/@Pi-D)

Under reasonable further specifications, the rates of convergence in (13)-(17)
are optimal [see Stone (1980, 1982) and Hasminskii and Ibragimov (1990)]. For
fixed y € %, the rate of convergence F(ylx) — F(ylx) = Op(n~P1/@P1+D) can
be achieved by using a different estimate under the corresponding smooth-
ness assumption on F(y|x) as a function of x without having to make any
smoothness assumption on F(y|x) as a function of y. [Observe that F(ylx)
E(ind(Y < y)|X = x) and see Stone (1980).]

Let J, K - » as n - «; let 7* be defined as f*(y|x), F*(ylx) with y in the
interior of %, or Q*( plx) with 0 <p < 1; and let # be defined as the
corresponding maximum likelihood estimate f(ylx), F(ylx) or Q(ylx). Let
ASD(#) and SE(#) denote the asymptotic standard deviation and standard
error, respectively, of 7, as usually defined in terms of the information matrix
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in large-sample parametric inference. Then, uniformly for x € &,
SE(#)/ASD(#) = 1 + 0p(1) and the distributions of (% — 7*)/ASD(#) and
(# — 7*)/SE(#) converge to the standard normal distribution as n — . These
results will be verified in Section 4, where explicit formulas for the various
asymptotic standard deviations and standard errors will be given.

According to the last result, for 0 < a < 1, # + 2,_, ,SE(#) is an asymptotic
100(1 — a)% confidence interval for 7*; here z,_, ,, is the (1 — a/2)th quan-
tile of the standard normal distribution. Such confidence intervals are useful
in practice, but they must be interpreted with care. Under the additional, but
dubious, assumption that (r — 7*)/ASD(#) = o(1), the confidence intervals for
7* can be interpreted as confidence intervals for 7 itself.

The arguments used in Sections 2-4, which are natural outgrowths of those
developed in Stone (1985, 1986 and 1990), also apply when the fixed design is
replaced by a random sample from the distribution of a random variable X
having a density function that is bounded away from zero and infinity on 2~
[in which case, a suitable probabilistic version of (2) is easily verified]. Alterna-
tively, the joint density function f(-,-) can be estimated by flx,y) =
f(x,y;B,) = explL ; ZkﬁmH (x)Bk(y) c(B,)], where B, = (ﬁm)ls the maxi-
mum likelihood estlmate and c(Bl) is the normalizing constant. The asymp-
totic behavior of this estimate follows from results in Barron and Sheu (1991)
or from the extension of results in Stone (1990) given in Koo (1988). The
corresponding estimate of the marginal density function of X is given
by f(x; Bl) = [f(x, s B,) dy. This leads to the alternative conditional density

function estimate f,(ylx) = f(x,y;B,)/f(x;B,) which has the same form as
the estimate f(ylx) defined above, but with an estimate §, that differs
somewhat from B. The alternative conditional density estimate inherits the
accuracy of the corresponding estimate of the joint density function. [The
preceding remarks in this paragraph were suggested by a reviewer. It should
be pointed out that the alternative estimate of the conditional density function
achieves the rates of convergence obtained in the present paper only under an
auxiliary smoothness assumption on the marginal density function of X. In
the related context of nonparametric regression, Fan (1990) refers to estimates
of the regression function that require such an auxiliarly assumption as being
inadmissible: They are dominated by estimates that achieve the optimal rate
of convergence without requiring the auxiliary smoothness assumption on the
marginal density function of X.]

The numerical and practical aspects of logspline modelling were treated in
Stone and Koo (1986) and Kooperberg and Stone (1991). The results to date
clearly indicate that logspline modelling is competitive with other approaches
such as kernel density estimation. A numerical investigation of logspline
response modelling has yet to be carried out. Such a study would undoubtedly
go beyond what is mathematically tractable. In particular, 2" and %  could be
unbounded if linear restrictions were imposed on the tails of the various
splines entering into the model. Also, it would be worthwhile to study stepwise
selection of the basis functions of the model, as introduced in Smith (1982) and
used successfully by Breiman and Peters (1988), Friedman and Silverman
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(1989), Friedman (1991), Breiman (1989, 1991), Kooperberg and Stone (1991)
and Jin (1990).

2. Parameter estimation. For b = (b;,) € &, let |b| denote the non-
negative square root of ¥ ;X ,b%. In the next result, x € 2, y € % and
0 < p < 1; the quantities j and % in (b) and the quantity j in (c) are allowed to
depend on n in an arbitrary deterministic manner.

THEOREM 1. (a) ﬁ exists except on an event whose probability tends to zero
asn — o,

(b) BAjk - ;Fk = OP(\/JK/n )

(© (}/K)Z k(Bjk - ;!(k)2 = OP(JK/n)

(© IB — B*I” = Op(J*K?/n).

(e) max; , Iﬁjk — B%l = Op(YJK (log JK) /n).

