The Annals of Statistics
1991, Vol. 19, No. 3, 15670-1581

A GEOMETRIC APPROACH TO DETECTING
INFLUENTIAL CASES'

By PauL W. Vos

University of Oregon

Amari’s dual geometries are used to study measures of influence in
exponential family regression. The dual geometries are presented as a
natural extension of the Euclidean geometry used for the normal regression
model. These geometries are then used to extend Cook’s distance to gener-
alized linear models and exponential family regression. Some of these
extensions lead to measures already considered while other extensions lead
to new measures of influence. The advantages of one of these new measures
are discussed.

1. Introduction. In recent years, differential geometry has been playing
an increasingly important role in statistics [see, e.g., Amari, Barndorff-Nielsen,
Kass, Lauritzen and Rao (1987), McCullagh (1987), Barndorff-
Nielsen (1986), Barndorff-Nielsen, Cox and Reid (1986), or Amari (1985)].
Although Amari (1985) has noticed that exponential families enjoy certain
global geometric properties, most applications have been in asymptotic theory
where local geometric structures, such as curvatures, are used. In this paper
the global properties of exponential families are used to study measures of
influential cases in exponential family regression and, in particular, in general-
ized linear models. The local geometric structure of exponential families,
although important to some aspects of generalized linear models [Vos (1987)],
will be for the purposes of this paper less important than the global properties.
The geometric structure that we use is the same as the a-geometry (for
a = +1) of Amari (1985), but the interpretation of these geometries as an
extension of the more familiar Euclidean geometry will be emphasized. The
advantage of this interpretation is that it allows us to extend influence
measures for normal linear regression to exponential family regression. :

2. Geometry of exponential family regression. We shall assume the
vector y = (y!,...,y") is a realization of a random vector Y = (Y?!,...,Y"Y
having density p from some regular minimal n-dimensional exponential fam-
ily. For each random variable Y* we also have a column of covariates x’ =
(x},...,x;Yy € ZCR* and a known function f: Z'X #~ R such that
E(Y?) = f(x*, B) for an unknown parameter 8 = (8,...,8™Y € # c R™. For
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some o-finite measure, p may be written as
(2.1) p(y;0) = exp(y'0 - ¥(0)),
where § € © c R". In most applications the components of Y are independent
and each component belongs to the same exponential family so that y(8) =
L 4,(6°), where (¢ + 6') — ((8") is the cumulant generating function for
Y!. An important example of exponential family regression is the generalized
linear model with errors from an exponential family. In this case, f(x‘,B) =
LY ™ ,x:B%), where L is ca]led a link function. The most common link is
the canonical link for which ' = £ ™  xig°.
Amari (1985) has shown that the exponential family

S ={p: p(y;0) = exp(y'0 — ¢(8)) for some 0 € 6}
can be given the structure of a smooth manifold. We will also consider a
particular subset of S that is defined as follows. Let u(p) be the mean
parameterization for p € S and let f(x,B) = (f(z},p),..., f(x", B)Y. We
shall assume that f(x, -) is an imbedding with domain & so that

M = {p € S: u(p) = f(x, B) for some B € B}

becomes a smooth submanifold of S called a curved exponential family [Amari
(1985), page 108] or an (n, m) exponential family [Barndorff-Nielsen (1980).]
We let

={n=wn(p):peM}, Sg={r=n(p):pecS}
Amari (1985) also defines a pair of dual connections that make S flat. It is this
dual geometric structure that we shall use to study measures of influence in
exponential family regression.

