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The estimation of the treatment effect in the two-sample problem with
right censoring is of interest in survival analysis. In this article we consider
both the location shift model and the scale change model. We establish the
large-sample properties of a generalized Hodges-Lehmann type estimator.
The strong consistency is established under the minimal possible condi-
tions. The asymptotic normality is also obtained without imposing any
conditions on the censoring mechanisms. As a by-product, we also establish
a result for the oscillation behavior of the Kaplan—-Meier process, which
extends the Bahadur result for the empirical process to the censored case.

0. Introduction. In the analysis of survival data, it is often necessary to
estimate the effect of a treatment or the difference between two treatments. In
this setting, the lifetimes of a treatment and a control group are compared.
The desired result is to show that a specific treatment extends the life of the
patient, either in the sense that it extends it by a certain amount, or in the
sense that it multiplies it by a certain factor. The first is the location shift
model and the second is the scale change model. If the data are fully observ-
able (no censoring), these problems have been extensively studied in the
literature [see, e.g., Lehmann (1975)].

Let (x),u,), i=1,...,n, and (y),v)), j = 1,...,m, be iid. random vari-
ables, respectively. It is assumed here that all random variables are mutually
independent. In the two-sample random censorship problem, one observes
{(x;,e,), i =1,...,n} and {(y,, 7)), _I 1,...,m}, where x; = min{x?, u;}, ¢,
Ladcu,y ¥j = m1n{y°,v} and i 1,0y, Let F, U, G ‘and V be the (left-
contlnuous) c.d.f. for x° u, y° and v, respectwely In the location shift model,
we assume G(¢t) = F(¢t — A) for all ¢, where A is an unknown parameter. It is
then desired to estimate A.

Under this model, it is easy to see that A is the median of the distribution of
— x°. Assuming the median is unique, we can write A = K~1(3), where

(0.1) K(5) =P(y° —x° <) = [  G(t+85)dF(z)

yO

is the c.d.f. of y° — x°. This suggests K~1(3) as an estimator for A, if we can
find a consistent estimator K(§) for K (6) For example, in the absence of
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censoring, a natural estimator of K(8) will be its sample analog K, ,.(8), which
is obtained by substituting the corresponding empirical distributions for F and
G in (0.1), respectively. The resulting estimator for A, K, 1(3), is simply the
sample median of y? — x?,i =1,...,n, j = 1,..., m, which is the well-known
Hodges-Lehmann (1963) estimator. The success of this estimator depends
(implicitly) upon the fact that one can estimate F and G consistently on the
whole real line. .

In the presence of censoring, one can construct K(8) by substituting the
corresponding Kaplan-Meier estimators [Kaplan and Meier (1958)] F,, and G,,
for F and G in (0.1), respectively. The resulting estimator K- 1(3)i is equlvalent
to the one proposed by Padgett and Wei (1982). However, since K(5) is not a
consistent estimator for K(8) for all 8 due to the fact that the Kaplan-Meier
estimators are only consistent up to certain uncensored values, as a result,
K~ (%) might not be consistent either. In order to avoid the inconsistency of
this estimator, it is assumed there that the support of the censoring extends to
o and so does the support of the survival curve. But, in practice, this infinite
support assumption is usually violated in the presence of heavy censoring. In
these cases the existing method could lead to inconsistent estimates. A way to
overcome this difficulty is presented in Wei and Gail (1983), but there they
impose strong conditions on the survival distribution, especially in the pres-
ence of heavy censoring (see particularly Remark 2 of their Theorem 2).

To avoid these strong conditions, Akritas (1986) introduced a general
method for quantile estimation for the distribution of the differences in the
two-sample problem, by truncating the samples before the upper limit of the
support of the survival. He suggested there that this method could be used to
estimate the shift parameter. But in order to do that, one must know the
proportion of differences smaller than the shift. This is highly unlikely, since
this proportion is a function of the unknown underlying distribution, unless
the support of the censoring extends to «, in which case this proportion is
equal to 0.5.

In order to derive a procedure that has the widest possible
applicability—without all the previous conditions—we considered a procedure
which in essence estimates this proportion from the data, and then uses the
corresponding quantile to estimate the shift. Because the argument in the
quantile is random, Akritas’s (1986) results (especially Corollary 3.2) cannot be
applied in establishing the large-sample properties of our estimator.

The purpose of this article is to prove rigorously the strong consistency and
asymptotic normality of our estimator. Before we proceed we give a brief
description of this method [for details see Bassiakos, Meng and Lo (1990)]. We
introduce the truncated version of the K function as follows. Let T, and T,
be two preselected constants such that T, < sup(Hp) and T, < sup(H),
where sup(Hy) and sup(H;) are the upper limits of the supports of the
distributions Hy of x and H of y, respectively. Setting

(02)  Ky(3) =P(y* —x°< 8,2 <Ty) = ["'G(¢ + ) dF(2),
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it follows that

T,
(0.3) Ky(A) = [_ F(t)dF(t) =P, (say).

This provides an estimator of A, K7 X(P,), where K,(8) and P, are sample
analogs of K () and P,, respectively. Unfortunately, this estimator may not
be consistent when A > T, — T, since K (8) may not be consistent for K 1(6)
when 6 > Ty — T,. In fact we can only show that mln{K (P ), T, — T} isa
consistent estlmator for min{A, T, — T,} regardless of the censoring mecha-
nism. To solve this problem, we can introduce another function:

(0.4) Ky(8) =1—-P{y°—x°>5,y°<Tp) =1- [_TzF(t - 8)dG(2),
and then
(0.5) Ky(A)=1- [TZG(t) dG(t) = P, (say).

It will be shown that max{K2 (P,),T, — T,} is a consistent estimator of
max{A, T, — T;}, where K,(5) and P, are sample analogs of K,(5) and P,,

because K 2(8) is a consistent estimator of K,(5) when 6 > T, — T,. Since
(0.6) min{A, Ty — T,} + max{A, T, — T} =A+ T, - T,
we can construct our estimator for A as

An = mm{ (Pl) Tl}
(0.7) o
+ max{K‘l(Pz) T, - Ty} — (T, — Ty).

Notice that since the Kaplan-Meier estimator is left-continuous, K() is
left-continuous while K2(6) is right-continuous, and both are nondecreasing.
The inverses utilized in (0.7) are defined in the following way.

