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ON THE ESTIMATION OF QUADRATIC FUNCTIONALS

By JiaNnQING Fan

Universitga/ of North Carolina

We discuss the difficulties of estimating quadratic functionals based on
observations Y(¢) from the white noise model

Y(t) = [O‘f(u)du +oW(t), telo,1],

where W(¢) is a standard Wiener process on [0, 1]. The optimal rates of
convergence (as o — 0) for estimating quadratic functionals under certain
geometric constraints are found. Specifically, the optimal rates of estimat-
ing [3{ F®(x)]?dx under hyperrectangular constraints % = {f: |x;(f)| <
Cj ™} and weighted 1,-body constraints 3, = {f: L3j"lx;(f)I" < C} are
computed explicitly, where x;(f) is the jth Fourier-Bessel coefficient of
the unknown function f. We develop lower bounds based on testing two
highly composite hypercubes and address their advantages. The attainable
lower bounds are found by applying the hardest one-dimensional approach
as well as the hypercube method.

We demonstrate that for estimating regular quadratic functionals [i.e.,
the functionals which can be estimated at rate O(a?)), the difficulties of the
estimation are captured by the hardest one-dimensional subproblems, and
for estimating nonregular quadratic functionals [i.e., no O(o 2)-consistent
estimator exists], the difficulties are captured at certain finite-dimensional
(the dimension goes to infinity as o — 0) hypercube subproblems.

1. Introduction. The problem of estimating a quadratic functional was
considered by Bickel and Ritov (1988), Hall and Marron (1987) and Ibragimov,
Nemirovskii and Khas’minskii (1986). Their results indicate the following
phenomena: For estimating a quadratic functional, the regular rate of conver-
gence can be achieved when the unknown density is smooth enough and
otherwise a singular rate of convergence will be achieved. Naturally, one might
ask: What is the insight of estimating a quadratic functional nonparametri-
cally? The problem itself is poorly understood and the pioneering works shows
that the new phenomena need to be discovered.

Let us consider the following problem of estimating a quadratic functional.
Suppose that we observe y = (y;) with

where z;,2,... are iid. random variables distributed as N(0,0?) and x =
(x;: j = 1,2,...) is an unknown element of a set 3, ¢ R*. We are interested in
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1274 J. FAN
estimating a quadratic functional
J-1

with a geometric constraint 3. The geometric shapes of 2, we will consider are
either a hyperrectangular

(1.3) 3 ={x:|x;] <A}}

or a weighted /,-body

(1.4) 3= {x: Y 5l < C}.
1

These are two interesting geometric shapes of constraints, which appear quite
often in the literature of nonparametric estimation [Donoho, Liu and
MacGibbon (1990), Efroimovich and Pinsker (1982), Nussbaum (1985), among
others].

Let us indicate briefly how the problem (1.1)-(1.4) is related to estimating a
quadratic functional of an unknown function; see also Donoho, Liu and
MacGibbon (1990), Efroimovich and Pinsker (1982), Nussbaum (1985). Sup-
pose that we are interested in estimating

b
(1.5) T(f) = [1F®)]" dt
with a priori information that f is smooth, but f is observed in a white noise
(1.6) Y(2) = [f(u)du + o[ dW(u), te€[a,b],
a a

where W(t) is a Wiener process.

Let us assume that [a, b] = [0, 1] and the function f fulfills periodic bound-
ary conditions at 0 and 1. Take an orthogonal basis to be the usual sinusoids:
é(t) = 1, $,;(t) = V2 cos(2mjt) and ¢,;, (t) = V2 sin(27jt). Then, (1.5) can
be rewritten as

(1.7) T(f) = (2m)* L j2*(xd; + x3,,1) + 82l
j=1
and the model (1.6) is equivalent to

where y; = [g¢,(1) dY(@®), x; = [3¢,(8) f(®) dt, z; = [3¢;(t) dW(¢) and §,, = 1, if
k = 0 and §, = 0, otherwise.