We shall not discuss the details of these dual geometries but we introduce
some notation that will be used in the following section. The tangent space of
S and M at p will be denoted T,S and T, M, respectively. The corresponding
tangent bundles are T'S and TM. Each parameterization induces a natural
basis on the tangent spaces. The natural basis for u on T, S is the set of score
vectors for u:

A(w;Y
U(p )-L, i=1,...,n,
and the natural basis for 6 on T, S is the set of score vectors for 6:
- al(6;Y) -
i(p)_ aoi ’ t=1,...,n,

where I(n;Y) and 1(6;Y) are the log likelihood functions for u and 4,
respectively. The natural basis for g on T, M is the set of score vectors for B:

o(f(x,B);Y
Ua(p)=$(;‘7)—),

Throughout we use the convention that the indices i, j, 2 correspond to

a=1,....,m.
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quantities defined on S while the indices a, b, c correspond to quantities
defined on M. Notice that U,(p) # U/(p) even if a = i. The basis vectors can
be extended to vector fields that we denote by U,, U*, and U,. The dual
connections on S can be defined,easily using the natural basis vector fields for
p and 6. The mean connection on TS is a derivation V that satisfies V;;U; = 0
for all basis vectors fields U, U;, while its dual, the exponential connection on
TS, is a derivation V* satlsfymg ViU = 0 for all U*, U*.

The following definitions do not appear in Amari (1985) but will be useful to
us. Corresponding to each connection and at each point p € S, there is a
diffeomorphism between a neighborhood of the origin in T,,S and a neighbor-
hood of p. This diffeomorphism is called the exponential map [Spivak (1979),
page 452]. Using the dual bases U; and U/*, we can define the exponential
maps for V and V* by

(e, (V7)) = u(p) + eus,
0(exp} (s*U*)) = 6(p) + &*0

where 6(p) is the natural parameter for p, u,; has ith component u’ and all
others 0, 6, has jth component 67 and all others 0 and ¢, £* > 0 are chosen so
that eU; and ¢*U* are in the domain of exp, and expj, respectively. Because
S is flat in these two connections, the inverses of exp and exp* are defined on
all S for each p. That is, for any two points p, g € S, we can define vectors v
and v* in T,S by

v=v(p,q) = é(u"(q) — W ())U(p),

n
v* =v*(p,q) = X (6'(9) — 6°(P))U*(p).
i=1

To understand how the dual geometries can be applied to exponential family
regression, we consider the role of Euclidean geometry in normal regression.
For regression with normal errors, the maximum likelihood estimate for B is
also the least squares estimate. The expectation parameter space Sy and ©
are both equal to R” and My, is a submanifold of R”. For linear regression, M
is a linear submanifold. The data y is represented by the point © =y in Sg.
One important aspect of the Euclidean geometry is that the least squares
estimate can be described geometrically: If B is the least squares estimate for
B, then the residual vector y — u(fB) is orthogonal to the tangent space Ty M.
The dual geometries allow us to extend this characterization to exponentlal
family regression. Assume for the moment that y is the expectation vector for
some density p, € S. Instead of minimizing a squared distance to obtain
maximum likelihood estimates, we minimize the Kullback divergence

(2.2) D(p,,p) = 2E,{I(y;Y) — I(n(p);Y)},

where u(p) is the expectation parameter for p € M. [Strictly speaking,
D(y, u(B)) is twice the Kullback information number defined in Kullback
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(1968).] Just as for normal regression, the geometry can be used to describe
maximum likelihood estimates: If B is a maximum likelihood estimate for B
and p = p(y; u(B)) is the maximum likelihood density, then the residual
vector v(p, p,) is orthogonal to TﬁM When y & Sg, the Kullback divergence is
not defined but we can still find maximum likelihood estimates and we can still
characterize them geometrically. Although there is no point in S that corre-
sponds directly to y, we can relate the data to the tangent bundle T'S using the
vectors v(-, p,) defined at each p € S by

n

v(p,p,) = XL (¥ (p) —¥")Udp).
i=1
Even though the Kullback divergence is not defined, the geometrlc description
is now the same as when y € Sg, that is, if B is a maximum likelihood
estimate for B, then the vector v(p, p,) is orthogonal to T, M.