For a nondecreasing function g(x),

(0.8) g Ny) = inf{x: g(x) >y} forally,
if g(x) is left-continuous; and
(0.9) g '(y) = inf{x: g(x) =y} forally,

if g(x) is right-continuous.

1. Main results. The following two theorems give the large-sample prop-
erties of our estimator A, . The proofs of Theorems 1 and 2 will be given in
Sections 2 and 4, respectively. Let M(¢) = 1 — M(¢) if M(¢) is a c.d.f.

THEOREM 1 (Strong consistency). Suppose A is the unique solution for
K, (A) =P, i=1,2. Then

A

wm > Aa.s. asn > xandm — .
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THEOREM 2 (Asymptotic normality). Suppose F(t) is continuous and
1o
(1.1) d(T,) = 1m(1)—[ (F(t +¢) — F(t)) dF(2)
-0 €7 -

exists and is positive, where T, = min(T,, Ty — A). Assume

lim =, 0<A<I1.
n,m—on+m

Then we have

A 1 ———-1 1
Vnt+m(A,,-Aa)-, N(O, [X(le(To) t1z A"Z?(To)] d*(T,) )

where
1 .1 (F2(t) - F¥(Ty))
(12) oHTo) = 5 f_T:( (F()t) HF((t) D ar ey
and
1 1 s (G2(t) — GX(T, + A))
(1.3) oz (To) = Zf_T: e )G(t)H(c(t) : ).

CoroLLaRY 1. If F(t) has density f(t) and [To,f%(t)dt < , then the
conclusion of Theorem 2 holds with d(T,) = [T f(¢) dt.

REMARK 1. In the absence of censoring, we can take T; = T, = « (define
T, — T, = 0). The resulting estimator A is essentially [up to an order of
O(1/(n + m))] the well-known Hodges-Lehmann estimator, that is, the sam-
ple median of y) —x2,i=1,...,n,j=1,...,m. The corresponding asymp-
totic variance of vyn + m (Anm_— A) in this case is [assuming [*, f2(#) dt < ®
and noticing that T, = © and U(¢) = V(¢) = 1]

[12A(1 - A)(]:ﬁ(t) dt)z]_l,

which is exactly the same one as shown in Hodges and Lehmann (1963).

ReMARK 2. Estimating the variance of Anm is quite straightforward. We
can consistently estimate o%(T,) and o:2(T,), by substituting the Kaplan-Meier
estimators for F and G and the empirical distributions for H; and Hg in (1.2)
and (1.3), respectively. Finally, d(T,) can be easily estimated using Parceval’s
equality, as in Chapter 4 of Rao (1983). The only difference is that the
empirical distribution weights are replaced by their Kaplan-Meier counter-
parts. This method allows us to estimate consistently the variance of the
estimator without having to estimate the density, as required by the existing
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methods. The details about the variance estimation and other practical issues
can be found in Bassiakos, Meng and Lo (1990).

For the scale change model G(¢) = F(¢/®), we can first transform the data
into log-scale, which translates the scale change model into a location shift
model. Then we can apply the method mentioned above to estimate A = log ©®
directly.

On the other hand, we can attack the scale change problem directly by
appropriate modification in the proposed method for the location shift prob-
lem. In fact, we can define the “scale change” versions of the K,(8), i = 1,2,
functions of (0.2) and (0.4), as ¥/(9), by changing ¢ + 6 to ¢t6,¢t — & to ¢/6 and
integrating from 0 instead of —c. Accordingly let &, = #;(0). Then the
corresponding estimator of ® can be constructed as [compare this with (0.7)]

énm = min{‘jz/l_l(ﬁl)’ T2/Tl}max<.}%’2_1(.@2), Tz/Tl}T1/T2,
where %, and & are the sample (Kaplan-Meier) analogs of %, and &,

i = 1,2, respectively. Notice that the two methods give identical estimates.

The following two theorems on the large-sample properties of ©,,, can be
established either directly, by applying the same type arguments that we will
develop in the rest of this artic}e for the location shift model, or indirectly, by
applying Taylor expansion to ®,,, — ® = e®»» — ¢, and then applying Theo-
rems 1 and 2, respectively.

THEOREM 1. Suppose O is the unique solution for ¥,(0) =, i =1,2.
Then

A
0,,>0a.s. asn—>xandm — ».

THEOREM 2'. Suppose F(t) is continuous and
o s 1 .
d(T,) = lim — [Tt(F(t + &) = F(t)) dF(2)
e—->0 €70

exists and is positive, where T, = min{T,, T,/®}. Assume

lim " =A, 0<AK<1.
n,m—o N +m )
Then
N . 1~2 _ 1 ars 1
vn+m(0,, —0)->_, N(0,0 X‘H(To)"’ X 2(To) (1) )
where

e 1 (FA0) = FY(T,))
0-1(T0)=Z,[T( ( 0))

o FOE T
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and

1 1,0 (G2(0) - G(T,0))°
1)y G(t) Hy()

53(Ty) = dG(t).

CoroLLArY 1. If F(¢) has density f(t) and fOTOth(t) dt < o, then the
conclusion of Theorem 2 holds with d(T,) = [Iotf %(t) dt.

As a by-product, we also establish the following result which describes the
oscillation behavior of the Kaplan—Meier process, and therefore extends the
Bahadur result for empirical process [Bahadur (1966)] to the censored case.
Since this result itself may be of independent interest, we state it as a
proposition. The proof of this proposition will be given in Section 3.

PROPOSITION.  Suppose F(t) is continuous on (—«,sup(Hy)) and F.(t) is
the Kaplan-Meier estimator for F(t). Let {a,} be a sequence of positive
constants such that

a,~Con V%(logn)?, n - w,
for some constants C, > 0, and q > 3. For 0 < a < 1, put

(14) Hya)= sup [[F(F ' (a))=F,(F'B)) - (a-8).

la—Bl<a,

Then with probability 1,

(1.5) H¥(T)= sup H,(a)=0(n"¥4logn)**??), n -,
0<a<F(T)

for any T < sup(Hy). Furthermore, if F(t) satisfies the Lipshitz condition on
(—oo, sup(Hy)), that is, there exists a universal constant C > 0, such that

|F(t) — F(s)| < Clt —s| forallt,s € (—»,sup(Hy)),
then with probability 1,

sup sup [[F(t) = F(s)] = [F(t) - F(s)]]

(1.6)
= O(n‘3/4(log n)(1+q)/2), n - o,

for any T < sup(Hpy).