Suppose that we know on a priori smoothness condition that the
Fourier-Bessel coefficients of f decay rapidly:

|x;| <A;, A; -0, ifj-o =

Then, the problem reduces to (1.1)-(1.3). Specifically, if the ath derivative of f
is bounded, then |x;| < Cj™* for some C. Thus, A; = Gj™* is a weakening
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condition that f has a bounded derivatives. For this specific problem with
A; = Cj~%, the optimal rate of estimating the functional [J[ f*(¢)? d¢ is O(c)
when a > 2k + 0.75 and O(g 2~ 2%+ D/@a=D) when k + 0.5 < a < 2k + 0.75.

If a priori smoothness conditiop is 3 = {f: (i f“(#)?dt < C}, then, by
Parseval’s identity, 3 is an ellipsoid 3 = {x: I%5_,j%(x3; + x3;,,) <
C/(2m)%*). Thus, we reduce the problem to (1.1), (1.2) with a constraint (1.4).
The best rate of convergence is O(¢o), if @ > 2k + 0.25 and O(g 8« ~#)/#a+D)
if 2 <a<2k+0.25.

Even though we discuss the possible applications on a bounded interval
[0, 1], the previous notion can be easily extended to an unbounded interval by
using a suitable orthogonal basis.

In this paper, we consider only for observations (1.1) taking it for granted
that the results have a variety of applications, such as those just mentioned.
We also take it for granted that the behavior as o — 0 is important, which is
natural when we make connections with density estimation.

An interesting feature of our study is the use of geometric idea, including
hypercubical subproblems, inner lengths and hardest hyperrectangular sub-
problems. We relate a geometric concept—inner length with a lower bound by
using the difficulty of a hypercubical subproblem. We show in Section 3 and 4
that for some geometric shapes of constraints (e.g., hyperrectangles, ellipsoids
and weighted [,-bodies), the difficulty of a full nonparametric problem is
captured by a hypercubical subproblem. We compare the hypercube lower
bound with the maximum risk of a truncated quadratic estimator and show
that the ratio of the lower and upper bound is bounded away from 0. Thus, as
far as the minimax criterion is concerned, there is little to be gained by
nonquadratic procedures in terms of rates of convergence.

A related approach to ours is the hypersphere method developed by
Ibragimov, Nemirovskii and Khas’minskii (1986). The notion of their method
is to use the difficulty of a hypersphere subproblem as the difficulty of a full
nonparametric problem. Their results indicate that for estimating a spherically
symmetric functional with an ellipsoid constraint, the difficulty of the full
problem is captured by a hypersphere subproblem. We might ask more gener-
ally: Can the hypersphere method apply to some other coordinatewise symmet-
ric functionals [see (2.1)] and other shapes of constraints to get attainable
lower rates? Unfortunately, the answer is no. We show in Section 5 that the
hypersphere method cannot give attainable lower rates of convergence for
some other interesting constraints (e.g., hyperrectangles) and some other
interesting functionals [e.g., (1.5) with & # 0]. In contrast, our hypercube
bound can give attainable rates in these cases. Indeed, in Section 5, we
demonstrate that the hypercube method can give a lower bound at least as
sharp as the hypersphere method, no matter what kinds of constraints and
functionals are. In other words, the hypercube method is strictly better than
the hypersphere method.

Comparing our approach to the traditional approach of measuring the
difficulty of a linear functional [see Donoho and Liu (1987 a, b), Farrell (1972),
Khas’minskii (1979), Stone (1980)], the hypercube method uses the difficulty
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of an n-dimensional (n, — ®) subproblem, instead of a one-dimensional
subproblem, as the difficulty of the full nonparametric problem. It has been
shown that for estimating a linear functional, the difficulty of a one-dimen-
sional subproblem can capture the difficulty of a full problem with great
generality. However, totally new phenomena occur if we are trying to estimate
a quadratic functional. The difficulty of the hardest one-dimensional subprob-
lem can only capture the difficulty of a full nonparametric problem for the
regular cases [the case that the regular rate O(o) can be achieved]. For
nonregular cases (no o-consistent estimate exists), the hardest one-dimen-
sional subproblem cannot capture the difficulty of the full problem. Thus, any
one-dimensional based methods fail to give an attainable rate of convergence.
The discrepancy is, however, resolved by using multidimensionally based
hypercube method. :