3. Measures of influence. In this section we explore how the geometry
developed in the previous section can be used in the study of influential cases.
By the ith case we mean the ith observation y’ together with its covariate
values xi,...,xi. We call the ith case influential if the inferences or sum-
maries made with all the data are significantly different from those made with
all the data except the ith case. For a more complete description of influential
cases see Cook and Weisberg (1982). How we measure influence will depend on
what aspects of the model are of greatest interest. If there is a parameteriza-
tion that is of special interest, then we may want to measure the influence of
the ith case by calculating the difference between the parameter estimates
using all the data and the parameter estimates using all the data except the
ith case. In this paper, however, we assume the parameterization is not a part
of the model formulation and we shall prefer influence measures that are
parameter invariant. Instead of comparing estimated parameters, we compare
the probability distributions named by these parameters. We only consider
single-case deletions since extensions to multicase deletions are obvious, al-
though the computations grow rapidly.

In order to study measures of influence for exponential family regression,
we begin with a special case, normal linear regression, where measures of
influence are better understood. An important and widely used measure of
influence in normal linear regression is Cook’s (1977) distance. If we let
i, B, p represent maximum likelihood estimates using all the data while
Ay B(,), D) represent maximum likelihood estimates using all the data except
the ith case, then Cook’s distance is

1 foa A
(3.1) Ci = ;{(’T—g(ﬁ — b)) (A — Ag)-

Our goal is to extend C; to all exponential class regressions in such a manner
that the important properties of C; are maintained. We proceed by giving a
geometric interpretation to C; and then extending the geometry to other error
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structures. For the normal distribution with 2 known, it is easily seen that
(3.2) C = D(ﬁ» ﬁ(i))/m~

Cook and Weisberg (1982), page 183, define a measure called the likelihood
distance that is simply twice the difference of two log likelihoods

(3.3) LD(py, p2) = 2{(m13y) — U(1esy)}-

Since LD(p,, p,) is not a distance, Cook (1986a) uses the term likelihood
displacement instead; we shall do the same here. For normal linear regression
it is easily shown that LD(p, p;)) = D(p, p;)) so that

(3.4) C; = LD(p, B))/m.

Cook’s distance can also be interpreted as the squared length of the vector
connecting p and p;:

(3.5) C; =||v(8, Bo)["/m

since v(p, p(,)) % (Af, — A)U)(p) and the inner product used to define
the norm is the Fisher mformatlon o2, .

Equations (3.2), (3.4) and (3.5) show that there are at least three different
ways to extend Cook’s distance beyond normal linear regression. Finding the
estimate p;, will generally require several iterations of an estimation algo-
rithm, so that it is common to replace p;, with the single iteration estimate
Dy [Cook and Weisberg (1982), Pregibon (1981) and Moolgavkar, Lustbader

and Venson (1984)]. Two of these measures then become
Di = D(ﬁ, ﬁ(i)l)/m’
LD; = LD(ﬁ, ﬁ(i)l)/m-

The invariance properties of these measures will depend on what algorithm is
used to produce p;y;. An obvious extension of the interpretation given in (3.5)
is to replace p,, with p,,. This extension is rarely considered, probably
because the resulting measure is not parameter invariant. An extension that is
invariant is defined as follows. Consider the (n — 1)-dimensional manifold S_,
obtained from S by deleting the ith case. We assume that the submanifold
M _; obtained by deleting the ith case is still m-dimensional. Let p_, € S_; be
obtained by deleting the ith case from p and define

- g.(yj - @)U (p) €T, S_; cTyS,
J#i
W_; = P(V_i)

where P(-) is the orthogonal projection defined in T; S_;onto Ty M_;. An
easy calculation shows that

w_; = Z (B&)l —/§ ) g g (B(z)l )

a=1

(3.6)

af(x’, B)

o Ui(B),
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where B(,)l is the single iteration estimate obtained from the Fisher scoring
algorithm using B as the starting value. Corresponding to w_, €T, M_,
there is a vector w;, € T, M defined by

(3.7 Wiy = Z Z (B(;)l ) il ’B)

a=1j=1 3[)’

For normal linear regression, Fisher’s scoring algorithm converges in one
iteration so that w;, = v(j, p;,) and the extension to (3.5) becomes

(3.8) i ="W(i)" /m.