2. Strong consistency. Before we prove the strong consistency of f&nm,
that is, Theorem 1, we first need to prove the following lemma, which
establishes the strong consistency of K,(8) and ﬁi, 1=1,2
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LeEmmA 2.1. With probability 1, as n, m — o,
sup |R,(8) — Ky(8)| >0,

5<T,—T,
astI:gTII&(s) — Ky(8)| >0
and
, P-P -0, i=1,2,
where K (8) and P; are defined in (0.2)-(0.5), and Ki(ﬁ) and ﬁi, i1=1,2, are

12

their sample (Kaplan—Meier) analogs, respectively.

Proor. We prove the lemma by establishing the following inequalities. Let

(2.1) F¥(t) = F,(t) - F(t)
and
(22) GE(t) = G (t) — G(2),
then we have
(2.3)
SSsTt:nglffl(a) - Ky(8)] < EK'G;(’)' + ,SEK'F"*(t)' +| FX(Ty)|,
(2.4)
st;:gﬂlm(a) - K,(8)] < ?EK'F"*(”)' + f;g'Gi(t” +|GE(T,)|
and
(2.5) |P, - P,| < 2sup [EX(1)| +] (T,
(2.6) |P, - Py| < 2sup | G1.(1)| +]GL(Ty)].

Then the lemma follows immediately from the fact

sup |F}(t)| > 0as. asn >
t<T !

sup |Gk (¢)| > 0as. asm — .
t<T,

To prove (2.3), first write

N T, T,

27) K(8) — K (%) = f_wG,",‘,(t + 8) dF,(¢t) + f_mG(t + 8) dF}(¢)
= Dy(8) + Dy(5).
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For D(3), we have

(2.8) sup |Dy(8)|< sup sup|Gi(t+8)|< sup|GE(t)|.
8<Ty,—-T, 8<To—T, t<T, t<T,

For D,(8), applying a general integration by parts formula [see, e.g., Lemma
18.7 of Liptser and Shiryayev (1978)], we get
| Dy(8)] =|G(T, + 8)F3(Ty) — [ F(t +) dG(t + 5)
(2.9) o
<|F¥(Ty) |+ sup |Ff(t)].

t<T,

Thus (2.3) follows from (2.7)-(2.9). The rest of the inequalities can be estab-
lished by similar arguments. O

Now we are ready to prove Theorem 1, by considering three different
situations: (i) A < T, — T, (ii) A > T, — T, and (iii) A = T, — T,. The basic
idea of the proof is to transform the problem from A,,, to K; ! and then to
K., i = 1,2, and finally apply Lemma 2.1.

Proor oF THEOREM 1. (i) A < T, — T,. In this case we will show
(2.10) P(,, # R{'(Py),i0.} = 0.

First, by the uniqueness condition and the monotonicity of K,(8), i = 1,2, we
have

(2.11) P,=K,(A) <K(T,—-T,), i=1,2.

It was seen in Lemma 2.1 that K(T, — T,) » K(T, — T,) a.s. and P, -» P,
a.s., i = 1,2. Hence (2.11) implies that

P{P, > R(T, - T)),i0.} =0 fori=1,2.
Thus it is easy to see [see, e.g., Serfling (1980), page 3] that
P(R;7Y(B) > T, - Ty,io) < P{B, > R(T, - Ty),i0} =0 fori=1,2,

which implies (2.10). Now for any 0 < €< (T, — T,) — A, again by the unique-
ness condition, we have
(2.12) Ki(A-¢) <P =K (A) <K(A+e).

Since A + & < Ty — Ty, K(A + &) > K(A + ¢) a.s. by Lemma 2.1, and hence
(2.12) implies [again see Serfling (1980)]

(218)  P{R;Y(P)>A+¢e,i0) <P{P, > Ry(A+¢),io0.)

0,

A

(2.14)  P{R;'(P) <A -e,io) <P{P, <Ry(A-¢),io.}=0.
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Thus, by (2.10), (2.13) and (2.14), we have
P{|4,,, - A[>e,i0} = P{

that is,
A —>Aas. asn,m — oo,

nm

(ii) A > T, — T,. By applying the same type of arguments, we can establish
(2.15) P(a,, # R7'(P,),i0.} = 0,
and forany 0 < e < A — (T, — T)),
(2.16) P{|R;'(P;) - A| > &,i0.} = 0.

Then the assertion follows from (2.15) and (2.16) immediately.
(iii) A = T, — T,. In this case, it is easy to check

(217) min{R7(P,) - 4,0} <A, - A <max{K;'(B,;) - A,0}.
Now for any ¢ > 0, since A — ¢ <T,— T, and A +¢ > T, — T,, Lemma 2.1

implies K, (A —¢) » K((A —¢) as. and K,(A + &) » Ky(A + ¢) a.s. There-
fore, by applying the same arguments as in (i) and (ii), we have

P(R7(P) <A -e,io0) <P{P, <K,(A-¢),io.} =0,
P(R;Y(B;) > A +¢,i0.) < P{P, > Ry(A+¢),i0.} = 0.
Now, (2.17) implies
P{|A,, - Al >¢,i0)
< P{R7Y(P) <A -e,io} + P(R;}(P,) > A +e,i0.) =0,
which completes our proof. O

ReEMARK. The condition given in Theorem 1 is the minimal possible one, in
the sense that if it is violated, then the shift parameter A is not identifiable. In
fact, as we will show below, this condition is equivalent to the underlying
distribution F being discrete with isolated atoms, in which case any shift less
than the minimum spacing will not be identifiable. Since we need this equiva-
lence in the proof of Theorem 2, we state it as a lemma.

LEMMA 2.2. The uniqueness condition in Theorem 1 is violated if and only
if
(2.18) F(t) =Y bjl(ajq) fort <T,,
J

where b; > 0 and min,, ;la; —a;l > 0.

i#j
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Proor. Let p(F,s) = [To|F(¢) — F(t — s)|dF(t). Then it is easy to check
that the uniqueness condition is violated if and only if p(F, s) = 0 for some
s # 0. Notice that for any (left-continuous) c.d.f., the following decomposition
holds:

F(t) = aF(t) + (1 — a) Fy(2),

where F, is a continuous c.d.f. and F,(¢) = T ;b; i@, <n 18 @ (left-continuous)
discrete c.d.f. By the monotonicity of a c.d.f, 1t is not hard to show for s # 0,

(i) p(F,,s) =0 F(t)=0 fort<T,,
(ii) p(F;,s) =0 0<s< Igjnla al.