ConTENT. We begin by introducing the hypercube method of developing a
lower bound in Section 2 and then show that the hypercube method gives an
attainable rate of convergence for hyperrectangular constraint in Section 3.
The estimator that achieves the optimal rate of convergence is a truncated
estimator. In Section 4, we extend the results to some other shapes of
constraints, for example, ellipsoids, /,-bodies. In Section 5, we demonstrate
that the hypercube method is a better technique than the hypersphere method
of Ibragimov, Nemirovskii and Khas’'minskii (1986). Some comments are
further discussed in Section 6. Technical proofs are given in Section 7.

2. The hypercube bound. Let us introduce some terminology. Let 3 be
a subset of R* and 3, C 3. Suppose that we want to estimate a functional
T'(x) under the constraint x € 3 c R*. We call estimating T'(x) on X as a full
problem of the estimation and estimating 7'(x) on 3, as a subproblem. We say
that the difficulty of a subproblem captures the difficulty of the full problem, if
the best attainable rates of convergence for both problems are the same. In
terms of minimax risk, the minimax risks for the subproblem and the full
problem are the same within a factor of constant.

Now, suppose that we want to estimate a coordinatewise symmetric func-
tional T'(x), that is,

(2.1) ~ T(xxy, £ x5,...) =T (xq,%9,...),

based on the observations (1.1) under a geometric constraint 3. Assume that
0 € 3. Let [,(3) be the supremum on the half lengths of all n-dimensional
hypercubes centered at the origin lying in 3. We call it the n-dimensional
inner length of 3.

The idea of constructing a lower bound of estimating T is to use the
difficulty of estimating T' on a hypercube as a lower bound of the difficulty of
the full problem. More precisely, take the largest hypercube of dimension n
(which depends on &) in the constraint 3 and assign probability 1,/2" to each
vertex of the hypercube and then test the vertices against the origin. When no
perfect test exists by choosing some critical value n, depending on o, the
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difference in functional values at vertices of two hypercubes supplies a lower
bound.

To carry out the idea, we want to test the origin against the vertices of the
largest hypercube with a uniform prior based on the observations (1.1). The
problem is equivalent to the testing problem

Hy:y, ~ N(0,0%) o Hy:y, ~ 5[ N(1, ,0%) + N(-1, ,0?)],

(2.2)
i1=1,...,n

where I, =1, (2). The result of the testing problem can be summarized as
follows:

Lemma 1. Ifnl/%(l, /o)? — c (as o — 0), then the sum of type I and type
II errors of the best testing procedure for the problem (2.2) is

Vo so)
V8

(2.3) 20 )(1 +0(1)),

where ®(-) is the standard normal distribution function.
Choose the dimension of the hypercube n,, ; (if it exists) to be the smallest
integer satisfying
(24) r[1.(3)]° /02 < d,
where d is a positive constant. By Lemma 1, as ¢ — 0,

(25) min (E.d(y) + Ey(1 - é(y))} = 20(—d/V8)(1 + o(1)),

0<d(y)<1

where E, and E; mean take the expectation with respect to y distributed as
(1.1) with the prior x = 0 and the prior of x distributed uniformly on the
vertices of the hypercube, respectively. Let

(2.6) r, = 3| T(Hy) — T(Hp)| = 3|T(x,) - T(0)],
where x, = (1,(2),...,1,(3),0,0,...) is a vertex of the hypercube.
THEOREM 1. Suppose that T(x) is a coordinatewise symmetric function

and 0 € 3. If n,, ; defined by (2.4) exists, then for any estimator 5(y) based on
the observations (1.1),

d
Pilé(y) - T > >P|-—|(1+0(1
sup {8 - T(®) |21, ) ( 3 )( o(1))
and for any symmetric nondecreasing loss function L(| - |),