Notice that each of these measures could be defined using the Kullback
divergence or Fisher information for the (n — 1)-dimensional densities p_;
and p_;; and the vector w_;. Although these measures based on (n — 1)-
dimensional quantities may be reasonable measures of influence, they are not
generalizations of Cook’s distance and we do not consider them here. The
geometry for the (n — 1)-dimensional measures is similar to that of the
n-dimensional measures given in (3.6) and (3.8), although it is not identical.
Choosing between measures based on the full likelihood and the likelihood
based on (n — 1) observations is an extension of the problem in normal linear
regression of choosing between Cook’s distance and DFFITS [Chatterjee and
Hadi (1986)]. The (n — 1)-dimensional measures of influence and their geo-
metric structure are considered in Vos (1987).

Before comparing the properties of the measures listed in (3.6) and (3.8), we
discuss the relationship between the Kullback divergence and the likelihood
displacement. Suppose there exists p, € S such that w(p,) =y. From the
definitions given in (2.2) and (3.3) and (2.1), we have

(3.9) LD(p,, p;) = D(p,, P2) — D(p,, P1)-

From (3.9) we see that LD(p,, p,) measures how much better p, fits the
saturated model compared to p,, while D(p,, p,) measures directly how close
- p; and p, are. Although the Kullback divergence and the likelihood displace-
ment will often indicate the same cases as influential, these measures can be
quite different. If p,, p and p;, are vertices of an “isosocles triangle” with
D(p,, p) = D(p,, B;)), then LD; will be near 0 while D, can be large and LD,
would fail to indicate this as an influential case. The definitions in (2.2) and
(3.3) also show that

(3.10) D(p1, p2) = E,{LD(py, p2)}-

In light of (3.10), we can interpret the Kullback divergence as the expected
likelihood displacement. We have already noted that LD, and D, are equal for
normal linear regression; using the following identity

3. 11) D(pyyp(z)l) D(py’ p) +D(ﬁ P(z)1) + 2<V(P Py) v (P p(z)l))

it can be shown that the equality of these two measures extends to all

(D).
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generalized linear models that use the canonical link. Equation (3.11) is a
generalization of the well-documented Pythagorean relationship that holds in
exponential families [Amari (1985), page 92, and Hastie (1987)] and is verified
by making substitutions from (2.2) and the definitions of v(-, - ) and v*(-, - ).
For the canonical link the third term of (3.11) is 0 because v*(p, Buy) € T M
and v(p, p,) is orthogonal to TﬁM Hence (3.9) and (3.11) show that LD, = D
whenever the canonical link is used.

In normal nonlinear regression one of the most common extensions of
Cook’s distance is the measure W,. This measure is often defined as

(3.12) W, = (ﬁ - é(i)l) F'F(ﬁ - ﬁ(ivn)/mo'z,
where F is the n X m matrix with elements df(x% B)/dB% i=1,...,n,
a=1,...,m. From (3.12) it is not clear that this measure of influence is

parameter invariant. However, from (3.7) we can see that this definition is
equivalent to the definition of W, given in (3.8) and so must be parameter
invariant.

For generahzed 11near models, Pregibon (1981) suggests a related measure
WY = w¥ %, where w¥ is the vector obtamed from the first iteration of the
Newton—Raphson algorithm and |- ||% is the squared norm defined by
the matrix with components 321 /38:B/. For the canonical link, the Newton—
Raphson algorithm and Fisher’s scoring algorithm are identical so that W, =
WX, For other links, W, should be preferred because it is invariant under
reparameterization while W is not. McCullagh and Nelder (1983) generalize
Cook’s distance as

(3.13) (B - Bey) F'V'F(B - Bgy) /mo?,

where V~! = I(4) is the inverse variance matrix for Y at . Since F'V~F is
the matrix for the inner product relative to the basis {U,}, we see that by
replacing ﬁ(l) with ﬁ(,)l, display (3.13) equals W,. Moolgavkar, Lustbader and
Venson (1984) also suggest the measure W; for generahzed linear models. By
using the fully iterated value B(l) in (3.13) we are left with a measure that is
not parameter invariant. If one can do all the computations to obtain B(,), then
the fully iterated likelihood displacement LD(p, p;)/m or divergence
D(p, p;))/m are preferred because they are parameter invariant.

