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THE ASYMPTOTIC BEHAVIOR OF SOME
NONPARAMETRIC CHANGE-POINT ESTIMATORS?

By L, DOMBGEN
Universitit Heidelberg

Consider a sequence X, X,,..., X, of independent random variables,
where X, X,,..., X, , have distribution P, and X, .1, X,042,..-» X,
have distribution Q. The change-point 6 € (0, 1) is an unknown parameter
to be estimated, and P and @ are two unknown probability distributions.
The nonparametric estimators of Darkhovskh and Carlstein are imbedded
in a more general framework, where random seminorms are applied
to empirical measures for making inference about 6. Carlstein’s and
Darkhovskh’s results about consistency are improved, and the limiting
distributions of some particular estimators are derived in various models.
Further we propose asymptotically valid confidence regions for the change
point 6 by inverting bootstrap tests. As an example this method is applied
to the Nile data.

1. Introduction. Consider the following change-point model: For n =
2,3,4,... let P, and @, be two probability distributions on a measurable
space E, and let X, ,, X, ,,..., X, , be independent random variables. These
variables X; , have distribution P, for i < n6, and @, otherwise. The change
point 6, is some unknown number in T, :={1/n,2/n,...,(n — 1)/n}. For
increasing n this number 6, remains bounded away from 0 and 1, and for
simplicity we assume that 6, —» 8 € (0,1) as n — .

This model has been studied extensively under various aspects. One prob-
lem is to test whether there exists a change in the underlying distribution at
an unknown time point. Wolfe and Schechtman (1984) summarize nonpara-
metric procedures (especially tests) for the change-point problem. More
recently Csorgd and Horvath (1988) discuss nonparametric tests based on
U-statistic type processes, and Romano (1989) proposes randomization tests
and bootstrap tests for a change point.

If the presence of a change point is assumed, it is of interest to estimate the
change point 6, and to construct confidence regions. The present paper is
concerned with these two problems. They have been studied mostly in para-
metric models for P, and Q,; see, for instance, Hinkley (1970), Cobb (1978),
Worsley (1986) and Siegmund (1988). Two references for nonparametric esti-
mators are Darkhovskh (1976) and Carlstein (1988).

In Section 2 the estimators of Carlstein and Darkhovskh are imbedded in a
more general framework, where we apply random seminorms to certain empir-
ical measures for making inference about 6. We give rates of convergence
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1472 L. DUMBGEN

under general assumptions. For example, suppose that P, = P and @, = @
for all n. In parametric models, where P and @ are specified up to an
unknown finite-dimensional parameter, the maximum likelihood estimator for
6, is typically consistent with rate O,(n~'); see, for instance, Hinkley (1970)
or Hinkley and Hinkley (1970). It follows from Theorem 1 that in general the
nonparametric estimators are consistent with this rate OP(n_l), too.

In Section 3 we consider four particular seminorms and present the limiting
distribution of the corresponding estimators in a general model for the se-
quences (P,) and (@,). Further we propose a modified nonparametric esti-
mator which corresponds to a Bayes estimator in parametric models. The
nonparametric estimators are compared with semiparametric estimators in a
mean shift model; see Section 4.

The results of Section 3 are applied in Section 5, where we propose
bootstrap confidence sets for 6,. These confidence sets are asymptotically valid
and their size tends stochastically to 0. Finally in Section 6 this procedure is
applied to the Nile data; see Cobb (1978).

Section 7 contains the more technical proofs.

2. The nonparametric estimators. At the beginning we describe a
general procedure for estimating 6,. The special estimators of Carlstein (1988)
and Darkhovskh (1976) are given later; see Examples II and III. For every
hypothetical change point ¢ € T, consider the empirical distributions

; 1 it 1 n
P,=—3Y 8y and Pl:=——1— Y &y .
nt ;= Xin n(l-1); w1 o

The (pointwise) expectation of these empirical measures ‘P, and P! is denoted
by ‘II,, and IT¢, respectively. Then the difference P! —’P, estimates the signed
measure

I, =1, = [(6,/2) A ((1 - 6,)/(1 = ))[(Q, — P,).

If ¢ is near 0 or 1, this is a poor estimator. It seems reasonable to introduce
weights w(t) = t/%(1 — ¢t)'/? and to consider the measures

D} = w(t)(P,i —‘Pn), teT,.
These signed measures D. estimate
A = w(t) (15 —I0,) = p,(t)(Qn — Po),
where
pult) = (1= 6,)[t/(1 = )] A6, [(1 - 1) /1]'"*.

On the interval [0, 6, ] this function p,, is strictly increasing, and on [0, 1] it is
strictly decreasing. It attains its maximum in 6, with p,(6,) = w(6,). Now we
choose a seminorm N,, on the space .# of all finite signed measures on E and
compute N,(D!) as a measure of difference between ‘P, and P;. In particular,
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we consider the estimator

6, = argmax(N,(D}):t € T,),
which corresponds to the maximum, likelihood estimator in parametric models.
In some situations there are better nonparametric estimators than 0 corre-
sponding to a certain Bayes estimator 1n a parametric context; see Sectlon 3.

However, it is convenient to study first 0 If some prior information about 6,
is available, one can use a truncated estlmator

0, = argmax(N,(D.):t € T,, ty <t <t),

where 0 < ¢; < 6 <t; < 1. The seminorm N, may be deterministic or ran-
dom, as we shall see in some examples below. For a better understanding of
the regularity conditions (2.1) and (2.2), it is useful o compare the observed
process (N, (D%): t € T,) with the theoretical process (N, (A"): t € T,). The
latter has a simple structure:
N,(&,) = po(t)N,(Q, — P,), teT,.
Hence 6, = argmax(N,(A°): ¢t € T,) and max{N,(4A,): ¢t € T,} = w(6,)
N,Q, — P,). Roughly speaking, 8, is a reasonable estimator for 6,, if the
maximal difference of these two processes N,(D{’) and N,(A)) is small
compared to N,(Q, — P,). According to the triangle inequality, |N,(D!) —
N,(A&)| < N,(D; — A). To ensure that these quantities are small enough, we
make the following assumption:
There is a Vapnik—Cervonenkis class 2 of measurable

(2.1) subsets of E such that

N,(v) <lvll == sup{|v(D)|: D€ 2}, Vn=2,Vve.