13(y) = T(2)|

Rg,d

supE,|L

x€3,

> L(1)q>(— %) +o(1).
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Proor. By (2.5) and (2.6), for any estimator §,

Sugl’x{w(y) - T(x)l2m,, }
xE

.

v

1
S{Po(18) ~ T2, ) + P|6() - T(=, )| 272, )}
1
2

(Po(l8(y) = T(0)| =7, ,) + Py(18(y) - T(O)| <1, _,)}

where P, and P; are the probability measures generated by y distributed
according to (1.1) with the prior x = 0 and the prior of x distributed uniformly
on the vertices of the hypercube, respectively. Now for any symmetric nonde-
creasing loss function

13(y) - T(x)l

ng,d

supE,

x€3

L

> L(1) sulz)Px(lé(y) -T(x)| 27, }.

The second conclusion follows.
In particular, under the assumptions of Theorem 1, we have for any

estimator
(2.7) supE,(8(y) — T(x))® > <1>(— -i_)r,? (1 + o(1)).
x€E \/8 ad

Thus, ®(—d/ V8 )r,fy , 1s a minimax lower bound under the quadratic loss. O
3. Truncation estimators. Let us start with the model (1.1) with a
hyperrectangular type of constraint (1.3). An intuitive class of quadratic

estimators to estimate the quadratic functional (1.2) is the class of estimators
defined by

(3.1) \ gp(y) =¥'By +¢,

where B is a symmetric matrix and c is a constant. Simple algebra shows that
the risk of ¢z(y) under the quadratic loss is

R(B,x) 2 E(q5(y) - Q(x))’
(8-2) ' 2 2 4 2 2,./R2
. = (#'Bx+o?trB+c¢— Q(x))" + 20" tr B> + 40%'B’x.

The following proposition tells us that the class of quadratic estimators with
diagonal matrices is a complete class among all estimators defined by (3.1).
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ProposITION 1. Let Dy be a diagonal matrix, whose diagonal elements are
those of B. Then for each symmetric matrix B,
maxR(B,x) > maxR(Dg, x),
D x€3

xE€3

where 3, is defined by (1.3).

Thus, it is enough to consider only quadratic estimators with diagonal
matrices. For a diagonal matrix B = diag(b, b,,...), the estimator (3.1) has
risk

o o o 2
R(B,x) = | Y bx?+ 02y b, +c— )} A;x?
(33) 1 . 1 .1
+ Y b¥(20* + 40%7).
1

Even for the diagonal matrices, it is hard to find the exactly optimal
quadratic estimator [see Sacks and Ylvisaker (1981)]. For an infinite-dimen-
sional estimation problem, usually bias is a major contributor to the risk of an
estimator. Thus, we would prefer to use the unique unbiased quadratic
estimator £7A,(y? — o?), but it might not converge in L? and even if it does
converge, it might contribute too much in its variance. Thus, we consider a
truncated quadratic estimator

(34) qr(y) = i:', Ai(yF - o)

and choose m to minimize its maximum MSE. Note that the naive truncated
estimator X "A; yf will not attain optimal rate of convergence, as it contributes
too much bias. For the estimator q;(y), the maximum MSE is

2

(3.5) ma;:R(qT,x) = (Z MAZ + ) )\3.(20-4 + 40-2A§).

xe m 1
The following theorem shows that the truncated quadratic estimator (3.4)
achieves a certain rate, which will be further justified to be optimal by
Theorem 3.

AssUMPTION A. Assume that when n is large, the following conditions
hold.

(i) nA?% is a strictly decreasing sequence, which goes to 0 as n — «, and A,
is a nondecreasing sequence. Moreover,

. A,y e A
lim su; < o, lim inf > ¢ for some ¢ > 0.
1Y

n—o n noe 4y NA,

(i) T51;A% = O(nA,A%) and if lim sup, ., n'°A% A% = o, then
LI AZ = O(n'®\% A2).
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THEOREM 2. Under Assumption A, the achievable rate (o — 0) of estimat-

ing Q(x) = LTA;x? under the quadratic loss with a hyperrectangular con-
straint (1.3) is

)

) Ng,d 2
(3.6) O((r2 + ( b )tj) Ai,,d
1
where n,, ; is the smallest integer such that

(3.7) Vn(A,/0)’ <d

for some d > 0. Moreover, the rate is achieved by the truncated estimator (3.4)
withm =n, 4.