In the case of nonnormal error structure, there is reason to prefer measures
of influence based on the likelihood displacement to those based on squared
norms, such as W, and C; defined in (3.5). The measure W, is a function of
only the first two moments of p and p;,, while LD, is defined on the densities
themselves. When the skewness and higher-order cumulants are large, W; and
LD; can be quite different. For this reason, Cook and Weisberg (1982) suggest
using the measure LD, rather than W,. Although there is no guarantee that
either of these measures of influence will always behave correctly, a simple
example will illustrate one of the problems with measures based on the
squared norm that is avoided by using LD,. Suppose y = (2, 1/2) are indepen-
dent observations from a gamma family with dispersion parameter ¢ = 10 so
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that the log likelihood is
1(0) = %(y'0" + y%6% + log(—6") + log(—6%)) + h(y),

where h(y) is not a function of 6. Suppose that —6' = x'8 + ¢ and —6% =
x2B + ¢, where x = (1,2) and ¢ = 1 is known as an offset. The maximum
likelihood estimates for B and p using both data values are ﬁ =0 and
& = (1,1). The estimate for B, can be found without the need for iteration.
Taking B = Bay = 1/2 in (3.7) gives W; = 0.125. The corresponding fitted
values are i, = (2/3,1/2). The maximum likelihood estimate B, = —1/2
so that W, = W, = 0.125. The measure W, shows that cases 1 and 2 have the
same influence, even though f 5 = (2,) and ﬁ(g) ¢ #. The one-step likeli-
hood displacement clearly shows that the second case is influential; LD, = 0.08
while LD, = ». The difficulty illustrated by this example is not that 8 need
not lie in 4. Rather, the influence of the ith case depends not only on how
much the estimate for 8 changes, but also on the direction of this change. The
measure W, is insensitive to the direction and can thereby miss influential
observations. Notice in most applications the dimension of B is greater than 1
and so the direction of the change in B involves more than just a change of
sign.

Now we consider LD; = LD(p,p;y)/m and D; = D(p,py)/m more
closely. Since the single iteration estimate Dy is generally not parameter
invariant, neither will these measures be invariant. Recall that simply replac-
ing P, with p;y,; in (3.5) also resulted in a measure dependent on the
parameterization. To obtain an invariant measure, we considered the vector
w,;, and defined W; in terms of this vector. If fi) = exp3(w;;)) € S, then we
can define W, be replacing p;, with ¢, in (3.5)

W, = " V(5 w) "2

Usually exp}(w,,) €S, but when it is not we can still define i\(i) =
exp}(¢w;)) € S for an appropriately chosen ¢ > 0. One way to choose ¢ < 1,

is to find the largest value for ¢ for which 7, lies in S. Since w;, and exp* are
parameter invariant, so is f(i). Hence, to obtain parameter measures based on
the likelihood, we can replace p,;, in (3.2) and (3.4) with £, to obtain

ILD,; = LD(ﬁ, f(i)), ID; = D(ﬁ, f(,-)).

From the definition of #;,, and exp*, we find that fiy = Dy for a generalized
linear model having the canonical link and parameterization B satisfying
0° = ©™_,x}B° In this special case, LD; = ILD, and the one-step likelihood
displacement corresponds to a parameter-invariant measure.

From the definition of ILD, and ID; and (3.9) and (3.11), we see that

(3.14) ILD, = ID; + 2(v($. p,),v* (B, ))-

In the dual geometries, the residual vector v(p, p,) is orthogonal to T M.
Since v*(p, ;) = W;, € Ty M, the inner product in (3.14) is 0 and ILD, = ID;.
Clearly, ILD, is parameter invariant and since it is defined using the one-step
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likelihood displacement, it incorporates the skewness and higher-order cumu-
lants. For the example with y = (2,1/2), ILD;, also shows the second case is
influential. Since LD(p,, p,) = IIM(pl) - u(pz)ll 2 /02 for normal errors, we
have ILD; = W, for normal regression and ILD; = C; for normal linear regres-
sion.