The proof of Theorem 1 is divided into a number of lemmas. For 0 =
(8,,...,05) € O, let |8] denote the nonnegative square root of *,02. Also, let
IIslle and |Is|l. be defined in the usual manner for functions s on Z'.

LEMMA 1. Let M > 0. Then there is an M, > 0 such that if 0,,0, € O,
lIs(-;0lle < M and lIs(+; 0)ll. < M, then

[C(8,) — C(8)]" < M,||s(-505) — s(-;8,) 5.
Proor. Since
C(8,) — C(0,) = logfes‘y;%) dy — logfes(y;"l) dy

and 0 < length(%) < =, the desired result follows from the Schwarz inequal-
ity and elementary properties of the exponential and logarithm functions. O

LEMMA 2. Let M > 0. Then there is an M, > 0 such that if 6,0* € 0,
llog f(-;06%)ll. <M and [Is(-;0) — s(-;0%)|l. < M, then

(@) llog f(-;0) — log f(-;0%)ll. < M,
and

() M7K~10 — 0% < |llog f(-;0) —log f(-;0%)I5 < M, K0 — 0*|°.

Proor. By Lemma 3 of Stone (1990), there is an M, > 0 such that
|C(0*)| < M,. Thus [ls(-;0%)ll. <M + M, and hence [s(-;0)|. < 2M + M,
Consequently, there is an M, > 0 such that |[C(0)| < M; and hence
lllog f(-;0) — log f(-;0%)|l. <M + M, + M,, which yields (a). According to (12)
of Stone (1986), there is an M, > 0 such that MK~ 1|6 — 0*|% < |Is(-;0) —
s(';O*)Ilg <M,K o - 0*|%. Hence, by Lemma 1, there is an M; > 0 such
that

llog f(+;0) — log f(+;0%)[5 < MsK~1|6 — 0*[°.



LOGSPLINE RESPONSE MODELS 1839

Observe that

I1og 7(:0) 108 £(-30%) I3 = [(Z (04 = 07) Bu(y) = [C(0) = C(0%)]) dy

- (2 - 02 - 10@) - cmBA)) 0.
Thus, by (12) of Stone (1986), there is an M > 0 such that
llog £(-;0) — log f(-;0%) |3 = Mg 'K~ L {0 -0~ [C(0) - c(o%)])".
Now 0, 0* € @, so L ,(6, — 6%) = 0 and hence
Y {6, — 6F — [C(0) — C(0%)]) > z;, (6, — 65)° =10 — 0%

k

Consequently, [|log f(-;8) — log f(-;0)l5 > M;'K~'|6 — 6*|. Therefore, (b) is
valid. O

LemMa 3. [Is(-;h(-;B5)) — s(:; h(; Bl < B, — Byl for By, B, € B.

Proor. By the properties of B-splines, L L ,H?X(x)Bi(y) <
L ;X H(x)B,(y) = 1. Thus, by the Schwarz inequality,

2
2
[s(r3h(xiB) = s(rib(xiB))]” = (£ T (Bos = Bun) H(3) Bu() |
ik
<|B. = Bul,

where B; = (B;;) and B, = (B,),). O

The next result follows from (1), the o-quasiuniformity of the knot se-
quence defining &% and (viii) of de Boor [(1978), page 155] [see the proof of (12)
of Stone (1986)].

LEMMA 4. There is an M > 0 such that, for n > 1,

M_an_l|B2 - Bl|2 < Z |h(xi;32) - h(xi§B1)|2

<MnJ B, - B:1°, BB, EDB.

Let B € #. Then, by a direct computation,

(18) +IB)r=L [[s(r;h(x;7) - a,]*Fylxi;B) dy, 1€ 2,
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where a; = [s(y; h(x; 7)) f(ylx;; B) dy. Let B € #. Then (d/dt)A(B* +
t(B — B*Dl;—0 = 0 and

d2

2 MB* + (B = B)) = —(B — B*)'I(B* + (B — B*))(B - B*).

Thus, by (18),

M) = a8 = = ['0 = 0 £ [[s(sh(zi8 - ) - a 0]

(19)
Xf(ylx;; B+ t(B — B*))dy| dt,

where a,(¢) = [s(y; h(x;; B — B*)) f(ylx;; B + t(B — B*Ndy for 1 <i <n.
Choose ¢ € (0, 3) satisfying (7): JK = o(n1/2~¢),

LEMMA 5. There is a & > 0 such that if n> 1, B € & and Ip — B*| =
n’JK/ Vn , then A(B) — A(B*) < —6n*JK.