When A; =j%and A; = Gj~% (@ > (¢ + 1)/2), the conditions of Theorem 2
are satisfied. In this case, the mean square error can be more precisely
evaluated. Let

(04/(2a = q = 1))/ Vgrine,
(3.8) m, = when (¢ + 1)/2 <a <q + 0.75,
Dg~4/4a=1), when a > g + 0.75,

which optimizes the truncated estimator (3.4), where D is a positive constant.
The maximum risk of the truncated estimator is given by

2g+1 —2Q2a—q-1)
2¢g Co

C“Rq+1)/(4a-1) +
2¢+1  (2a-q-1)°

+ D, ,jot-@Ea D/,

+1
(3.9) when S— <asq+0.75,

4C2Y j2a-2ag2 when a > q + 0.75,
1

where ¢y =Qa —q - 1)""Y“"D and D, =4X7j7'% if a=q +0.75
and = 0 otherwise. In summary:

CoroLLARY 1. Suppose that A; = j? and A; = Gj~%, (a > (q + 1)/2). Then
the best truncated estimator is given by (3.4) with m = m,. The asymptotic
maximum risk of the estimator is given by (3.9). Moreover, the estimator
achieves the optimal rate of convergence.

Note that the condition @ > (¢ + 1)/2 is a necessary condition to make the
quadratic function @(x) bounded on 3. As soon as the finiteness condition is
fulfilled, the functional can be estimated consistently. A similar remark applies
to the weighted [,-bodies discussed in the next section.
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When a > g + 0.75, the regular rate O(o?) is achieved by the best trun-
cated estimator and hence the difficulty of the full problem of estimating @(x)
can be captured by a one-dimensional subproblem. However, the situation
changes when a < q + 0.75. The difficulty of the hardest one-dimensional
subproblem cannot capture the difficulty of the full problem any more [com-
pare (6.3) with (3.9)]. Thus, we need to establish a larger lower bound for this
case by applying Theorem 1. By our method of construction, we need an

n, 4-dimensional subproblem, not just a one- -dimensional subproblem, in order
to capture the difficulty of the full problem for this case.

THEOREM 3. Suppose that nA% is a sequence decreasing to 0. Let 3 be
defined by (1.3) and n, ; be the smallest integer such that

Vn(A,/0) <d.

Then, for any estimator T(y), the maximum MSE of estimating Q(x) on 2. is
no smaller than

?(_—i@(%d)«j) A, (1+0(1)) aso—0.
1

Moreover, for any estimator T(y),
aupP{17() - @l = EEE e o o - L1+ 00
e e B e A

Combining Theorem 2 and 3, the rates given by (3.6) are optimal. When
A; = Cj~® and A; = j9, we can calculate the rate in Theorem 3 explicitly.

CorOLLARY 2. When A; = Cj™* and A; = j? for any estimator, the maxi-
mum risk under the quadratzc loss is no smaller than

-2 - - P
(3.10) (29 +2) C@Cg+1)/¢4 1)§a’q0.4 429 +1))/(4 1)(1 +0(1)),

where

by g= maxd2—(4q+2)/(4a—1)q>( — i )
@,

d>0 V8

In the following examples, we assume that the constraint is 3 = {x: |x;| <
Ci~).