[For the definition of Vapnik—Cervonenkis (VC) classes of sets and for exam-
ples, see Pollard (1984), Chapter 2.] On the other hand, N, (@, — P,) has to be
large enough. In view of Theorem 1 we make the following assumption about
the sequences (N,), (P,) and (Q,):

There is a constant C, > 0 and a sequence (v, ) in R* such that

(2.2) Pr(N,(Q,-P,) = coy,;l) -1 and

y,(loglog n)*n"1/2 50 asn — .

If we use the truncated estimator, we only have to require y,n~'/%2 - 0 in
(2.2). An important special case of (2.2) is:
There is a constant C, > 0 such that
Pr(N,(Q,-P,) =2Cy) =1 asn — o,
For some suitable seminorms N, condition (2.3) is automatically fulfilled, if

P,=P and Q, =@ for all n > 2 with two fixed distributions P # @; see

below.
Now we can state our first result.

(2.3)
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THEOREM 1. If the seminorms N, and the distributions P, and @, meet the
requirements (2.1) and (2.2), then

This theorem is a direct consequence of the following stronger result which
is also needed for later purposes.

ProposITION 1. Suppose that the seminorms N, and the distributions P,
and Q, meet the requirements (2.1) and (2.2). Then there is a constant C; > 0
such that

liminf Pr(A,(d)) > 1 asd > +,
where
A,(d) = {N,(D.) - N(Di") < —Cyy; Y|t — 6,|,Y t € T,\T,(d)
and N,(Df") = CpyyY},

T(d) = {t € T,: |t - 0,] < dy?n7).
We end this section with some examples.

ExaMpLE I. Let 2 be a VC class of measurable subsets of R” and let N,
be the corresponding seminorm || - ||. Here condition (2.1) is obviously fulfilled.
With C, =1 and v, = IQ, — P,lI”", requirement (2.2) is also met, provided
that |Q, — P,lI”* = o((loglog n)~'/2n'/2), For example,

Dy = {{y €RP: (3,2 > u): x €R?, u € R

({ -, ) denotes the standard inner product) is a VC class such that the
corresponding seminorm | - || is even a norm on .#. In this case (2.3) is valid
automatically if P, = P and @, = Q for all n > 2 with P # Q.

Maybe the family 2 is too big to compute the quantities ||D;|| exactly. A
possible way out is to choose a subset 2™ of 2 by a random mechanism and
to compute N,(v) := sup{|lv(D)|: D € 2™} instead of ||v|l. Beran and Millar
(1986) study such a stochastic approximation for | - || corresponding to 2,
above.

In Examples II and III and in Sections 3-5, we consider real-valued
variables X; ,. For notational convenience we identify arbitrary finite signed
measures v on the line with the corresponding cdf, that is, »(x) stands for
v(—x, x], x € R. Moreover the seminorms N, discussed there may be regarded
as seminorms on D(R), the space of cadlag functions f on the line such that
f(x) > 0as |x| > +o.
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ExampLE II (Estimators of Carlstein). Carlstein generally uses seminorms
N, such that

(2.4) J1v(2)|R,(dx) < N,(v) < sup{|v(x)|: x < R},

where R, is the empirical measure " 'X7_,8 x, - This measure estimates the
mixture distribution R, :=6,P, + (1 — 6,)Q,. Examples for seminorms N,
satisfying (2.4) are given by

N, (v) = ( i |v(x)|’fc,,(dx))1/r, rel.

Generally it follows from (2.4) together with Tshebyshev’s inequality that

N.(Q, ~ P,) = [|(Q, — P,)(x)|R,(dx) + O,(n~*72).

In order to verify condition (2.2), with a given sequence (v, ), it is therefore
sufficient to show that

lim inf y,,f|(Qn — P,)(x)|R,(dx) > 0.

For example, if P, = P and @, = Q for all n, (2.3) is valid. For

JI(@ = P)(x)IR,(dx) = [I(Q — P)(x)|R(dx) + o(1).

where R = 0P + (1 — 0)Q. The limit is strictly positive because
(P+@Q@){xe€R: P(x) # Q(x)} >0 whenever P # Q.

ExampLE III [Darkhovskh’s estimator (modified)]. Darkhovskh uses the
Mann—-Whitney statistic

M, () ! Y I(X X .)
n =T i,n < j,n
n2t(1 —t) i<nt<j J
as a measure of difference between ‘P, and P!. He essentially proposes the
estimator

0% == argmax(|M,(t) — 1/2|:t e T, t, <t <t,),

where 0 < ¢, < 0 < t; < 1. This estimator is consistent, if P, = P and @, = Q
for all n with continuous cdf’s P and @ such that [P(x)Q(dx) # 1/2.

We consider a modified version of Darkhovskh’s estimator such that no
prior information about 6,, P,, @, is necessary. For arbitrary f € D(R) we use
the symmetrized function

f(x*)=(f(x-) +f(x))/2, x €R.
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If PP and @ are probability measures on the line, [P'(x*)Q'(dx) =
1 - /@ (x*)P'(dx) and [P'(x*)P'(dx) = 1/2. Then we define

N, p(v) =|[v(x*)R,(dx)

0, p = argmax(N, ,(D:):t€T,).

One can show that w(#)IM,(t)| = N, ,(D}) for all ¢ € T, almost surely, if P,
and @, are continuous; see Diimbgen (1990). According to Tshebyshev’s
inequality,

Nn,D(Qn - Pn) =bf(Qn — Pn)(x*)Rn(cix) n Op(n—1/2)
= [Pn(x*)Q,,(dx) — 1/2 + Op(n_l/z).

Hence if we want to verify condition (2.2), with a given sequence (y,), we just
have to show that

JPu(x*)Qu(dx) — 1/2) > 0.

liminf vy,
n—o

3. Limiting distributions. For the rest of this paper we consider the
particular seminorms | - I, N, 1, N,, 5, N, 5, on D(R), where

Ivll :== supf|»(x)|: x € R}

is the Kolmogorov-Smirnov norm, and N, ;, N, ,, N, , have been defined in
Section 2. All objects such as test statistics, confidence sets etc. depend on
which seminorm N, is used. If we want to set off this dependency, we use the
subscripts K, (1),(2), D. Carlstein (1988) compared the estimators 6, g, 6, )
6, (2 in a simulation study, and there seemed to be no significant difference
between them. In Section 4 we consider a mean shift model and come to a
similar conclusion. The estimator én, p of Darkhovskh is of special interest
because it is easier to compute than the estimators of Carlstein.