For normal regression it is usually necessary to find an estimate qj for the

variance parameter o 2. Measures of influence are now defined with o2 replac-
ing o-2. For some generalized linear models there is a dispersion parameter ¢
that also needs to be estimated. When there is a dispersion parameter, the
density p, can be written as

(3.15) exp{(¥'0 — ¥(9))/a(4)},

where a(-): R — (0, »). Notice that when ¢ is known, (3.15) is a density from
an exponential family. If ¢ is an estimate for ¢, then the measures of
influence such as W,, LD; and ILD; are redefined using $ in place of &.

Although there are many ways to deﬁne &, most of these estimates are based
on either all the data y or all the data less the ith case, Yoy One advantage of
using an estimate ¢ based on all the data is that ¢ will be parameter
invariant. Not all the single iteration estimates qb(,) based on y,;, will have this
property. If one is interested in the influence of the ith case on both B and ¢,
then Cook (1986b) suggests the likelihood displacement

Z{l(B,¢;y) - l(B(i),d’(i);y)),

where $(,~) is estimated using one iteration or until convergence of the algo-
rithm. If a single iteration estimate is used, then it is desirable to base this
estimate on £, = exp*(w) [or the corresponding (n — 1)-dimensional density]
in order to make the measure parameter invariant. Further details on choos-
ing an estimate for ¢, measures of influence based on y;, and how the
geometry changes for this situation can be found in Vos (1987). A geometric
approach to influence measures that does not use the dual geometries can be
found in Ross (1987).

The computations involved in the measures of influence ILD;, LD;, D, and
W, are all about the same. The measure W, is somewhat easier to calculate
since it is based on the m-dimensional quantity Ww,;)- This difference is small,
however, compared to the extra calculations required to find fully iterated
parameter estimates for the deletion of each case. When exp,(w;) & S, little
computation should be spent to find the largest ¢ for which exp,(ew;)) lies in
S. It seems reasonable to investigate more closely any case that causes the
single iteration estimates to leave the parameter space; so if exp,(w,)) ¢ S,
the ith case is tagged as influential. For general families of distributions the
measure D; would require heavy computation since the Kullback divergence
can be difficult to calculate; for exponential families, however, D, is easily
calculated.

We shall consider an example given in Cook and Weisberg (1982), pages 178
and 185, to compare the LD, and the ILD, in practice. The data come from 17
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TaABLE 1
Leukemia data

Case WBC y ILD; LD; FLD;
1 2,300 65 0.03 0.03 0.03
2 750 156 0.09 0.10 0.11
3 4,300 100 0.03 0.03 0.03
4 2,600 134 0.06 0.07 0.07
5 6,000 16 0.02 0.02 0.02
6 10,500 108 0.07 0.07 0.08
7 10,000 121 0.10 0.10 0.11
8 17,000 4 0.08 0.08 0.07
9 5,400 39 0.01 0.01 0.01
10 7,000 143 0.13 0.14 0.16
11 9,400 56 0.00 0.00 0.00
12 32,000 26 0.03 0.03 0.03
13 35,000 22 0.05 0.05 0.04
14 100,000 1 0.57 0.43 0.35
15 100,000 1 0.57 0.43 0.35
16 52,000 5 0.24 0.20 0.18
17 100,000 65 1.40 1.63 9.89

patients with leukemia, a cancer characterized by a high white blood cell
(WBC) count. The initial white blood cell count is used as an explanatory
variable for y’, the survival time in weeks.