The ““if”’ part is an immediate consequence of (ii). The “only if”’ part can be
easily shown by combining (i) and (ii) and the fact p(F,s) > a®o(F,,s) +
1 - a)%(F,,s). O

3. Oscillation behavior of the Kaplan-Meier process. The result on
the oscillation behavior of the Kaplan—Meier process will be utilized in proving
the asymptotic normality. To establish this result itself, that is, the proposi-
tion, we need the following three lemmas. The first two lemmas are well
known in the literature. The first lemma plays a key role in the present proof,
as well as in proving the asymptotic normality (Theorem 2).

LeMMaA 3.1 [Lo and Singh (1986)]. Suppose F(t) is continuous. Using the
notation given in Section 0, we have the following representation for F,(t):

1 r
(3.1) Fo(8) = F(t) = — ¥ &p(xi, 80, 8) + 1(2),
i=1
where
(3.2) &r(x,6,t) = F()| [ i G ET

~» Hp(s)F(s) Hp(x)
and
sup|r,(t)| = O(n=**(log n)**) a.s. forany T < sup(Hp).
t<T
LEmma 3.2 [Bernstein, from Uspensky (1937)]. Let Z,,..., Z; be indepen-

dent random variables with mean 0 and variance o}, and satisfying P{|Z)| <
B} =1 for each l, where B < . Then for any d > 0, :

(Ld)®
2yt of + 2BLd

>

P{ Z,
=1

forall L=1,2,....

> Ld} < 2exp{
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LEmmMA 3.3.

P{ G sup | F,(F~Y(F(t))) - F(¢t)| > 0} =0.
1 ¢

n=

Proor. First notice that F,(¢) depends on ¢ onmly through 1,s_, [not
1., 4] for all i such that ¢; = 1. Since F~(F(¢)) > ¢ and F(¢) is left-continu-
ous, we have

(3.3) l(x? <FYFey = l(x," <t lus = < F~Y(F@®))):

For any 0 <7 <1, let I_ = {¢: F(¢) = =} and II, = {w: I, contains at least
two points}. By the monotonicity of F, I_ is an interval for 7 € II,, and the
I’s are disjoint for different 7’s. Thus II, is at most a countable set. For
m e, let J, =I[t,, F~(m)), where ¢_=inf{t, t € I }. (Notice that —o <
t, <o for 0 <m < 1) From (3.3), it is easy to see that

o

(34) U {swplf,(F(F@) - B0 >0}« U U U (0,)

n=1 n=1i=1well,

Since F(F~Y(F(t))) = F(¢) [see Serfling (1980)] for all ¢, hence (recall that F is
left-continuous)

P{x? €d,} = P{t, <x?) <FY(F(¢,))}
= F(F~Y(F(t,))) - F(t,) = 0 forall .

The lemma follows immediately from (3.4), since the right-hand side of (3.4) is
a countable union of zero-measure sets. O

ProoF OF THE PROPOSITION. The proof consists of three steps. First, by an
appropriate partition of a subinterval of [0,1] and applying the Lo-Singh
representation (Lemma 3.1) to F,(¢), we can establish

1 n
=X Z(j,r)

(3.5) HX(T) <3 max max | —
i=1

15]5[‘/;7:] —b,<r<b,
Here H}(T) is defined in (1.5), b, ='O(n1/4(log n)?), R, = O((log n/n)**)
a.s. and for given j and r, {Z(j,r), i = 1,...,n} are i.i.d. bounded random

variables with mean 0 and variance o2, = O(n~'/?(log n)?).
Then, by applying the Bernstein inequality (Lemma 3.2), we have

+R,.

(3.6) P{

1 n
_Z Zi(j’r)
nio1

> dn} = 0(n™%),

uniformly for all j and r, where d, = C;n~3*((log n)*V/2 for some choice
of constant C;.
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Finally, by applying the Bonferroni inequality twice, we obtain

(3.7) P{ max max
1<j<[yn] —b,<r<b,

1 n
— lei(j’r)

n

> d,,} = 0(n72).

Then the assertion follows immediately from the Borel-Cantelli lemma and
inequality (3.5). [Notice that R, = O(n~3/%(log n)'*97/2), since for q > 3,
lg+1D=3]

To prove (3.5), first we notice that since F(t) is continuous, we can find a
T* such that T < T* < sup(Hy) and F(T) < F(T*). Let n be large enough
so that a, < F(T*) — F(T). For 0 < a < 1, let A, (a) = F(F~'(a)) — a, then
we have
(3.8) H,(a)= sup |A,(a) —A(B)l,

la—Bl<a,
where H,(a) is defined in (1.4).

For j=0,1,...,Vn], let a; = (j/WnDF(T) and a5y, = F(T*). Now,
notice that for any a,B, 0 <a < F(T) and |B — a| < a,, if both a and B
belong to the same interval [a;, a;, ], then

(@) if 0<j<[Vn]-1, then a;,;, —a; = 1/WnDF(T) < a,, for n large
enough. Thus

|A,(a) — A (B)| <|An(@) = Au(a; )| +|An(a).1) — A(B)]

(3.9) <2 max Hy(a,);
1<j<lyn]
(i) if j = [Vn ], then @ = F(T) = a; 5, and hence
(3.10) |A(B) — A ()| < H(am) < max H(a;).

1<j<lyn]

On the other hand, if « and B belong to two different intervals, say, a €
le,,a,.,] and B €[a;,a;,;], where 1 <j+1=<r< [Vn] (otherwise inter-
change j and r), then |la — B| < a, implies @, — @;,; <a,. Hence

|A,(a) — A (B)] <|Au(@) - Ay(a,)| +]A(e,) — Ay(a;.1)]

(3.11) +|Au(aj.1) — AB)]
<3 max H,(a;).
1<j<lym] ~(25)
Thus, by (3.8)-(3.11), we have established
(3.12) H*(T)= sup H,(a) <3 max H,(a;).
0<a<F(T) 1<j<[yn]

Now, for fixed j, 1 <j <[Vn], let

a
nj,=a;+ rg'i forr = -b,,...,b,, where b, = [Con1/4(log n)q]

n
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and
(3.13) b5 =|An(mr) — Aay)].