ExaMPLE 1. Suppose that we want to estimate T'(f) = [Jf%(¢) dt from the
model (1.6). Let {¢;()} be a fixed orthonormal basis. Then T(f) = _lx
Thus, the optimal fruncated estimator is ¥ 7oA (y? — o), where m, is given
by (3.8) with ¢ = 0. Moreover, when a > 0. 75 the estimator is an asymptotlc
minimax estimator [see (6.4)]. For 0.5 < a < 0.75, the optimal rates are
achieved.
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ExamMPLE 2. Let orthonormal basis be {¢(?)}, where ¢, =1, ¢,; =
V2 cos 27jt and ¢, 1= V2 sin 27jt. We want to estimate

1 2 i
T(f) = [P dt = @m)* T j*(ad + 2800), k=1,
j=1
An estimator which achieves the optimal rate of convergence is
(2m)** LT ™o, j2*(y3; + y3;,1 — 20'%), where m,, is given by (3.8) with g = 2k.

Moreover, the estimators achieve the optimal rates given by

0(c?) if @ > 2k + 0.75,

(3.11)
O(o*~U@k+D)/Ga=D)  if b 4 05 <o < 2k + 0.75.

4. Extension to quadratically convex sets. In this section, we will
find the optimal rate of convergence for estimating the quadratic functional

(4.1) Q(x) =Y )‘jsz
1
under a geometric constraint
(4.2) 3, = {x: Y 8,1 < C},
1

called the weighted l,-body. We use the hypercube method to develop the
attainable rate of convergence. From these studies, we demonstrate that the
hypercubical subproblem captures the difficulty of the full problem with great
generality. We begin with making some assumptions. Note that all the follow-
ing assumptions are fulfilled by the sequence A; =j9, §; =" (q,r > 0).

AssumpTiOoN B. (i) The sequence {A,} is nonnegative and satisfies ):;‘)tﬁ- =
O(nA%); {8,} are positive nondecreasing sequences.

(ii) There exists a positive constant ¢ such that LA, > cna,, £18; > cné,,
6, >c¢cod, 1

(iii) The sequence 83/”n*/?~1 increases to infinity as n — .

AssumpTiON C. When p = 2, the following conditions are fulfilled.

() {A;/8;} is a nonincreasing sequence.

(i) max; _; _, Ai/aj =0(/nA%/s,), if X%/8, - .
When p > 2, the following conditions are fulfilled.

(') ToAR/(P=D5-2/(=2) = O(nAB/(P=D52/(P=D),

(i) © i»)@‘p/(p —2)§72/(P-2) = O(n(3p -4)/@(p- 2)))t2np/(p - 2)3; 2/(p- 2)), if
lim $up  n®P~9/2P)2 32/ = w,

THEOREM 4. Under Assumptions B and C, the optimal rate of convergence
for estimating Q(x) defined by (4.1) under the weighted l,-body (p = 2)
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constraint (4.2) is given by

0(0'2)’ if limSupn(3P‘4)/(2p)A2na;2/p < w,
(4.3) o
: n, A2 o%,  if imsupn®P=Y/@P)2 §5-2/P = oo,
o,d ng.d p 2.0,

n

Moreover, the truncated estimator L7194\ j(yj2 — 02) achieves the optimal rate
of convergence, where n, , is the largest integer such that

(4.4) 84/Ppt/p-lgt < g

for some positive constant d.

CoroLLARY 3. When A; =j? and §; =j', the optimal rate of estimating
Q(x) under the weighted l p-body constraznt 42)(p=2is

O(o?), ifr>0.75p—-1+pq,
(4.5) O( 8@ +D=p@+1D)/Ar+D=p))

ifp(g+1)/2-1<r<0.75p — 1+ pq.

Moreover, the truncated estimator ¥ 77j? (yj2 — 02) achieves the optimal rate of
convergence, where n, = [(d/o*)P/4*+4~P)] d is a positive constant.

REMARK 1. Geometrically, the weighted [,-body is quadratlcally convex
(convex in xJz) when p > 2 and is convex When 1 < p < 2 and is not convex
when 0 < p < 1 [Donoho, Liu and MacGibbon (1990)]. Our results in this
section show that for the special quadratically convex constraints, the difficulty
of estimating a quadratic functional is captured by a hypercubical subproblem.
As the hardest hyperrectangular subproblem is at least as difficult as a
hypercubical subproblem, the difficulty of estimating @(x) under a weighted
[ ,-body is further captured by the hardest hyperrectangular subproblem. More
general phenomena might be true: the difficulties of estimating quadratic
functionals under a quadratically convex constraint are captured by the hard-
est hyperrectangular subproblems (see Discussion for detail).