Cook and Weisberg (1982) suggest the following model

(3.16) Y: = £l exp(£2xY)él,

where &' is standard exponential and x’ = w’ — W with w’ being the loga-
rithm (base 10) of the white blood cell count. In this example the ith case is
(y*, w?), so that deletion of the ith case not only changes the estimate for B

but x/, j # i, as well. By reparameterizing, (3.16) is seen to be equivalent to
the generalized linear model
Y? ~ Exponential,

E(Y') = exp(B' + Bx"),

where B = log(¢') and B2 = £2. For the exponential (gzamma) distribution the
negative reciprocal link is canonical, so that the generalized linear model
specified by (3.17) does not use the canonical link. Table 1 lists the data and
three measures of influence. The measure FLD; is the likelihood displacement

based on the fully iterated estimate, that is, FLD; = LD(p, p,)). For this
example, the likelihood displacement is

]

wi’

where u, = u(p,) and u, = u(p,). If ﬁ(i)l is the single iteration estimate

(3.17)

1

n 1
3.18 LD(p,, p,) =2 = -=]+1o
(3.18) (p1;P2) ng{y (;ué n{) g
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obtained for B using 8 as the starting value in Fisher’s scoring algorithm,
then

Mj(ﬁ(m) = eXP(BA(Ii)l + é(zi)lxj)’

/-"j(f(i)l) = (_éj + 5j(/§(1i)1 - ﬁl) + éjxj(ﬁ(zi)l - ﬁz))‘l»

where 67 = —exp(—p' — f%/). Replacing u, with u(Pgy) and u(f;)) and
replacing u, with u(p) in (3.18) gives LD, and ILD,, respectively. Since the
link is not canonical LD; # ILD,. The measures LD,, and ILD,, are quite
different from FLD,,, but all three measures indicate that the seventeenth
case is influential. Since LD, is not parameter invariant we can make this
measure arbitrarily large or small simply by choosing-a different parameteriza-
tion. The one-step likelihood displacement is also sensitive to what estimation
algorithm is used to find f;);. Using the Newton—Raphson algorithm, we find
LD,, = 13.87; but, if we use Fisher’s scoring algorithm, LD,, = 1.63. Using
the ¢ parameterization, LD, = 18.78 for the Newton—-Raphson algorithm and
LD,,; = 1.66 for Fisher’s scoring algorithm.

Cook and Weisberg (1982) calculate the maximum likelihood residual and
Studentized residual for the seventeenth case. These are 3.47 and 4.18,
respectively. Neither of these is large enough to clearly indicate that the
seventeenth case is an outlier. From Table 1 we see that the seventeenth
patient had a high white blood cell count and yet survived a long time. Cook
and Weisberg (1982) point out that measurement error in the white blood cell
count may contribute to the large influence of case 17. For whatever reasons
this case is influential, the conclusions from these data should be viewed with
caution.

4. Conclusion. We have shown that the dual geometries can be used to
compare measures of influence suggested in the literature and to see how these
measures are related to Cook’s distance. In particular, there is reason to prefer
the extension of Cook’s distance, W;, in normal nonlinear regression while the
one-step likelihood displacement LD; is preferred for generalized linear models
when the canonical link is used. The geometry is also used to define a new
measure, ILD;, that extends the advantages of both W, and LD; to generalized
linear models with other link functions and to exponential family regression in
general. One important aspect of the dual geometries is that they allow us to
study exponential family regression from a parameter-invariant perspective.

In a broader sense, the result on influence measures can be viewed as an
example of the role of the dual geometries in exponential family regression.
Euclidean geometry has been used to study many aspects of the normal
regression model and, although results obtained geometrically can also be
found by other methods, the geometric approach often brings more clarity and
intuition to the solution. In exponential family regression, the dual geometries
play a similar role. The measures W; and LD, can each be studied without the
dual geometries, but the invariance of LD; under the canonical link was not
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realized using these other approaches. Furthermore, many aspects of normal
regression can be extended by the dual geometries to exponential family
regression because the dual geometries contain the normal regression geome-
try as a special case. These extensions can lead to new results (ILD,) as well as
a better understanding of existing results (W, and LD,). Since the develop-
ment of normal theory regression is extensive when compared to what is
known for generalized linear models, the possibility of geometrically extending
normal regression ideas is particularly important.
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