The different models for the sequences (P,) and (@,) considered later are a
special case of the following one.

GENERAL MODEL. There are continuous cdf’s P and @ on the line such

that both [P, — P|land @, — Q|| tend to 0 as n — . There is a sequence (y,)
in R* and a continuous function 2 on R such that

y,(loglog n)/*n"/2 50 and |y,(Q, - P,) — k|- 0.

We give some examples.
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ExampLE I (Standard model). P, =P and @, = @ for all n > 2 with
different continuous cdf’s P and @ on R. Here one may take v, :== 1 and
h:=@ — P.

ExampLE IT (Mean shift model). * P, (dx) = P(dx) = f(x) dx and @, (dx) =
f(x — y; 1) dx for every n > 2, where f is a uniformly continuous probability
density on R, and (y,) is a sequence as in the general model such that
¥, = +. Here v,(Q, — P,) = v,(P(- — y; 1) — P) tends uniformly to h == —f.

ExampLE III (Exponential families). Consider a simple exponential family
P,(dx) = explax — y(a))P,(dx) with a continuous cdf P, on the line. Here

a~ (P, — Pg)Xx) converges uniformly in x to
h(z) = [I(y <x)(y — m) Poy(dy)

as @ — 0, where m = [yP,(dy). This limit h(x) is continuous with h(m) <
h(x) < 0 for 0 < Py (x) < 1. If one chooses a sequence (y,) as in the general
model with y, — +, then the distributions P, := P, and @, = P,-1 meet
the requirements of the general model.

Under the assumptions of the general model, there is a constant p > 0 such
that

’YnNn(Qn - Pn) =u+ Op(l)'
If u >0, condition (2.2) holds, and Theorem 1 implies that 8, — 6, =
0,(y2n™"). Specifically we have

pr=Ihl,  pe = [IRldR,  uh = [K2dR, ,LD=}/hdR},

where we define R := 6P + (1 — 0)Q; see also Section 2. (Note that
IR, — Rl - 0.)

The key for understanding the limiting behavior of estimators, confidence
sets etc. is the limiting behavior of the process (W,(¢): ¢ € T,), where

W, (2) == n(N,(D)* - N,(DSr)?).
For example, one may write
9, = argmax(W,(t): t € T,).
We distinguish between two special cases of the general model.

MobpEL 1. P and @ are different distributions and y, = 1 for all n > 2.
MoDEL 2. P=@Q and y, = was n - »,

With respect to Model 2 we assume that the process W,,(') is extended to a
function in DI[0, 1] via W,(s) :== W,((ns]/n), W,(0) := W,(1) .= —nN,(D;»)*. In



1478 L. DUMBGEN

the sequel let X, (z € Z, the set of integers) be independent random variables
having distribution P for z < 0 and @ otherwise. Further let (W(s): s € R) be
a two-sided Brownian motion on the line; that is, (W(s): s > 0) and (W(—s):
s > 0) are two independent Brownian motions on Rj. Then we have the
following result, where the subséript A generally stands for K, (1),(2), D.

PROPOSITION 2.

(I) The limiting behavior of Wn( ) in Model 1: Under some regularity
conditions, see (III) below, there is stochastic process (Wy(2): z € Z) such that
for arbitrary integers d > 0 the vector

(Wn’A(()n +n7l2):—d<z< d)
converges in distribution to )

(2uaWa(2) — wilel: —d <z <d)
as n > ». More precisely, we have W,(0) := 0 and

0
Y [8a(X)) — Ex_pga(X)], forz <0,

i=z+1

0
- X [gA(Xi) - EX~QgA(X)]7 forz >0,

i=z+1

Wy(z) =

where g,: R > R is a certain bounded function.
(II) The limiting behavior of W, () in Model 2: Under some regularity
conditions [see (III) below] for arbitrary d > 0 the process

(Wn’A(On +yin7ls):s € [—d,d])
converges in D[—d, d] in distribution to
(2ra0aW(s) — uilsl: s € [—d,d])
as n — o, where
0 = Vary_ p(g4(X)).

(ITII) Regularity conditions and definitions:
A = K: We generally assume that there is a unique x, € R such that

|h(x0)| = IRI > 0.
The function gy is given by
gx(x) = sign(h(x0)) I(x < ).
A = (1): We generally assume that the function |h| is strictly positive
(P + @)-almost everywhere. The function g, is given by

ga(x) = [sign(h(5))I(x <) R(dy).
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A = (2): In Model 2 we have to assume that g, > 0. We generally define
8e((%) = na [R(9)I(x <y)R(dy).
A = D: We generally assume that ‘u;, > 0. The function gy, is given by
gp(x) = —sign(fth)R(x).
REMARK. The variances o2 = Vary . p(g4(X)) are explicitly given by
0f = R(x0)(1 — R(%x,)) < 1/4,

o2, = [ [sign(h(y))sign(h(2))[R(y A 2) — R(y) R(2)] R(dy) R(dz)

<1/12,
0% = 1@t [ [R(»)R(2)[R(y A 2) — R(y)R(2)]| R(dy) R(dz) <772,
o2 =1/12.

The upper bound for a(g) is the largest eigenvalue of the symmetric kernel
K(y,z) = R(y A 2) — R(y)R(2) in L,(R); see Shorack and Wellner (1986),
Section 5.2-3.

Now we can easily derive the limiting distribution of the estimators 9,‘, A
Theorem 1 and Proposition 2 together imply the following theorem.
THEOREM 2.
(I) In Model 1 the variable n(én’ 4 — 0,) converges in distribution to
argmax(2u, Wy(2) — wilel: 2 € 2),

provided the latter is unique almost surely.
(IT) In Model 2 the variable ny, %, 4 — 0,) converges in distribution to

(02 /1% )argmax(W(s) — sl /2: s € R).
REMARK 1. In the case of Model 2 we utilized the fact that for arbitrary
a > 0 the process (aW(s): s € R) is distributed as (W(a?s): s € R). An explicit
formula for the cdf of the limiting distribution is given by Siegmund (1986).
REMARK 2. One can quite easily show that the variable
arg max(2u Wy (2) — pklel: 2 € Z)

is n(;t unique in general. For A = (1),(2), D the variable arg max(2u ,W,(2) —
u4lzl: z € Z) is unique almost surely, if the distributions of the single sum-
mands of W,(-) are continuous.
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(a) This is fulfilled for A = D, because R(x)= 0P(x) + (1 — 6)Q(x) is
monotone increasing, and for x < x’ we have
R(x) = R(x’') ifandonlyif (P + @)[x,x'] = 0.