Notice that for any B, I8 —a;l <a, =17, ,<B <mn;,,, for some r, —b, <
r < b,,. By the monotonicity of F, (F 1), we have

|A () — AuB)| =|[Fu(F X)) - a;] = [Fu(F~Y(B)) - B]|
< max{|[F,(F~X(a;)) = ;] = [F(F~(m;,)) = mjr01])»
(3.14) I[Fn(F_l(aj)) - aj] - [Fn(F_l('ﬂj,rﬂ)) - "’b’,r] }

< max{¢j,r’ ¢j,r+1} + I"7j,r+1 - nj,rl

b
= —b?;arxsbnd)]’r b,
Thus
(3.15) H,(a;) < b¢1,+3'i for j =1,2,...,[Vn].

For fixed j and r, applying the Lo-Singh representation (Lemma 3.1), we have
[notice that F(F~(a)) = «, since F is continuous]

¢J r =|An(aj) —An(nj r)l
=|[F,, FYa))) - a;] = [F(F~ ;) = m;.]

(3.16) Z[g “Ya,)) - &(F ()]

+r(F~(a))) + ra(F~' ()|

where £,(¢) is an abbreviation of ¢4(x,, ¢;, ), given in (3.2).
Let Z,(j,r) = §(FY(a;)) — £(F~'(n; ). Notice that, since

ra(FX(a))) + ra(FX(m; )| <2 sup |r(F7Y(@))] < 2 sup [r(1)],
a<F(T*) t<T*

we have from (3.16)

1
ZZ(J,r)

i=1
Combining (3.12), (3.15) and (3.17), we establish (3.5), that is,

(3.17) d;,< +2 sup (1)

1
EZ(J,r)

" +R,,

H} <3 max max
1<j<[yn] —b,<r<b,




ASYMPTOTIC BEHAVIOR OF A SHIFT ESTIMATOR 1799

l 3/4 3/4
( ogn) ) _ O((logn) )
n n

Notice that for fixed j and r, {Z,(j,r), i = 1,...,n} are ii.d. bounded [with
the bound B, = 2([T*dF(t)/F(t)HF(t) + 1/HF(T*)) < ] random variables
with mean 0 and variance, say o- . Therefore, by applying the Bernstein
inequality (Lemma 3.2), with the 'choice of d — d, = Cin~%*log n)a+1/2
where C; > 0 is a constant to be specified later, we obtam

where, with probability 1,

an
R, = 35~ t6sup r,(t) =0(n"¥*) + 0

n t<T

1
(3.18) { Z Z,(j,r)|=d } < 2e%7,
i=1
where
3.19 ¢ nd.
519 " 27+ 3B,

Straightforward algebra shows (assume 7); , < a;, otherwise exchange 7, ,
and a;).
J

1Z,(j,r)| =|&(F ) - &(F1(n;,)|

% Lo < Pz 5i1(F(x?) <a;)
=\Mj,r @) = da + ———*
U S DS eery e Lk
520 n (1 - ) _f“j Lo < Fxyy da + £ l(nJ,sF(x,o)<a)
r n,, (1= a)Hp(F~(a)) Hp(x,)

< Bilmj,» —ajl + Baly,  cocap

where @ = F(x?) is a uniform random variable on [0, 1],
1
Hy(T*)

1 2
Hp(T*) \ F(T*)

Therefore,
o, = B[22(j,r)] < 2(B¥(n;,, - a;)" + BiP{n; , < < a;})

which implies that ¢, < C,a, for some universal constant C, and n large
enough, since |a; — 17 i, ,I < a,. Thus from (3.19) we have
2
o) > nd; CZ(log n)

2C2a + 2B,d, 2CzCo + 2B, Cl[(logn)(l_q)/z/n1/4] .

Therefore, if we choose C, large enough so that CZ2/4C,C, > 4, then for all n
sufficiently large 6(*) > C7 log n/4C,C, > 4(log n). It then follows from (3.18)
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that there exists N* such that
1 n
P{’_ Z Zi(j’r)
niaa
forall1 <j <[Vn], Irl <b, and n > N*. Thus we have established (3.6). The
expression (3.7) is an immediate consequence of (3.6) and the Bonferroni
inequality. This completes the proof of the first part of the proposition.

In order to prove the second part of the proposition, first notice that
|t — s| < a, implies |F(¢) — F(s)| < C|t — s| < Ca, = a*. Therefore,

sup sup |[F,(¢) - F(s)] - [F(¢) - F(s)]|

t<T |t—s|<a,
<sup sup [[Fy(t) - F(s)] - [F(t) - F(s)]|.
t<T |F(t)-F(s)l<a¥
By Lemma 3.3, with probability 1, the right-hand side above is equal to

sup  sup |[F(F(F(t)) = F(F'(F(s)))] = [F(t) - F(s)]|
t<T |F(t)-F(s)<a*

< sup sup |[F(F~Y(B)) - F(F Y (a))] - (« - B)|
0<a<F(T) |a-Blsa®

= 0(n~¥4(log n)**?7%),

by the first part of the proposition (obviously F is continuous here), which
completes our proof. O

> dn} <4n~*

4. Asymptotic normality. The following four lemmas are needed in
proving Theorem 2. The first two are well known in the literature. The third
one is a consequence of the oscillation behavior of the Kaplan—Meier process
we proved in Section 3. The fourth lemma gives the i.i.d. sums representation
of K(8) — K/(8) and P, — P, i = 1,2, which will play an important role in
proving Theorem 2.