Proor. It follows from (3), (19), Lemma 2(a) and Lemma 3 [see the proof
of Lemma 4 in Stone (1990)] that there is a §; > 0 such that

A(B) —A(B*) = =0, % [[log f(vlxii B) - log f(ylxi; B*)]" dy.
By lemmas 2(b), 3 and 4, there is a §, > 0 such that

L [llog £(slxi; B) ~ log f(ylxii B*)]" dy = o,n K| - B+
Consequently, the desired result holds. O

LEMMA 6. Let 6 > 0. Then there is a 6, > 0 such that if n > 1,3 &%
and |B — B*| < n*JK/ Vn, then

' 5
P(l(s) —1(B*) — [AMB) — A(B*)] = -2—n2€JK < exp(-8,n*JK).

Proor. Write I(B) — I(B*) — [A(B) — A(B*)] = L, Z,, where
Z; = log f(Yilx;;B) — log f(¥;|x;; B*)
— E[log f(Y|x;;B) — log f(Yi|x;;8*)].

It follows from (3), Lemma 2(a) and Lemma 3 that there is an M, > 0 such
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that P(|Z, < M;) = 1for 1 <i < n. Observe that, for 1 <i <n, EZ;, = 0 and
var(Z;) < E{[log f(Y/|x;;B) — log f(Yilx,; 8*)]")

= [[log f(ylx;;B) — log f(ylx;;B*)]* F(vlx;) dy.

We now conclude from Lemmas 2(b), 3 and 4 and the boundedness of f(-| -)
that there is an M, > 0 such that T, var(Z;) < M,n**JK. The desired result
now follows from Bernstein’s inequality [see (2.13) in Hoeffding, (1963)]. O

LEmMA 7. Let 6 > 0. Then there is a 8; > 0 such that

o
[L(B2) = L(B1) = [A(B2) = A(BD)]| = 5n*JK

for n>>1, B,,B, € B, B, — B*| = n°JK/Vn, B, — B*| = n"JK/Vn and
Iﬂz - ﬂ1| < Slnze“IJK.

Proor. Observe that

'l(Bz) - 1(By) — [)‘(32) - )‘(31)” = 2n||log (- 5Bg) —log f(+|- ;31)”00-

By Lemmas 1 and 3, there is an M; > 0 such that [log f(-|-;By) —
log f(-1 - ;BDl < M;IB, — B;|. Thus the desired result is valid. O

The diameter of a subset B of & is defined as sup{|B, — B,I: B;, B2 € B}.
The next result is easily established by considering suitable inscribed and
circumscribed JK-dimensional cubes.

LEmMA 8. Let 6, > 0. Then there is an M > 0 such that, for n > 1,
(= #:|Bp-8*|=nJK/Vn)

can be covered by exp( MJK (log n)) subsets of # each having diameter at most
8,n*"1JK.

LEMMA 9. (a) B exists except on an event whose probability tends to zero as
n — o,

®) 1B — B*| = Op(n°JK/ Vn).

ProoF. Set &, ={B € #: |B — B*| < n%JK/Vn}. Then &, is a compact
set whose boundary relative to & is %, = {B € #: |B — B*| = n°JKVn}. By
Lemma 5 there is a 6 > 0 such that A(B) — A(B*) < —6n?*JK for B € %,.
Thus it follows from Lemmas 6-8 that, except on an event whose probability
tends to zero as n — », I(B) < I(B*) for B € H,, so I(-) has a local maximum
in the interior of %, relative to &. The desired results now follows from the
strict concavity of /(-) on &. O

The next result follows from (4), (7) and Lemmas 2a, 3 and 9.
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LemMA 10. There is a positive constant M such that, except on an event
whose probability tends to zero as n —» o, M~ < f(-| - ;8* +t(B-B*N <M
for 0 <t <1

LeMMA 11. There is an M > 0 such that, forn > 1, € #and 7 € B,
M~ 'nd 'K~! x| min f(-| - ;B) < +'I(B)r < MnJ 'K~ 'x|* max f(-| - ;B).

Proor. Set min = min f(-| - ;) and max = max f(-| - ;B). Using (1), (18)

and (12) of Stone (1986), we see that there are positive numbers §,, 8, and &
such that, for n > 1, € & and v € &,

T I(B)T = 61(min)z f[s(y;h(xi;-r)) - ai]zdy

= 61(min)z f(% [Rp(x;37) — ai]Bk(y))z dy

2 0y(min) Kt T ¥ [hy(xs7) - a;]*
= 8y(min) K~1 37 3 (Z (7% — ai)Hj(xi))
ik J

> 8y(min) K1Y ¥ (Z Tijj(xi))
i k J

> 8(min) nd 1K x>

Similarly, we conclude from (18) that 7’I(B)r < (max)L; [[s(y ; h(x; )% dy
and hence that there is an M > 0 such that, for n > 1, B € & and 7 € %,
+*I(B)r < M(max)n J 'K~ !|7|%. Thus the desired result is valid. O

Let S(B) € & denote the score at B; that is, the JK-dimensional matrix the
entry in row j and column % of which is

a0 aC
o~ L) (B — 5 )|

[In computing 4C(8)/d6,, we let 8 range over RX.] Then ES(B*) = 0 and
E|S(B*)" = L L L HX(x;)var(By(Y:))
ij ok

< (T #3)B( T B2 <

2

Consequently, the following result is valid.
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LEMMA 12. [S(B*)I? = Op(n).