(b) The distributions of the summands of W,(-) are continuous for A =
(1), (2), if the assumptions of Theorem 2 for A = (1) hold: There are countably
many open intervals (a;, b;) in R such that sign(%) is constant and nonzero on
each interval (a;, b;), and the union of these intervals (a;, b;) has (P + Q)-
measure 2. Then the functions g(,)(-), r = 1,2, are monotone on each subin-
terval (a;, b;) and for a; < x < x’ < b; we have

&r(x) = g(x') ifandonlyif (P + Q)[x,x'] = 0.

Consequently for arbitrary w € R the set {y € R: g,,(y) = w} is a union of
countably many intervals with (P + @)-measure 0.

In order to motivate the estimator §¢Z) defined below, consider the para-
metric change-point model

(W(s) = 20uW(s) + u?r —plls —7l:s € IR),

where o, u > 0 are known constants and 7 € R is an unknown parameter.
Our estimators 6, correspond to the estimator

Fi= argmax(W(s): s € R) =, (0?/u?)argmax(W(s) — Is|/2: s € R).
It is known [see Ibragimov and Has’minskii (1981), Chapter 7] that the formal

Bayes estimator

#® = [s exp(W(s)/(207)) dS/ [ exp(W(s)/(20%) ds

= 7+ (a'z/uz)fs exp(W(s) — Isl|/2) ds/fexp(W(s) — Isl/2) ds

is superior to 7 in that Var(#®) is about 0.73 times Var(#). Thus, for example,
one could consider

6= T texp(nN,(Di)’/(262)) /tZT exp(nl,(D})"/(267))

teT,

fi-6,,1-0,8 exp(W,,(Bn + s)/(Z&f)) ds

=0, t & A
f(—o,,,1—9,,) exP(Wn(on + 3)/(203;2)) ds
P Ji=nyz%o,,nviia-o,08 EXP(Wa(B, + van~"s)/(257)) ds

Je-nyz%,,ny:%1-0,) exp( Wn(en +y2n~ 13)/(25}?)) ds

as an improved nonparametric estimator, where 4,2 is an estimator for ¢;. In
fact one can deduce from Propositions 1 and 2 the following result.
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THEOREM 3. Let 6,2 , = 6, A(Xl s+ -» X, ) be an estimator converging in
probability to a certain constant o2 > O
Then in Model 1 the variable n(8$8) — 6,) converges in distribution to

) zexp(WA(z')) Z eXP(WA(z))

zeZ

where Wy(2) = p, b2 2Wy(2) — pid2lzl /2.
In Model 2 the variable nvy, (6%) — 6,) converges in distribution to

(¢>§/p,i)fs exp(W(s)) ds// exp(W(s)) ds,
where W(s) = (0i/b4)W(s) — |s|/2.

We do not give a rigorous proof of Theorem 3. Just note that Proposition 1
implies that on the event A, (d):

W,(t) = n(N,(D:) + N,(Dg»))(N, (D) = N,(Dg))
< —Ciny;%t-0,, VteT,\T,(d).
Hence one may approximate 63 by

6, + y2n-11C 0.8 xP(Wa(0, + yin~'s)/(257)) ds
"U fca,aexp(W, (6, + v2n"'s)/(262)) ds

with a large fixed d > 0 and then apply Proposition 2.

Generally we have o = 1/12, and even ¢3, = 1/12, provided that & is
strictly positive (negative) (P + @)-almost everywhere. Thus one could take
62 = 1/12 and (under some circumstances) &, ;, == 1/12. Alternatively one
could generally take the plug-in estimates

0'2 A= VarX~Rn(én,A(X))’

where 2, .(x) is defined as g,(x) with A, R replaced by P —%p R,
respectlvely This would lead to a two-step procedure where the estlmator 0 is
used to get an improved estimator §(®. Note that g,(x) remains unchanged if
h is replaced by ah, a > 0. Moreover it follows from Lemma 2 that

| %P, - P,| < 0,(n"*/2) +| 11, - P,

= 0,(n"2) + 878, - 6,) 1Q. — P,
= 0,(n"V%),

|22 - Q.| = 0,(n"1%),

and this implies that

(3.1)

"771(an - é"P,,) - h" — 0 in probability.
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Using this result and the fact that IIR — R|| = 0,(1), one can deduce that the
plug-in estimator for o2 is consistent.

4. Comparison with semiparametric estimators in a mean shift
model. For simplicity assume that the variables X;, are normally dis-
tributed with common variance o2 and known means 0 or vy, ! for i < né, or
i > n#, respectively. Then the maximum likelihood estimator for 6, may be
represented as

0,y = argmax(W, y(¢):t€T,),

where

né,
Wn,H(t) = Z 0'_2(Xi,n - EXi,n) o” n7n 2It -0, l/2

i=nt+1

[Em,. ()= =Xk ) for m < k]; see Hinkley (1970), who also considers
the case of unknown variance and unknown means. The Bayes estimator with
respect to the uniform prior on T, is given by

0By = X% teXP(Wn,H(t)) Z eXP(Wn,H(t))-

teT,

Now one can easily compare the nonparametrlc estimators 0,, A and 6 ), with
0,, g and B(B}, respectively in the mean shift model given at ‘the begmmng of
Sectlon 3. We additionally assume that f is even with f(0) > f(x) V x # 0 and
that 02 .= Varp(X) < +. Then ny, 2(0n u — 0,) converges in distribution to

o? argmax(W(s) — Isl/2: s € R),

and ny,; %8By — 6,) converges in distribution to

0'2[3 exp(W(s) — Isl/2) ds/fexp(W(s) — |sl/2) ds.

It follows from Theorems 2 and 3 that the corresponding nonparametric
estimators have the same limiting distribution up to a scaling factor, namely:
E '0? argmax(W(s) — Is|/2: s € R)

and
102[3 exp(W(s) — Isl/2) ds/[ exp(W(s) — Is|/2) ds,

A

where E, =0 aA 'u?. Here it is assumed that the estimators 4, 4, in the
definition of 0( are cons1stent for o2. In this special model the quantities E A
are given by

Ex = 40(0)’,  Eq, = Ep = 120%[f(x)" dx,

By = ([ (217 ds) (Ve[GO ™, 6(0) = [ 1y
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TaBLE 1
Relative asymptotic efficiencies

Distribution Normal Logistic Double exponential
Ex 2/m~0637  w2/12 ~ 0.822 2
E, =Ep 3/m = 0.955 w2/9 = 1.097 1.5
Eg * = 0914 w2/9 = 1.097 5/3 = 1.667

* = (3n[m = arcsin((5/6)"/2) — 1/4])~ 1.