LemMmA 4.1 [Berry and Esséen, from Serfling (1980)]. Let{Z,,l=1,..., L}
be independent random variables with mean w, and variance o? > 0. Let
SL = EIL=1(Z1 - ;Ll)/():ll;la'lz)lﬂ, (I)L(t) = P{SL < t}. Then

CrLl.E|z, - pu
(ZIL= 10_12)3/2 ’

where C is a universal constant and ®(t) is the standard normal c.d.f.

s1!1p|‘1>L(t) - ®(t)| <

LeEmMMA 4.2 [Lo and Singh (1986)]. If F is continuous, then with probabi-
lity 1,

n

log n \/?
sup|F,(t) — F(¢)| =0 ( ) a.s., n-oowo
t<T

for any T < sup(Hp).
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LEmMa 4.3.  Suppose F(t) is continuous and 0 < lim, ., (n/L)=2A <1,
where L = n + m. Then with probability 1,

Csup |Gt +5) = Gl +8) d(RL) ~ F(0)
(4.1)
log L \3/*
-of(*F7))
s |[P (= 8) ~ P = 8) d(G(t) = 6(0)|
(4.2)

=0((loiL)3/4)’

@y |[PED - Fo)aEo - Fo)| - of (22 ))
(4.4) ’/_T:(Gm(t) - G(t))d(G,(¢) - G(t))’ - 0((10&’7"1)3/4).

Proor. We prove these results by establishing upper bounds for the
left-hand sides of (4.1)-(4.4). Since F(¢) is continuous [so is G(¢) = F(¢ — A)],
we can find a collection of {¢;,1 <i <I,} such that —0 <¢, <¢, < -+ <
t; =T, and F(t,) = (i/I,)F(T)), where I, =[(n/logn)"/?] + 1. Similarly,
for given 8, we can find -0 <s§ <§;< -+ <s; =T, where J,
[(m /log m)1/2] + 1, such that G(s; +8) = (j/J, )G(T, + 8). Denote t,=
§o= — Let —o=ry<r < - <rK be the collection of {¢;,, 0 <i < I}
and {s;, 0 <j<I,} after ordering, where K,,=1I,+dJ,+ 1. Because
{r,, 0 <k <K,,} is a finer partition of (—c Tl) than {t;, 0<i<I,} and
{s;,0<j< Jm}, by the monotonicity of F and G, we have

F(r,) — F(r,_ I)SIL (logn)

n

and

nm:*

1 log m \ /2
G(rk+6)_G(rk_1+6)S‘——S( ) fOI‘k=1,...,K

M m

Therefore, by applying the simple equality

[ 1) da(t) = [((F() ~ £(8)) de(®) + F(B)(£(b) ~ (),
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we obtain

sup

s (54 8) = G(t +8) d(E(0) - F(0)|

K

Y (™ [GE(t +8) — GE(ry + 8)] dFX(2)
k 1 Te-1

Knm

kX—:lG;(rk +8)[F¥(r,) — F¥(r,_1)]

<2 sup max sup |GE(t+8) — Gi(r, +9)]

6<Ty—-T, 1<k<K,, rp_1Stsn,

+K,, sup supIG*(t+5)I max |FF(r,) — Ff(r,_y)|
5<Ty—T, t<T, <k<K,,
<2sup sup |Gr(s) — Gn(t)|
t<Ty |G(s)-G@)l

< sup
6<Ty,—T

~ + sup
8<To—T

<(log m/m)'/?
+K,,sup|Gr(t)|sup  sup |Ff(s) - Ff(?)],
t<Ty t<Ty |F(s)-F@)

<(log n/n)/?

where F,'(¢) and G}(¢) are defined in (2.1) and (2.2), respectively.
By Lemma 3.3, with probability 1, the right-hand-side above is equal to

2H*(G,T,) +K,,, sup |GX(t)|HX(F,T,),

t<T. Py
where
HY(F,T))
= sup sup  |[F(F (a)) - F,(F(B))] - (a« - B)|
0<a<F(T,) la—pBl
<(log n/n)t/?
and
H»(G,T,)
- sup sup  |[G(G () — G (G™Y(B))] - (« - B)|-

0<a<G(Ty) la— Bl

<(log m/m)'/?

Thus we have established (with probability 1)
sup | (Gult + 8) = G(t +8)) d(E(t) — F(1))
(4.5) 6<Ty-T,

<2H(G,T;) + K, sup |G} (¢) |[H;(F, T,).

t<T,




ASYMPTOTIC BEHAVIOR OF A SHIFT ESTIMATOR 1803

By similar arguments as above, we can establish (with probability 1)

sup f_T:(Fn(t —8) — F(t - 6))d(G,(¢) - G(t))l

6>T,—-T,

<2H}(F,T)) + K., sup | F(¢)|HA(G, Ty).

t<T,

(4.6)

By the proposition on oscillation behavior of the Kaplan—Meier process (for
q = 3), we have

H*(F,T,) =o((1°in)3/4) and H*(G,T,) =0((1°g—m)3/4).

m

Since 0 < A < 1, by Lemma 4.2,
K,.sup|F(t)| = 0(1) and K,,sup|GL(t)| = O(1).

t<T, t<Ty

Thus (4.1) and (4.2) follow immediately from (4.5) and (4.6), respectively.
Similarly (and more easily, in fact), we can establish (with probability 1)

[T (B - P d(E) - F)|

(4.7)
< {2 + I, sup |F,;"(t)|}H,";(F, T,)
t<T
and
(66 - 61) d(Gut) - 60)|
(4.8)

< {z +d,, sup |G,‘;(t)|}H,’;(G,T2).

t<T,

By applying the same arguments as above, (4.3) and (4.4) follow from (4.7)
and (4.8), respectively. O

The Lo-Singh representation of the Kaplan-Meier estimator (Lemma 3.1)
is critical in proving the following lemma.

LEMMA 4.4. Under the conditions of Lemma 4.3, we have the following
representations:

m

K,(8) — Ky(8) = ;}L‘ L 7¥(Ty,9)
(4.9) o~

2% [Ty, 0) - G(Ty + )EP(TY] + Ry(5),
i=1
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log L \3/*
sup |R(8)|=0 (—) a.s.,
o<T—T, L

n

K2(6) — K,(9) = _% Z 77§F)(T2 - 4,9)

(4.10)

with

and

(4.11)

(4.12)

i=1

+ 5 [nO(T, - 5,8) ~ F(T, - )8°(Ty)] + R(5),
j=1

j=

log L \**
sup |R,(8)| =0 (——-—) a.s.,
62T,—T, L

nooio

n 3/4
P -p= TC § gy 4 0((1"%) )

pz_Pz Ef,('G)(Tz)+O

Jj=1

S Eerm o[22

where £PNED@)) is an abbreviation of &p(x;, e, tXEq(y), 7, 1) of (3.2),

and

(4.13)

(4.14)

Proor.

n(a,8) = [ &) dG(t + ),
7P(a,8) = [ £9(t + 5) dF(t).