The maximum likelihood equation S() = 0 for § can be written as
1d n
jo ES(;s* +t(B - B*)) dt = —S(B*).

Thus it can be rewritten as D(f — p*) = S(B*), where D is the JK X JK
matrix given by D = [lI(B* + t(B — B*)) dt.

LEMMA 13. B — B*| = O(JK/ Vn).

ProoF. According to the maximum likelihood equation for §,
(20) (B - B*)'D(B - B*) = (B - B*)'S(B*).
It follows from Lemma 12 that

(21) (B - B*)'S(B*) = Op(IB — B*IVn).

According to Lemmas 10 and 11, there is an M > 0 such that, except on an
event whose probability tends to zero as n — «,

(22) (B-B)D(B-B) =M nd KB - p*

We conclude from (20)-(22) that nJ K~ — g*|® = Op(Ip — B*|Vn), which
yields the desired result. O

Let VC(S(B*)) denote the variance—covariance matrix of S(*).
LEMMA 14. There is an M > 0 such that, forn > 1 and v € %,

M 'nJd K '1® < v*VC(S(B*))T < Mnd 'K~z

Proor. Since

(23) 7 VC(S(B*)7= L [[s(y;h(x;57) —a]*fOlx)dy, 7€,

where a; = [s(y;h(x;; 7)) f(ylx;)dy for 1 <i < n, the desired result follows
from the argument used to prove Lemma 11. O

Let B € #. Then there is a positive semidefinite symmetric JK X JK
matrix [I(B)]” having range & such that I(8)I(B)] 7 = [I(B)] I(B)r = 7 for
1 € 4. [Consider the orthogonal diagonalization of I(B).] The matrix [I(B)] ™ is
referred to as the generalized inverse of I(B).
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Let @ € & be the approximation to B — p* defined by I(B*)é = S(B*).
Then ¢ = [I(B*)]"S(B*), Eé = 0 and

(24) VC(¢) = [I(B*)] VC(S(8*))[L(B*)] -

The next result follows from (24) and Lemmas 10, 11 and 14. (Consider a
symmetric square root of [I(f*)]™.)

LeEmMMA 15. There is an M > 0 such that if n > 1, then
(25) M~ 'n"YUKl®> < 2 [I(B*)] * < Mn JKI|®>, 1€ &,
and

(26) M~ 'n"YKl7|® < var(+'¢) < Mn~WJKl1>, < &.

Given y€ 2 and B %, let G(ylx;B) € & denote the gradient of
log f(ylx; - ) at B: the J X K matrix the entry in row j and column % of which
is

acC
Hj(x)(Bk(y) - ﬁ(h(x; B)))
3
It follows from Lemma 3 of Stone (1990) and Lemma 10 that

(27) max

o€ . @R* -1
70, (B(x:B ))I = O(K™).

Thus there is an M > 0 such that

(28) |G(y|x;B*)| <M, =x€ ZandyecZ.
Observe that S(B) = L ,G(Y}|x;; B) for B € # and hence that
(29) $in = L ([I(B*)] G(Yilx;;8%)) ja-

i
The quantities j and k& in (a) of the next result and the quantity j in (b) and
(d) are allowed to depend on 7 in an arbitrary deterministic manner.

LEmMma 16. (a) ¢, = Op(yJK/n).

() 1/K)L %, = Op(JK/n).

(© ¢ = Op(J?K?/n).

(d) max, |¢;,| = Op(y/JK(log K) /n).
(e) max; ,|¢;,| = Op(yJK (log JK) /n).

ProoF. Now max; , E¢%, = max; , var(¢;,) = O(JK/n) by (26), so (a)-(c)
hold. By (25) and (28), there is an M > 0 such that, for n > 1,

max |/[I(B*)]  G(y|x; B*)| < Mn~YKl<l, <€ &,
x?y
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and hence

max max|([I(B*)] G(y|x; B*)) ;.| < MIK/n.
%y J
Parts (d) and (e) now follow from (7), (29) and Bernstein’s inequality. O
LEMMA 17. Iﬁ - B* - élz = 0p(n~2J3K %(log JK)).