They are a measure of relative asymptotic efficiency of the nonparametric
estimators relative to the parametric ones and have been computed for the
densities of the standard normal, logistic and double exponential distribution;
see Table 1. For the calculations the reader is referred to Diimbgen (1990).
Note that Ej is the Pitman efficiency of the sign test relative to the ¢ test, and
E;, is the Pitman efficiency of the Mann-Whitney test relative to the ¢ test;
see Lehmann (1975). It turns out that none of the maximum type estimators
0, 4 is clearly superior to the other ones, and the same holds true for the
formal Bayes estimators §S7).

5. Bootstrap confidence sets. In Model 2 we have a parametric limiting
distribution of the process W,(-) depending only on the parameters u, and o,.
In Model 1, however, the distribution of the discrete-time process W,(-)
depends on the (infinite-dimensional) parameter (0, P, @), and it cannot be
approximated by a continuous-time Gaussian process. For that reason we do
not use the asymptotic results for Model 2 for making inferences about 6.
Alternatively, we propose a bootstrap procedure which works in both models:
For every hypothetical change point ¢ € T, we test the hypothesis “6, = ¢’ on
the nominal level a using the statistic

M,(t) = maxW,(s,?),
seT,

where
Wn(s’t) = n(Nn(D:)z - Nn(Drtt)z)

This test statistic corresponds to the likelihood ratio statistic in parametric
models. For example, in exponential families one can compute the exact
hypothetical distribution of the likelihood ratio statistic conditional on a
sufficient statistic; see, for instance, Siegmund (1988). Here we estimate the
hypothetical (unconditional) distribution L,(¢) of M,(¢) by

L) = L(M (8, XF(£), XF(®), o » X)X ns Xans s X))

where M, (t, X{(), X3(#),..., X)) is computed as M, (¢) using resampling
variables Xy (), X3(¢),..., X}(@®). Given (X, ,, X, ,,..., X, ,), these vari-
ables X*(¢) are independent, having distribution ‘P, for i < nt and P! other-
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wise. Then we reject the hypothesis “8, = ¢, if
L (8)[M,(2), +=) <a.

The confidence set K,(a) consists of all ¢ € T, where the bootstrap test did
not reject. This confidence set has asymptotic coverage probability not less
than 1 — a if

(5.1) limsup Pr(L,(6,)[M.(6,), +=) <a) <a.

We shall see in Theorem 4 that L,(6,) converges weakly to a certain distribu-
tion L, under the assumptions of Proposition 2. Then (5.1) holds, if L 6,)
also converges to L, in probability, L,{0} <1 —a and L, restricted to
(0, +) is continuous. The convergence of L ,(8,) follows from a more general
result: Let (a,) be an arbitrary sequence of positive numbers tending to 0. It
follows from Lemma 2 that

max |, - P|=0,(1), | mex |Pi-@Ql=0,D).

t—8,l<a, [t—6,l<a

max P! -‘P hil=0,(1

max (22 2) ~ 4] = 00
Consequently there is a sequence of events A, (depending on X Ly Xanseees
X, ,) such that Pr(A,) tends to 1, and on these events A, the pairs (‘'P,, P}),
[t -6, <a,, as well as (P,,Q,) meet the requirements of the general model
with P, @, (y,) and h unchanged.

THEOREM 4. Suppose that the assumptions of Proposition 2 hold. Then in
Model 1 the variable M, ,(6,) converges in distribution to

max{2p,Wy(2) — pilzl: z € Z}.
In Model 2, M, ,(6,) converges in distribution to
202 max{W(s) — Is|/2: s € R}.

Theorem 4 follows essentially from Theorem 1 and Proposition 2. In Model
1 the limiting distribution L, , is not continuous, because max{2u ,W,(2) —
uilzl: z € Z) = 0 with positive probability. However, if the summands of
(Wy(2): z € Z) are continuously distributed, L, , restricted to (0, +=) is
continuous; see also the remarks following Theorem 2. We end this section
with a result for the size of the confidence sets K ,(a).

THEOREM 5. Suppose that the assumptions of Proposition 2 hold. Then
both in Models 1 and 2 we have for any a € (0, 1):

t—0. = n~b).
té?zai)l I P(Yn )

6. The Nile data. As an example for applying bootstrap confidence sets,
the Nile data have been analyzed; see also Cobb (1978) and Carlstein (1988).



ASYMPTOTICS FOR NONPARAMETRIC CHANGE-POINT ESTIMATORS 1485

TABLE 2
Bootstrap tests, ‘‘observed levels”

i 8(1)(i) 8(2)(i) SD(i)
1-23 0.000 0.000 0.000
24 0.001 0.001 0.001
25 0.011 0.006 0.007
26 0.069 0.057 0.060
27 0.197 0.190 0.189
28 1.000 1.000 1.000
29 0.081 0.080 0.082
30 0.035 0.021 0.026
31 0.020 0.008 0.014
32 0.004 0.001 0.002
33 0.005 0.001 0.002
34 0.003 0.001 0.002
35 0.001 0.000 0.001
36-99 0.000 0.000 0.000

The data are measurements of the annual volume of the Nile river at Assuan

in the years 1871 to 1970. The change-point estimators I, = 1000100 A ap-

phed to these 100 data yield f, = 28 (corresponding to the year 1898), where
= (1),(2), D. The “observed levels”

sa(i) = ilOO( i/100)[ M0, 4(i/100), +),

have been estimated in 10,000 Monte Carlo simulations; see Table 2. For
example 95% bootstrap confidence sets for I are given by

Kloo,(l)(0~05) = KlOO,(2)(0'05) = KlOO,D(0'05) = [26, 29]-

7. Proofs. At first we derive a maximal inequality for mixed empirical
distributions.

LEMMA 1. Let & be a family of measurable functions f: E — [—1, 1] such
that the class F* of all subgraphs {(x,t) e EXR:0 <t <f(x)orf(x) <t <
0}, f€ &, isa VC class. Then there are constants K,, K, > 0 depending only
on the discriminating polynomial p of &* such that for all m € N and for
arbitrary independent E-valued random variables X, X,,..., X,,:

> 'n) <K, exp(-K;n®), Vn>0,
F

(7.1) Pr(

where |[vll &= sup{|[fdvl: fe F},v e L.

m 2 . [oy, - £(X)

ProorF. Let m be an arbitrary fixed natural number. With the two sym-
metrizations described in 2.3 of Pollard (1984), one can show that for arbitrary
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Pr (
F

where S;,S,,...,S,, is a Rademacher sequence independent from X,,
X,,..., X,,. By conditioning on X,, X,,..., X,, one recognizes that it suffices
to show

n > 8V

)
F

> n/4),

m12 Y [oy —/(X,-)]I

i=1a

m=1/% Y 8,6,

< 4Pr(
i=1

There are constants K, K,, n, > 0, depending only on
(7.2) the polynomial p, such that for arbitrary points
Xy,%g,...,%,, € Eand P*:=m~Y?L 8,5, :
Pr(IP*lls> n) < K, exp(~Kyn?), ¥V n > m,.

Let p denote the L,-norm of the probability measure m 'L i~10,. Then the
covering numbers

N(z) =min{k €N:3 £y, fo,..., f € Fst. min p(f~f)suVfe 7},

0 < u < 1, are bounded by Au~3, where A, B > 0 are constants depending
only on p; see 2.5 of Pollard (1984), Approximation Lemmas 25 and 36. In
addition, the paths of the process ([fdP*: f € &) are continuous with respect
to p. Thus Hoeffding’s (1963) inequality and the Chaining Lemma [see 7.2 in
Pollard (1984)] yield

Pr(3f, f e Fsit. ‘f(f—f’) dp*
for all £ € (0, 1), where J(¢) = 26/¢[2log(A?/u?B+1)]'/2 du. Consequently
Pr(||P*||l#> ) < 2¢ + 2Ae B exp(—(n — J(£))*/2)

Vee (0,1) with0 <J(¢) <n.

If we take & = &(n) = exp(—Cn?), where 0 < BC < 1/2, then J(¢) —» 0 as
n — =, and there are K;, K, n, > 0 such that

26 + 24e Pexp(—(n — J(¢))*/2) < K, exp(—-K;n?), Vn=m, O

>J(s)andp(f—f’)$s)$2£

(7.3)

We introduce some notation for quantities, which will play an important
role in the sequel:

(a) The differences D’ — A, are denoted by Bf.
(b) For 0 < s <t < 1 we define

Su(s,t) == L [y, —Z(X;)] and S,(t,5) = —8,(s,1).

ns<i<nt
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Then we can write
B = [t/(1-8)]"*n718,(t,1) — [(1 - £)/t]"*n71S,(0, 1),
‘P, — I, = (nt) " '8,(0,¢), « P} —TI} = (n(1l—1¢))"'S,(¢1).

The next lemma contains some auxiliary inequalities for S,(-, - ) and BY’,
where we utilize Lemma 1 for the special case &= {I,: D € 9}.

LEmMA 2.
Forn>2and 0 <s<t<l,
(74) Pr{ max |S,(s,u)| = nln(t - 3)11/2) < 2K, exp(—Kyn?/4),
s<u<x<t
Yn>0.
There is a constant K5 > 0 depending only on 2 such that
(75)  max| B[ < Ky(loglog n)"/*n ="/
teT,
with probability tending to 1.

Proor. With a standard argument for processes with independent incre-
ments, one can show that for 0 <s <¢ < 1,

Pr(slilfft |S,(s,u)| = s) < 281;1:nsctPr(|| S, (u,t)||=¢/2), Ve>0.

Applying (7.1), we get (7.4). The global bound for || B}|l may be proved as
follows: One can quite easily show that

Pr( max ||(nt)_1/2Sn(0, t) ” > e)
teT,

< X [Pr(||2‘j/2Sn(O,2j/n)||25/2)

0<j<logy(n)

+Pr( max [|279/28,(2/n, (2 + i) /n)| = 3/2)]

1<i<2/

for all £ > 0. Then (7.1) and (7.4) lead to
Pr( max | (ne) /28,00, )| > s) < 3K,(log2) " log n exp(—Ky¢?/16)
teT,

for all £ > 0. Similarly one can treat max, . [[[n(1 — £)]/2S (¢, DI|, and (7.5)
follows. O
ProoF oF ProprosiTiON 1. First of all (7.4) implies that
|N.(Dj) ~ w(6,) N(Q, — P,)| <[ Bi| = O,(n~/?).

Hence, according to (2.2), N, (D¢») > C,y, ' with probability tending to 1 for
arbitrary C; € (0, w(6)C,). It is not very difficult to show that there is a
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constant C > 0 such that p,(6,) —p,(¢) > [t — 6,|C for every n > 2 and for
arbitrary ¢ € T,. With this inequality one can deduce:

There is a constant C’ > 0 such that
(7.6) Pr(N,(D}) — N,(Dg»)
<||B: - BE»|| - |t = 8,]y,*C" forall t € T,,) > 1.
For the quantity N,(D!) equals
N,(B;, - Bir + Blr + p,(t)w(6,) ' A%)
= No(Bi = B + (pu(8,) = pa())w(6,) "B + p,(t)w(6,) ' Dir)
<[ B}, = Bl + (pn(8n) — 0u(8))w(8,) " B+ + pr(8)w(6,) T"N,(Di).
Consequently
N,(D}) — N,(D¢»)
<|BL = Bir|| = 77 *(pa(8,) = pa(t))(Co — 2w(6,) ~'v,]| BE»
=B = Birl = v "(pa(8:) = £a(£))(Co = 0,(1))
for all ¢t € T, with probability tending to 1; see (2.2). Hence (7.6) is valid with
C' = CC, for arbitrary C; € (0, C,).
The term || B% — B%|| in (7.6) can be globally bounded by 2K ;(loglog n)'/2

n~12; see (71.5). Since 2K (loglog n)/2n~1/2 = o(y, 1), (7.6) implies the fol-
lowing:

)

There is a constant C” > 0 such that

Pr(N,(D:) — Ny(D%) < —|t — 6, |y;'C"
forallte T,\[a,1-a])>1

for arbitrary fixed a € (0,1/2).