Integration by parts gives

Ry(5) — Ky(8) = [ Gt +8) dF(t) + [G(t +5) dF(2)

(4.15)

+ [1Ga(t +8) dFX(D)
= (G (t +5) dF(t) + G(T, + 5) F(Ty)

— [TF(t)dG(t + 8) + ["G(t + ) dF(t).
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By Lemma 3.1, for ¢t < T,, 6 < T, — T, (hence & + ¢ < T,), one can write

1 n
(4.16) F¥(¢t) = —~ Y tr(x;,6;,t) + ri(2),
i=1
1 m
(4.17) Gi(t+6) = — Y Ea(yj, vt +8) + riO(t + 8),
j=1

where, with probability 1,

1 n 3/4
(4.18) sup [riP(¢)| = O(( o8 ) )
t<T, n
and
log m \3/*
(4.19) sup | r©@()| =0(( g ) )
t<T, m

Combining (4.15)-(4.17), we obtain (4.9), with

sup |Ry(8)| = sup

8<T,—-T, 6<Ty,-T,

[Pt + 8y dF(t) - [ty dG(t + 6)

+G(T, + 8)r™(T)) + [T'Gx(t + 8) dF*(¢
l —_—

< 2sup [r{O()| + sup |r{P(2)|

t<T, t<T,
T,
+ sup |[Gh(t+ 8)an*(t)‘
d<Ty—T) " —=

log L \*/*
o))
L
by (4.18), (4.19) and (4.1) of Lemma 4.3. The expression (4.10) can be estab-
lished in the same way after a variable transformation (1 — & — ¢) in the

integrals. Representations (4.11) and (4.12) are immediate consequences of
Lemmas 3.1 and 4.3 [(4.3) and (4.4)] and the following two identities:

P, - P, = F(Ty)(F,(T,) ~ F(Ty))

+f_T;(Fn(t) = F(2)) d(F,(t) - F(2))

and
By — Py = —G(T,)(G(T,) — G(Ty))

+[™(Gol) - G(9) d(G,(8) - G(1)). .
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Now we have the tools to prove Theorem 2. Again the main idea of the proof
is to transform the problem from A, to K;! and then to K;, i = 1,2, and
apply Lemma 4.4 and the Berry-Esséen bound (Lemma 4.1). As in the proof of
consistency, we pursue the proof by considering three different cases: (i)
A<T,-T,G@)A>T,—-T, and Giii) A =T, — T,.

Proor oF THEOREM 2. (i) A < T, — T,. Since F is continuous, by Lemma
2.2, the uniqueness condition of Theorem 1 holds. Therefore, P{A,, #
KiY(P)),i.0.} = 0 as showed in the proof of Theorem 1. Hence we only need to
establish the asymptotic normality for vn + m (K 1 WP)-A).Let L=n+m
and A; = n/L. Fix t. Let A be a normalizing constant to be specified later and
put

oP(t) = P{ E(Kflgpl) ~ 4) < t}.

Then, using Serfling’s lemma [Serfling (1980), page 3], we have
oP(t) = P(P, < Ry(A + tAL™'/)}
= P{-[Ky(A + tAL"1/2) - K,(A)]
< [Ry(a + tAL=V?) — Ky(A + tAL"V2)] — (P, - P,)}.

For L large enough so that A + tAL"'/2 < T, — T, by Lemma 4.4 [(4.9) and
(4.11)], we have

Y (log L)%
or’(t) = P{ =Cy(t) <Sp+ O\ —751— |,
where
L[K,(A + tAL™V/%) - K\(A)]
CL(t) = L 1/2 ’
[Zz=1V(Zl)]
S Z1L=1Zz
L~ 1/2°
(L v(2)]
_ng,pl), + Qsz(F)( le I =1 n
AL ’ = &y - ’ ’ ’
My, L l=j+n,j=1,...,m
1 _ /\L b b b b ) )
and

niF) = mP(Ty, A + tAL-17?),
175013 = n}a)(Tl, A+ tAL_l/z)
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[then n{"(a, 6) and 1{*(a, 5) are defined in (4.13) and (4.14), respectively] and
Q, = G(T, + A + tAL-/2) — F(T,) = F(T, + tAL"/2) — F(T,).

Since O((log L)3/*/L'/*) -» 0 a.s., by Slutsky’s theorem, in order to prove
oP(¢) —» d(t), it is enough to show

¢(t) = P{—Cy(t) < Sp} - @(2).
It is easy to check that
|62(2) — ®(2)| <| P{S, < —Cr(2)} — ®(=Cp(®))| +]|D(2) — D(C(2))].
By the Berry-Esséen bound (Lemma 4.1), we have

(421) |P(S, < —Cy(t) - d(~Co()] = e EAL oLy,
(ZV(Z))

the last equation above is true because Z, is a bounded random variable for all
I =1,...,L. It remains to investigate whether C;(¢) — ¢. First, notice that
since F is continuous, we have Q; = F(T, + tAL~'/2) — F(T;) > 0 as L — .
Thus we have

n
- Z V(Z) = |z V(" - Q&) + 3 V(ni®

(4.22) Lz M , (1-ay)’

()]

V() + (@),

where 7n{F) = 9{¥)(T,, A) and 7{&) = n(lG)(Tl, A). Now writing
A+ tAL™1?) — K, (A 1
Cr(t) =t A —1/2 () 1/2
‘AL (1/L)ZV(2)

—>tAKi(A) 1 o as L - oo,
[/ V() + (1/(1 = 0))V(n®)]"

we see, if we choose

_lamve®) + 1/ - ) v(ae)]
K;j(4) ’
then
C.(t) >t as L —> .
Hence

|®(CL(t)) — ®(¢t)| >0 forall tas L — .