EXAMPLE 3 (Estimating integrated squared derivatives). Suppose that we

want to estimate T'(f) = [3[ f*)(¢)]® dt based on (1.6) under the nonparamet-
ric constraint that

-{ro: [lremasc).
0
Let the orthonormal basis {¢;(¢)} be defined by Example 2. Then

T(f) = 2m)* L j2* (23 + x3;11) + mexi.
j=1
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where 7, =1, if k=0, and 7, =0, if £+ 0, and x; is the jth Fourier
coefficient. Assume additionally that when %2 = 0, |x,| < B, a finite constant.
The nonparametric constraint 3 can be rewritten as an ellipsoid (weighted
l,-body) )

® C
S = {x: j2¢( 2. + x2.. ) < —— ).
{ J{:IJ ( 2j 2J+1) (277)2&}

By Corollary 3, the truncated estimator (2w)**L77j%*(y2, + y2,,, — 202) +
myf — o®) with

n, = [d~1/@a+Dg=4/Ga+ D], d>o0,
achieves the optimal rate of convergence given by

0(a?) if @ > 2k + 0.25,
(4.6)
glél@—k/@a+l)  ifok 4+ 0.25 > a > k.

5. Comparison with Ibragimov, Nemirovskii and Khas’minskii.
Our method of developing a lower bound is similar to that of Ibragimov,
Nemirovskii and Khas’minskii (1986). Their method is based on testing the
largest inner sphere instead of testing the vertices of a hypercube. Let us walk
through the main steps of Ibragimov, Nemirovskii and Khas’minskii’s method:
(i) inscribe the largest n-dimensional hypersphere S™ into the constraint 3;
(ii) test the origin against S" based on the observations (1.1); (iii) choose
dimension n (depending on o) such that no perfect testing procedure exists;
(iv) compute the difference of functional inf, . g. |T'(x) — T(0)| and use it as
the rate of a lower bound.

We expect that their method can only apply to spherically symmetric
functionals, as the values of the functionals remain the same on the sphere
(see Remark 3). Furthermore, it is not hard to argue that if the method of
Ibragimov, Nemirovskii and Khas’minskii (1986) gives an attainable lower
bound (sharp in rate) for some symmetric functionals under some geometric
constraints, our method does in the the same setting, and on the other hand,
even though the method of Ibragimov, Nemirovskii and Khas’minski (1986)
cannot give an attainable lower bound for some geometric constraints and for
some symmetric functionals, our method can. Therefore, it turns out that our
method has much broader applications not only in the shapes of geometric
constraints but also in the classes of symmetric functionals being estimated.

The key points of the argument can be highlighted as follows [see Fan
(1989b) for detail].

1. It is easier to inscribe a hypercube into a set 3 than a hypersphere. In
terms of geometric concepts, the inner length and inner radius satisfy
1,(3) = r(3)/ Vn, where r,(3) is the n-dimensional inner radius, namely,
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the supremum of the radii of all n-dimensional discs centered at 0 lying in
3 [see Ibragimov, Nemirovskii and Khas’minskii (1986) and Chentsov
(1980)].

2. Let C™ be the vertices of the largest inner hypercube of an n-dimensional
hypersphere S” centered at the origin. Under the model (1.1), testing the
S™ (with a uniform prior) against the origin is as difficult as testing C”"
(with a uniform prior) against the origin that is, the sum of type I and type
IT errors of the best testing procedures for both testing problems are
asymptotically the same.

3. The difference of functional values satisfies

inf |T(x) — T(0)| < inf |T(x) — T(0)|.
xeS" xeC™ .

Let us justify the previous claim by examples.