Proor. It follows from the maximum likelihood equation that
B - B* =6 - [1(8*)] [D - I(B*)](B - B*).
By (25),
[1(8*)] ™ [D - 1(8*)](B - 8*)| = 0p(n~2(JE)?|[D - 1(8*)] (B - 8*)).
The entry in row (j, k) and column (', ') of D — I(B*) can be written as

Y X A Brw — Biw),

j// 1%

where
1
A jrwr = Z _/; (1 —¢)H;(x;)H;(x;)Hp(x;)
12

a3C . A *

Thus the entry in row (j, ) of [D — I(B*)I(B — B*) is
Z L L L Auywyw (Biw = B3w)(Bywr — Biw),

j” k"

which is dominated in absolute value by
ma;ex( jk) Z] Z Z; Z |Ajk_1'k'_1"k |

There is a positive integer </, such that A 2 A 0 unless |j' — j| < J, and
lj" = jl < d,. Thus, by (8) of Stone (1989) there is an M; > 0 such that

93C

L Z | Ajjueyrwr| < MyJ7'n sup  max 36,08, 90,

J req 0<t<l1

(b(x;8* + (B - 8*)))|.

Consequently [see the proof of Lemma 15 of Stone (1990)],

Z Z (Z XXX A, ”k"l) = Op(nK™")

R Jj A
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and hence |[D — I(B*)I(B — p*)I* = Op(nK~! max, ,(B;, — B%)*). Therefore,
n 2 n 4
Iﬂ - B - ‘PI = Op(n_lJ2K I?aI;X(Bj - B;Fk) )
We now conclude from Lemma 16(e) that
max (8, — Bj‘k)z = op(n—lJK(log JK) + n~ 2K max (B, — B;!‘k)4).
Jrk J. k
Thus max; ,(8,, — B%)? = Op(n~JK(log JK)) by (7) and Lemma 9(b), so
n 2
|8 - B* — | = 0p(n"2J%K2(log JK)). o

Theorem 1(a) coincides with Lemma 9(a) and the remaining parts of Theo-
rem 1 follow from (7) and Lemmas 16 and 17.

3. Functional estimation. In this section, (8)-(12) will be verified. To
help the reader follow the details, we first indicate the proof of (10). It follows
from (38) that |log f*(:| ‘)ll. = O(1). Thus, to prove (10), it suffices to show
that

(30)  max|log f(ylx; B) — log f(ylx; B*)| = Op(yK (log JK) /n).

Let VC(0) denote the gradient vector of C(-) at 0, whose kth entry 4C(0)/46,
is computed as 0 ranges over RX. Observe that

51) log f(v|x;B) — log f(ylx;B*)
= [G(y|x; B*)]‘® + [G(vIx; 8*)]'(B — B* — &) — R,

where

(32) R =C(h(x;8)) - C(h(x;*)) - [VC(h(x;8*))]'h(x; - p*).

According to Lemma 18(c) below,

(33) max|[G(ylx; 8)]"6| = Op(/K (log JK) /n);

according to (7), (28) and Lemma 17,

(34) max|[G(ylx; 8)] (B - 8" - ¢)

and, according to (7) and Lemma 19 below,

(85) mj\leI = op(VIK/n).

The desired result (30) follows from (31)-(35).
LEMMA 18. (a) [G(y|x; B*)'¢ = Op(/JK/n).

) [AIGY|x; B*)'¢)2dy = Op(JK/n).
(© max,,, [GO}x; Bl = 0,(/TK (log JK) /n).

= OP(\/m);
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Proor. Part (a) follows from (7) and Lemma 17. In order to verify (b),
choose x € & There are at most JJ,, values of j such that H;(x) > 0. For any
such j,

1 a N S 2

(E§ Bjk‘ﬁfk“%k‘) =< E%(ﬂjk—ﬂfk—‘f)jk)
1 n . \2
SE?Zk(Bjk_Bjk—(ij)'

Thus, by (7) and Lemma 17,
BAjk — B — (xajk| = Op(n_1J3/2K1/2 Vlog JK) = oP(\/J n ),
so (b) holds. Part (¢) follows from (27) and Lemma 16(a, b); (d) follows from

(27), Lemma 16(b) and (12) of Stone (1986); (e) follows from (27) and Lemma
16(e); and (f) follows from (7) and (e). O

1
max —
Jj sz"

LEmMMA 19. The following is valid:
max|C(h(x;B)) — C(h(x:8%)) — [VC(h(x;8*)]h(x; 8 - 8°)|
= Op(JK(log JK) /n).
Proor. Observe that
C(h(x;B)) — C(h(x;p*))
= [VC(h(x;8*))]'h(x;B — B*)
+ [ -0 [[s(n:b - 89) - a)

X f(ylx; 8% + t(B — B*)) dy) dt,

where a(t) = [s(y;h(x; B — B*) f(ylx; B* + t(B — p*)) dy [see (18)]. The de-
sired result now follows from Lemma 10, Theorem 1(e), and (12) of Stone
(1986). O

Lemma 20. (a) max,, [log f(ylx; B) — log flylx; B*) — [Gylx; )@l =

ril%x‘F(y|x, é) — F(ylx; 8*)

(b)
— [ %8[G Ix; B*)] @ dy'| = 0p(VI/n ).