Thus it suffices to consider [|B{’> — B!"|| on compact subintervals of (0,1 1).
The assertion of Proposition 1 follows, if we show:

For arbitrary constants C” > 0 and a € (0,1/2)
lim inf Pr(|| B; - Bg»| <|¢ — 8, ]y, *C"
n-—o

VieT,Nn[a,1-a]\T,(d))~1
asd - +o,
With the partial sums S,(, - ) one can write in detail

B., - Bo» = ([t/(1 = )] = [6,/(1 - 6,)]/*)n""5,(6,,1)
+([(1 - 8,)/6,]"* = [(1 - £)/t]/*)n"18,(0,6,)
+(w(?) ™ = w(8,))n718,(¢,6,)
+w(6,) 'n18,(¢,6,).

(7.7)

(7.8)
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For arbitrary a € (0, 1/2) the functions [¢/(1 — )]'/2,[(1 — ¢)/t]'/? and w(#)~*
are Lipschitz continuous on [a, 1 — a]. Hence there is a constant C > 0 such
that forall n > 2 and forall t € T, N [a,1 — al:

| Bt — B®» — w(6,) 'n"18,(2,0,)| < Clt — 6,] max |n~1S,(s,6,)|.
selo,1]

With the maximal inequality (7.4) it follows that:
For every a € (0,1/2)

(79) || BL - BY — w(6,) 'n718,(t,0,) | <It = 8,10,(n7*%)
forallt e T, N [a,1—-a],

where O,(n~'/?) denotes a random variable not depending on ¢ € T,,. Hence
(7.8) would follow from:

For arbitrary constants C” > 0
lim sup Pr(]| S,(¢,6,) | > n|t — 6,]v, 'C"

for some t € T,\T,(d)) > 0

asd - +o.
In order to simplify the notation, we fix n > 2 and consider independent
random variables Y;,Y,,Y,,... and Y* Y5, Y, ..., where the Y; have dis-

tribution P,, and the Y;* have distribution @,. With these variables we define
m m
Z,= 3 (8y,—P,) and Z} = Y (8yx — Qn)-
i=1 i=1
Then
Pr(||S,(¢,8,) || > nlt — 6,]y, *C" for some t € T,\ T,(d))

< Pr( max m~ Y Z,| = yn‘lC”') + Pr( max m~ Y Zk| = y,,‘lC”’).
m=dy? m>dy?2

It is known that the sequences (m~Y|Z,,|: m € N) and (m~Y|Z}[l: m € N) are
reverse submartingales; see Pollard (1984), pages 21 and 22. Thus it follows
from Chow’s (1960) inequality that

- - m m—1 -
Pr( max m Y2, = v 'C ) <v,C E(m01||Zm0||),

m>dyy,

where m, = min{m € N: m > dy2}. The same inequality holds for Z, in
place of Z,,. According to (7.1), the right-hand side of the preceding inequality
is bounded by

"y,,C”"lmgWKlf exp(—K,x?) dx < d‘l/zC'”_lKlf exp(—K,x?) dx,

which tends to 0 as d = +, and (7.10) follows. O
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_ PrROOF OF PROPOSITION 2. At first we derive a stochastic expansion for
W,(-): For arbitrary integers d > 0,
W.(2) = w(N(2v,'8,(2,6,) — nv; |t = 6,|h + H,)
i —N,(H,)) + r,(#),
wnere

po=Pr—lmy,N(Q -P), H,=2ny%(1-0)(h+m,),

m, €D(R), |m,ll=0,(1) and max [r(¢)|=o0,(1).
teT,(d)

PRroOF OF (7.11). W,(¢) may be written as
W,(¢) = 2nN,(Dg»)(N,(DL) = N,(Dg#)) = n(N,(D%) — N,(Dg=))’.
Now we need some auxiliary inequalities for the difference N, (D}) — N,(Dg»),
which equals N/(B! — B + A, — A% + Df») — N(D}»). Since [Bg|| =
0,(n~1%),
(7.12) N,(Dg) = v; 'w(8,) 1 + 0,(v:Y) = O,(v:Y).
According to (7.9),

(713a) max | B, - Bl - w(0,)"'n18,(4,6,) | = 0,(xin %),

7.13b B! — B = -1
(7.13b) téanﬁfn" L =B =0,(v,n7Y),

where (7.13b) follows by applying (7.4) to S,(, - ) in (7.13a). Since AY, — A% is
equal to (p,(¢) — p,(6,)XQ, — P,), a simple Taylor expansion of p, leads to

(7.142) max ||A, — A% + 27 %w(6,) V|t - 6,|(Q. — P) || = O,(v3n72),
teT,(d)

R t _ AbLl — -1
(7.14b) téan(’fi)"A" A% = Oy(v,n™Y).

Now one can easily deduce from these inequalities that
W,(2) = u( N, (27, 'S,(2,6,) — ny, %|t — 6,k + H,))
L SN(H,)) 1),

where H, = 2ny, *w(8,)y, 'Di* and max, ¢ 1 (41, ()| = 0,(1).
Finally the expansion (7.11) follows from

lw(8,)7, D= = 6(1 = 8) || = 0,(1).

(7.15)

So far we did not use particular properties of the different seminorms N, . If
we define

v,(t) = 2y;8,(¢,0,) —ny %t -6,/ and B, =20(1-0)ny,?,
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we have

t =O 1 9 + )
tgf@)llvn()ll ,(1), B, — +

and (7.11) shows that Wn(t) can be approximated locally in 6, by
Bukt[ No(By v, (t) + h + m,) — N(h +m,)].

Now we approximate this by a certain linear functional of v, (¢) for A =
K,(1),(2), D separately.