It is easy to verify that [note T, = min(T,, T, — A) = T,], V(n{™) = ¢ X(T,),
V(@) = 0 XT,) and K|(A) = d(T,), where d; (T ), i = 1,2, are given by (1.2)
and (1.3), and d(T ) is defined in (1 1). For example V(n(F )) is obtained below,
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following similar work by Efron (1967), page 847]:

V(") = [ [T (s,2) dG(t + A) dG(t + A)

1 p2 8 st
2L0L0Lomdtdsdz
B (22 —zo)

- 4f 20(F (=) @

_ 1 g, (F%(¢) - FX(Ty))"
- 4f F2(t)U(t)

where I'(s,¢) is the covariance structure of the £{¥)(¢)’s [see Lo and Singh
(1986)] and 2z, = F(T). This completes our proof for the case A < T, — T}.
(ii) A > T, — T;. In this case we have

P{A,,,,, + R3'(B,),i0.} = 0.

Fix t. For L large enough so that A + tAL"Y2 > T, — T, (again, A is a
positive constant to be specified), by Lemma 4.4 [(4.10) and (4.12)], we obtain

oP(¢) = P{ VI (K gpz) ~4) < t}

=1-P{R;'(P,)> A+ tAL=/%)

dF(t) = a(To),

- P(P,> Ry(a + tAL~1/2)}

TL .z} 0( (log L)** )}

-1- P{—C,’j(t) >

(TEv(zH))” s
where
——r,gl")(T2 - (A+tAL V%), A + tAL”l/Z)
AL
l=1,i=1,...,n,
Zl* = o(T -1/2 -1/2 * (i»l "
n§ ( 2 — (A +tAL ), A +tAL )—Qng (Ty,)
1 _AL ’
l=j+n,j=1,...,m,

L[K,(A + tAL™'/%) — K,(A)]
[£EvzH)]”

Cr(t) =
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Q% = F(T, — A — tAL™V/2) — G(T,)
= F(T, - A — tAL™V2) — F(T, - A).

By applying the same arguments as in (i), we only need to choose

1/2

_ [a/)V(af™(T, - 4, 8)) + (1/(1 - ) V(n{(T, - A, 4))]
Kj(A) ’

which will guarantee C/(¢) — ¢ for all ¢. Again, we can verify that (recall that
T, — A < T, implies T, — A = T,), V(n¥XT, — A, A)) = ¢XT,), V0T, —
A, A)) = 03(T,) and K} (A) =d(T,).

(iii) A = T, — T,. In this case we have

(4.23) A,, - A=min{R;'(P,) - A,0} + max{R;'(B;) - A,0}.

From this expression it should be clear that A,, — A is either positive, if the
maximum in (4.23) is K;(P,) — A and the minimum is 0, or negative, if the

mlmmum in (4.23) is Ry 1(Pl) — A and the maximum is 0. So, if we let
= (K7 UP) — AXK; 1(PZ) A), it is easy to see that for ¢ < 0,

(42¢4) (A,,-4<t8,,20}={R(P)-A<¢S,, =0}

and for ¢ > 0,

(425) {(4,,-A>¢8,,20}={R;Y(B;)-Aa>¢,8,,=0}.

It is possible that S,, <O [which corresponds to A,, = KiXP) +

R;Y(P,) — (T, —T) or A,,, = T, — T,]. We intend to prove that this event
has asymptotically probability 0. It is easy to see [Serfling (1980), page 3] that

(4.26) P(S,, <0} < P{(Ry(a) - P,)(Ry(A) - B,) < 0}.

But, since T, = T, — A,
R,(A) — P, =RK,(A) - P, + f (G (t+A) = F,(¢))d(G,(t + A) — F,(t)).

Since the second term of the right-hand side above is of smaller order than the
first, K,(A) — P, is asymptotically equal to K(A) — Py, so their product is
nonnegative. (A more rigorous argument will follow at the end of this section.)

Now notice that if £ < 0, then forany A > 0, A + tAL"Y2 <A =T, - T,,
and for t > 0, A + tAL"Y%2 > A = T, — T,. Thus by the same arguments as in
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(1) and (ii), we can prove

P{ x/f(Ii’;ll(qﬁl) - 4) . t}

> P(t) fort<0

and

P{ VL (R;Y(P,) - A)

A St}—>¢(t) for t > 0,

respectively, where

4= (A/)e(Ty) + (1/(1 = 1)) a(Ty))
- d(T,)

1/2

(Notice in the present case, T, = T; = T, — A, so this A works for both cases.)
Therefore, in view of (4.24), (4.25), and the fact that P{S,,, <0} - 0 as
n, m — o, the proof of the theorem is completed. To establish P{S,,, <0} —» 0
more rigorously, since T; = T, — A, by Lemma 4.4, we have (with proba-
bility 1)

R 1 L log L 3/4
(4.27) Kl(A)-P1=—ZW,+0(( g ) )
L% L
. . 1 L log L \3*
(4.28) Ry(8) -2, = L T W+ ) ,
L5 L
where
1
_7\—77§F)(T1,A), l=i,i=1,...,n,
“71= L
l_ALnj.G’(Tl,A), l=j+n,j=1,...,m.

Notice that W,, [ = 1,2,..., L, are independent variables with mean 0 and
finite variance. Therefore, (4.27) and (4.28) implies

S* = LZ(KI(A) - pl)(K2(A) - 152)
" LIV(W)

_(ZEW)" | ((eg L)
TEEvw) O\ o

-, N2(0,1) =x{ as L -,
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where x? is a chi-square random variable with one degree of freedom. Thus,
from (4.26), we have

P(S,,<0} <P{S}, <0} >P{x?<0}=0 asm,n > o,

This completes our entire proof. O

NOTE ADDED IN PROOF. As one of the referees pointed out, there are two
recent papers that deal with the regression analysis with censored data. Lai
and Ying (1991) establish the large-sample properties of a modified
Buckley-James estimator. Tsiatis (1990) uses linear rank tests to estimate the
regression parameters. The equivalency between these two estimators is pre-
sented in another recent paper by Ritov (1990). Both methods could be applied
to the two-sample problem, since the latter can be formulated as a regression
problem. But in order to guarantee the consistency and the asymptotic normal-
ity of their estimators they need strong conditions, since they are addressing
the more general problem. Their asymptotic variances also contain the deriva-
tive of the survival density which is hard to estimate well in the presence of
censoring [Wei, Ying and Lin (1990)]. Since we concentrate on the two-sample
problem, we were able to avoid all these conditions (as we had intended) and
our asymptotic variance does not involve the derivative of the density and can
be easily estimated from the data, as presented in the article.
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