Y=y
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Proor. Part (a) follows from (31), (32), (34) and (35). Since

F(vhe; B) = F(olas ) = [ (ehef0/xibrmion 16758 — 1) £(y/lx; 87) dy,
(b) follows from (a) and Lemma 18(c). O

LEMMA 21.
max| [ f(1a: ) [6)es8°)] 6 | = On(4T7m)

Proor. Let T be the member of &, the entry in row j and column k of
which is
aC
H,(x) 5~ (h(x3 B%)).
k

Then E(1'¢) = 0 since E¢ = 0 and var(1'¢) = O(J/n) by (26) since |7l =
O(K~Y) by (27), so t'¢ = Op(yJ/n). Thus to prove the desired result it
suffices to verify that

(36)  max ZHj(x)yjkfy OB Bu(y) dy = 0p(VI/n).

For any given value of y, all but a bounded number of terms
Jy <y F'lx; B*)B,(y') dy' are equal to Jf(y'lx; B*)B,(y') dy' or to zero. By (4),
(7 ‘and Lemma 16(d), the total contribution of the bounded number of
exceptional terms is Op(K~'y/JK(log K)/n) = Op(yJJ /n). Let the B-splines
B,,..., B, be ordered according to the right endpoints of their supports. In
order to verify (36), it suffices to show that

(37) max| T 9 F(e;8) Bu(y) dy| = On(VI/n )

Let % be a subset of consecutive integers in {1,..., K} and let K’ denote
the cardinality of #. Let v denote the J X K matrix having entry
/f(ylx; B*)B,(y) dy in row j and column k for k£ € # and all other entries
equal to zero. Then
(38) 7> = 0,(K'/K?).

Since
var( T ¢ FOolx: B°) Ba(y) dy) = 2 VC(§)r,
ke
it follows from (26) and (38) that

JK'
(39) Var(kgx%kff(ﬂx;ﬂ ) Bi(y) dy) - O(E{—)
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Observe next that

(40) Y 6u[(x:8*)Bu(y) dy = L Zy,
ke X i

where

Zoo= (T (1B G (Vb 8) ) [ F (513 8%) Bu() dy,
(41) keX

, l1<i<n,
are independent random variables whose sum has mean zero. By (4), (25) and
(28),

(42) |Zy:| <b=0(n""JVK).

It follows from (39)-(42) and Bernstein’s inequality that there is a § > 0 such

that
g
k

Z‘};Bjkff(y'x;ﬁ*)Bk(y) dy zA\/J/n(K’/K)a)

< 2{exp[ -84y /(JK) (K'/K)"] + exp| -34%(K/K")' ™)

for A>0and0<a < 3.

Set R = min[r: 2" > K]. For 0 < r <R, let .#, denote the collection of all
sets of integers of the form {(m — 1)2" + 1,..., m2"}, where 1 <m < K/2"
and note that the cardinality of .#, is at most K/2" and that each set in .#,
has cardinality 2. It follows from (7) and (43) that, for any a > 0, A can be
chosen sufficiently large so that, for 0 < a < ; and n > 1,

P( Y ¢ [ F(ylx;B*) Bu(y) dy| = AYJ/n (K'/K)"

keX
For 1 <k' <K, {(1,...,k'} can be written as a disjoint union of sets ¥¢&
Hy U -+ U.#p such that for 0 < r < R, there is at most one such ¥ € .#,.
Thus it follows from (44) that (37) holds. O

(43)

(44)
for some K€ . Z/,U -+ UAy| <a.

Equations (8), (9), (11) and (12) follow from (4), (7) and Lemmas 18, 20
and 21.

4. Asymptotic normality. In this section the asymptotic normality of
(7 — 7*)/ASD(?) and (7 — 7*)/SE(?) will be established, where # is f(ylx),
F(ylx) or Q(plx).

The next result follows from (1), (4), (18), (23) and (12) of Stone (1986).

LEmMa 22. There is an M > 0 such that if n > 1, then
| VC(S(B*)) T — 'I(B*) | < MnJ 'K~ 5,hl?, =c .
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According to (24), (25), (28) and Lemma 22, there is an M > 0 such that if
n > 1, then
|var([G(ylx; B*)]°8) — [G(ylx; B*)][1(B*)] ~ G(vlx; B*) |
<Mn 'JKs,, X€ Zandy e ¥.

Throughout the remainder of the section, it is assumed that J, K — » as
n — o, Under this assumption, §,— 0 as n — ». Also, it follows from (27)
that there is an M > 0 such that if » > 1, then

(46) M~ ' <|G(ylx;B*)| <M, xeZandye .
If follows from (26) and (46) that if n > 1, then
(47) M~ 'n VK < var([G(ylx;B*)]'¢) < Mn YUK, x€ Zandye @.