(a) In the case N, = || - |, one can quite easily see that there is a sequence
(¢,) in R*, which converges to 0, such that

1B wa(2) + b+ m,| = sup |(B;w,(¢) +h +m,)(x)]
(7.16) xeM, ;
forall ¢t € T,(d),

with probability tending to 1 as n — o, where M, := {|k| > |h(xy)| — ¢,}. The
continuity of P and @ implies that

sup I‘yn‘lS,,(t, 0,)(x) — v, 'S,(¢, Bn)(xo)l — 0 in probability.
(7.17) teT(d),

xEM,

This can be shown using a Skorohod imbedding for the empirical processes
under consideration; see Diimbgen (1990) for a detailed proof. But then (7.11),
(7.16) and (7.17) together yield

(7.18x) W, g(t) = sign(h(xo))ux2v, Sa(t,6,) — whevy *nlt — 6,] + 1,(2),

where max, ¢ 1 _)[r,.()| = 0, (D).
(b) For N, = N, ; we have

N, (B, v, (t) +h+m,) =N, (h+m,)
= [(1Bzvu(®) + B+ m,| = |k + m,|) dR,.
If we replace this term by
B [ sign(h)v,(t) dR,,
the resulting error is bounded absolutely by
48w ()| [I(1Rl < m, ]l + B va(D) ) AR,

because
|la + b +cl— b+ cl—sign(c)al| < 4lalI(lel < lal + 1b])
for arbitrary a, b, ¢ € R. Since |h| > 0 R-almost everywhere and R, converges
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weakly to R in probability,
JI(hl <&,)dR, = o,(1)
whenever ¢, | 0. Consequently *
W, a)(2) = 2uay,* [ sign(h)S,(2,6,) dR,

- I"%I)Yn_2n|t - 0n| + rn(t)’

where max, . 7 (4, [1,(8) = 0, (D).
(c) In the case N, =N, , we have N, ;(h +m,)? = u% + 0,(1) and one
easily sees that

Nn,2(Br:1Vn(t) + h + mn)

(7.18,,)

= Nn,2(h + mn) + “(E)lﬂ;lfvn(t)hdfen + Op(Br:1||Vn(t)")‘

Hence

(7-18(2)) Wn,(Z)(t) = 2‘Yn_lfsn(t’0n)han - #%2)%:2"“ = 0, | + (%),

where max, ¢ 1, (4, Ir,(#)] = 0,(1).
(d) One easily shows that

N, (B 0a(t) + b + m,) = b5 sign( [ Q) [r,(1)(x*) R, )
for all ¢ € T,(d) with probability tending to 1 as n — «. Hence
W, o(t) = o sign( [hdQJ2v;* [5,(1,0,)(x) R,(d)

- “2D77:2n|t - 0n| + rn(t))

where max, . 7 (4, ()] = 0,(1).
Starting from (7.18,), we prove Proposition 2:
(a) In the case A = K Proposition 2 is just an easy consequence of (7.18),
where in Model 2 we use Donsker’s invariance principle for sums of iid rv’s.
(b) The case A = D is also quite simple: The term

¥a ' [8u(t,0,)(x*)h(2) R,(dx) = —3;" [R,(*) k(%) S,(¢,6,)(dx)

(7.18,)

in (7.18 ;) can be approximated by
—%: ! [Ro(2*)h(x) S,(t,6,)(dx)
because R, — R, = 0,(n~'/2) and the measure S,(t, 6,) has total variation
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not greater than 2Dvy? for all ¢ € T,(d). The latter integral is equal to

né,

Yr:l Z [Rn(Xi,n*) _ERn(Xi,n*)]‘
i=nt+1 R
One can show quite easily that £, [R,(X*)] and £, [R,(X*)] converge
weakly to Zp[ R(X)] and #,[ R(X)] respectively. Especially the boundedness
of R, and R imply that in Model 2 both Varp [ R,(X*)] and Varg [ R ,(X*)]
tend to Varp[ P(X)]. Hence Proposition 2 follows for A = D.
(c) For A = (1) and (2) we have to work a bit harder. The arguments in both

cases are very similar, so we only consider A = (1). The integral
v [ sign(h)8,(¢,6,) dR,

in (7.18;,) is equal to
n n

[’)
Yl T |Gna(XE) ~ [EnwdL(X: )|,

i=nt+1

where 2, ;,(x) = [ sign(h)I(x < -)dR,. With
8n,(*) = [ sign(h)I(x < *) dR,,
one can deduce from Lemma 1 that

(7.19) "gn,(l) - gn,(l)" = Op(n_l/z),

where &= (sign(h)I(x < *): x € R}. Thus &, ;) may be approximated by
&n, 1) Finally one can show quite easily that £ (g, (X)]and £, [ &n, (Xl
converge weakly to Zp[g,)(X)] and #,[g(X)] respectively. In Model 2 the
corresponding variances converge to Varp[g,(X)]. Hence we obtain Proposi-
tion 2 for A =(1). O

Proor oF THEOREM 5. For ¢t € T, define
G,(¢) = max{r € R: L,(¢) = a}.

Then ¢ € K, (a) implies M,(¢) < §,(¢). The variable M,(¢) itself is not less
than —W,(¢) = —n[N(D:) — N(D:"IN,(D:) + N,(Di»)]. Since N, (D;)+
N,(Dg») > N, (D) = v, {w(6,)n + 0,(1)], Proposition 1 yields

(7.20) liminf Pr(ny, %t — 6,| < Cyd () Vit E K, (a)/T,(d))~1
as d » +», where C, > 0 is some suitable constant. Now we first need a
global bound for §,(¢):

There is a constant C’ such that
(7.21) 4.(t) < C'n'/?(loglog n)"/?y;! forallt €T,
with probability tending to 1.
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Accept this for the moment. Then it follows from (7.20) and (7.21) that

max |t —6,|=0 loglog n)"?n=1/2),
max |t =0, = 0,(y,(loglog n)"/*n"1/%)
Hence we only have to consider |¢ — 0, < a, in (7.20) with a suitable sequence
(a,) tending to 0. As mentioned in Section 5, L,(#) converges weakly to L,
uniformly for |t — 6,| < a, (in probability). Hence

max [§,(¢)| = O,(1),

lt—6,l<a,

and Theorem 5 follows.

PrOOF OF (7.21). Remember that £ (¢) is equal to the distribution of
M,(0,), where 6,, P,,Q, replaced by ¢ ‘P,, P! respectively. Let 7, =
max, cr | B, . Then

W(s) < n[(Ny(A%) +7,)* = (No(A%) - N,(B2))Y]
< 4n'rnNn(A"n") + n72.

It follows from (7.5) that 7, is not greater than Kj(loglog n)/2n~1/2 with
probability tending to 1. Since the proof of (7.5) did not depend on the special
sequences (6,,), (P,),(Q,), there is an integer n, such that

4.(¢) < 4K n'?(loglog n)"?| Dt | + K2 loglogn forall ¢ € T, and n > n,.
But
D] <11Q. = P.ll + Ksn="/*(loglog n)"/* = O(v, ") + K3n~"/*(loglog n)"*

for all ¢ € T, with probability tending to 1. Hence (7.21) follows together with
loglog n = o(n'/?(loglog n)'/%y;1). O
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