(45)

LemMA 23. Uniformly for x € 2" and y € %/, the distribution of
[G(ylx; B*)] @
SD([G(yx; 8*)]?)

converges to the standard normal distribution as n — .

Proor. Observe that [G(ylx; B*)I'¢ = ¥ ,Z,, where

= [G(ylx; )] [(B*)]  G(Yilx;;8%), 1<is<n.
The random variables Z,,...,Z, are independent and their sum has mean
zero. Moreover, by (25) and (28), there is an M > 0 such that |Z,| < Mn~JK
for 1 <i < n. The desired result now follows from (7), (47) and the central
limit theorem [see the corollary on page 201 of Chung (1974)]. O

Sets G*(ylx) = G(ylx; B*) and G(ylx) = G(ylx; B). Then
ASD( £ (yIx)) = F*(rlo){[G* (1) I [1(B*)] ~ G*(yfx) ) 7,
SE(F(o)) = £ o) {[6 01 [1(B)] G}

ASD(F(ylx)) = [(f f*(ylx)G*(ylx)dy)[I(B*)]_

1/2

)

y'<y
1/2

b

SE(F(yi)) - [(/ f(ylx)G(ylx)dy)[I ®) [_FomGoR) d

ASD( F(y]x))

ASD(Q(rle) = 5

ly=@*(plx)
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and
SE( F (y]x ))
f(ylx) ly=Q(plx)
It follows from (47) and Lemmas 20(a) and 23 that, uniformly for x € 2~
and y € %, the distribution of
log f(ylx;B) — log f(ylx;B*)
SD(G(ylx; B))
converges to the standard normal distribution as n — «. It now follows easily
from (45) and (47) that the distribution of
f(yla; B) — F(vIx; B*)
ASD( f(ylx; B))
converges to the standard normal distribution as n — « uniformly for x € 2

and y € %. ]
The next result follows from (1), (4), (10), (18) and (12) of Stone (1986).

SE(Q(plx)) =

LEmma 24. Uniformly for v € 4,

[1(B) - K(B*)]=[* = 0,(nJ 1K~ (log JK ) )i=I2.

Since
(@] [e)] ™ = = (18]~ [18*) - 1B)][1B)] '+, =< 2,
the next result follows from Lemmas 10, 11 and 24.

LemMmA 25. Uniformly for v € 4,
’{[I(é)] To[KBY)]” }7’2 = 0,(n"3(JK)’(log JK) )Il*.
LeEMMaA 26.

r?a;le(ylx;ﬁ) - G(y|x; [3*)|2 = 0,(n 'YK (log JK)).

Proor. Observe that G(ylx; f) — G(ylx; B*) is the J X K matrix the entry
in row j and column % of which is H(x)[B,(y) f(ylx; B*) — f(ylx; )l dy. The
desired result now follows easily from (10). O
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It follows easily from (7), (10), (45)-(47) and Lemmas 25 and 26 that,
uniformly for x € £ and y € %,

SE( f(ylx; B))
ASD( f(ylx;8))

This completes the proof of asymptotic normality for # = f(y|x; B).
Let y be in the interior of %

=1+4+0,(1) asn — .

LeEMMA 27. There is an M > 0 such that if n > 1, then
2

MK l< <MK, xe .

| f(1%:B*)G(y]x; B*) dy
y<y

ProoF. The entry in row j and column % of [, _, f('|x; B*)G(y'|x; B*) dy’
is

aC
f{ y(Hj(x)Bk(y’) —Hj(x)gg);(h(x;ﬂ*)))f(y’lx;B*)dy’

y'<

-B@|[ B ki) ay

— [ 1% B*) dy [ Bu(y') F(y'lx; B*) dy').
y<y

The upper bound in the conclusion of the lemma now obviously holds, so to

complete the proof it suffices to show that there is an M > 0 such that if

n > 1, then

M7K' < ) (fy B F(]x B%) dy’
E <

~ ) 03 B%) dy [Bu(y) £ s B) dy’)

for x € 2. This lower bound is easily established by noting that if the support
of B,(+) is to the right of y, then [,_, B,(y') f(y'|x;8*)dy’ =0forx € 2" O

By (26) and Lemma 27, there is an M > 0 such that if n > 1, then
M 'n 4J< var(f/ O )x; B*) [G(y')x; B*)] @ dy')
y'<y
<Mn Y, x € X
LemMmaA 28. Uniformly for x € &, the distribution of
fy <y FO/ |3 B*) [G(y'|x; B*) ] dy’
SD(J, -, ('3 B*) [G(y'|x; B*)]  dy')

converges to the standard normal distribution as n — .

(48)
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Proor. Observe that [, _, f(y'|x; B*)NG(y'|x; B*)I'¢ dy = ¥;Z;, where
Z= [ fOlB)[G0 B B G(Ylx;B*)dy,  1<i<n.
y =y

By (25), (28) and Lemma 27, there is an M > 0 such that |Z;| < Mn~'JVK for
1 < i < n. The remainder of the proof is as in that of Lemma 23, with (48)
used instead of (47). O

The next result follows from (24), (25), (48) and Lemmas 22 and 27.

LemMma 29. Uniformly for x € &,
ASD(F(y]x; ﬁ))
SD(fy -, F('k; B*) [G(Ix: B*)] ' dy

It follows from (48) and Lemmas 20(b), 28 and 29 that, uniformly for
x € &, the distribution of

F(ylx; B) — F(ylx; B*)
ASD(F(ylx;ﬁ))

converge to the standard normal distribution as n — «. It follows from (4), (7),
(10), (25), and (48) and Lemmas 25-27 and 29 that, uniformly for x € &,

SE(F(ylx; ﬁ))
ASD(F(ylx; B))

This completes the proof of asymptotic normality for # = F(ylx; B).
Observe that F*(@*(plx)lx) = p and F(Q(plx)|x) = p. Thus

[FGl) = F*01)], - grpier = = [F(Q(pI2) %) — F@*(plx) )]
= [P F (ylx) dy.
Q*(plx)
We now conclude from (4) and (10) that, uniformly for x € &,

[F(ylx) - F*(ylx)]
f*(ylx) y=Q*(p|x)'

The argument used to establish asymptotic normality for 7 = F‘(ylx) applies
with y = @*(plx) (even though this value of y depends on n). Thus asymp-
totic normality for # = Q(plx) is valid.

)—>1 asn — ©,

=1+4+0,(1) asn —> .

Q(plx) — @*(plx) = [1 + 0,(1)]

REFERENCES

BarrON, A. R. and SHEu, C.-H. (1991). Approximation of density functions by sequences of
exponential families. Ann. Statist. 19 1347-1369.

BremMaN, L. (1989). Fitting additive models to regression data. Technical Report 209, Dept.
Statistics, Univ. California, Berkeley.



1854 C.J. STONE

BREIMAN, L. (1991). The II-method for estimating multivariate functions (with discussion). Tech-
nometrics 33 125-162.

BREIMAN, L. and PETERS, S. (1988). Comparing automatic smoothers. Technical Report 161, Dept.
Statistics, Univ. California, Berkeley.

CHUNG, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic, New York.

DE BOOR, C. (1978). A Practical Guide to Splines. Springer, New York

FaN, J. (1990). A remedy to regression estimators and nonparametric minimax efficiency. Techni-
cal Report, Dept. Statistics, Univ. North Carolina, Chapel Hill.

FrIEDMAN, J. H. (1991). Multivariate adaptive regression splines (with discussion). Ann. Statist.
19 1-141.

FRIEDMAN, J. H. and SILVERMAN, B. W. (1989). Flexible parsimonious smoothing and additive
modeling (with discussion). Technometrics 31 3—-39.

Hasminskil, R. and IBragiMOv, I. A. (1990). On density estimation in the view of Kolmogorov’s
ideas in approximation theory. Ann. Statist. 18 999-1010.

HoOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58 13-30.

JIN, K. (1990). Empirical smoothing parameter selection in adaptive estimation, Ph. D. disserta-
tion, Dept. Statistics, Univ. California, Berkeley.

Koo, J.-Y. (1988). Tensor product splines in the estimation of regression, exponential response
functions and multivariate densities. Ph. D. dissertation. Dept. Statistics, Univ. Califor-
nia, Berkeley.

KOOPERBERG, C. and STONE, C. J. (1991). A study of logspline density estimation. Comput. Statist.
Data Anal. To appear.

McCuLLAGH, P. and NELDER, J. A. (1983). Generalized Linear Models. Chapman and Hall,
London.

PorTNOY, S. (1986). On the central limit in R? when p — «. Probab. Theory Related Fields 73
571-583.

PorTNOY, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the
number of parameters tends to infinity. Ann. Statist. 16 356-366.

SCHUMAKER, L. L. (1981). Spline Functions: Basic Theory. Wiley, New York.

SmitH, P. L. (1982). Curve fitting and modeling with splines using statistical variable selection
techniques. NASA Report CR-166034. NASA, Langley Research Center, Hampton, Va.

StToNE, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8
1348-1360.

StoNE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann.
Statist. 10 1040-1053.

StoNE, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13
689-705.

STONE, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann.
Statist. 14 590-606.

StoNE, C. J. (1989). Uniform error bounds involving logspline models. In Probability, Statistics
and Mathematics: Papers in Honor of Samuel Karlin (T. W. Anderson, K. B. Athreya
and D. L. Iglehart, eds.) 335-355. Academic, Boston.

STONE, C. J. (1990). Large-sample inference for log-spline models. Ann. Statist. 18 717-741.

StoNE, C. J. and Koo, C.-Y. (1986). Logspline density estimation. Contemp. Math. 59 1-15.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