REMARK 2. Consider estimating the quadratic functional @(x) = L3j%7
with the hyperrectangular constraint 3 = {x € R™: |jx,| < Gj™°). It appears
that the hypersphere bound of Ibragimov, Nemirovskii and Khas’'minskii
(1986) would not give a lower bound of the same order as we are able to get via
hypercubes. The proof is simple. Assume that C = 1. By Corollary 6 of
Ibragimov, Nemirovskii and Khas’minskii (1986), the lower bound under the
quadratic loss is of order O(o*~%/“=*D) which is of lower order of (3.10)—the
lower bound developed by the hypercube method. It is clear that in the current
setting a hypercube is easier to inscribe into a hyperrectangular than a
hypersphere: 1,(3) > r,(2)/ Vn . Hence, a hypersphere’s method cannot give
an attainable lower rate.

ReEmARK 3. Using the method of Ibragimov, Nemirovskii and Khas’minskii
(1986) to develop the lower bound for the weighted I -body (A; =j%,8; =j"),
we find that the lower bound is of order O(o =167/ (4”31’)), which is the attain-
able rate only when p = 2 and ¢ = 0. When p = 2, the largest n-dimensional
inner hypercube lies in the largest n-dimensional hypersphere: [, (3,) =
r(35)/ Vn . The reason that the hypersphere method gives a too small lower
bound is that the functional @(x) = L7j%7 (g > 0) does not remain constant
when x is on an n-dimensional sphere. For the case the p > 2, even when
¢ = 0 (the functional is spherical symmetry), the hypersphere does not give an
attainable rate, due to the fact that the hypercube is easier to inscribe than a
hypersphere: 1,(3,) > r,(3,)/ Vn.

In summary, the hypercube method is strictly better than the hypersphere
approach and has the following advantages: (i) larger in difference of func-
tional values (broader application in terms of functionals being estimated, for
example, coordinatewise symmetric functionals), (ii) easier to inscribe (broader
application in terms of constraints, for example, hyperrectangles, weighted
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1,-bodies with p > 2). (iii) more applicable to a nonsymmetric constraint and
even to a nonsymmetric functionals [see Example 5 of Fan (1989b)].

6. Discussion. .

Possible applications.

1. We have demonstrated that for geometric constraints of hyperrectangles
and weighted [,-bodies (p > 2), the difficulties of estimating quadratic func-
tionals are captured by hypercubical subproblems. The notions inside can be
explained as follows. For hypercube-typed hyperrectangles (i.e., the lengths of
a hyperrectangle satisfy Assumption A), the difficulties of estimating quadratic
functionals are captured by hypercubical subproblems (Theorem 2). Now for
weighted [,-bodies (Theorem 4), the difficulties of the estimating quadratic
functionals are actually captured by rectangular subproblems, which happen
to be hypercube-typed. Thus, the difficulties of estimating quadratic function-
als under the weighted [,-body constraints (Theorem 4) are also captured by
the cubical subproblems. More general phenomena might be true: the diffi-
culties of estimating quadratic functionals under quadratically convex (convex
in x}) constraints 3 (see Remark 1) are captured by the hardest hyperrectan-
gular subproblems

min maxE,(4(y) - Q(x))’

<C maX{r;}iyl)l xgl(gg)Ex(q(y) - Q(x))*:0(7) € 2},

where O(7) is a hyperrectangle with the coordinates 7, g(y) is an estimator
based on our model (1.1) and C is a finite constant. For estimating linear
functionals, the previous phenomenon is true [Donoho, Liu and MacGibbon
(1990)].

2. A useful geometric concept is the Kolmogorov rn-width of a set 3,
denoted by d,(2), which has a strong tie with the achievability. Recall that the
inner length [,(3) was related with a lower bound by Theorem 1. A referee
observed the interesting phenomena: For the interesting examples under our
consideration, the two geometric measures satisfy i

(6.1) d,(2) =Vnl,(3),

where 3 is either a hyperrectangular {x: |x;| < Cj~°} or a weighted [,-body
{x: £3j7Ix;I” < C}. This suggests that for a certain class of functionals, if the
geometric constraint satisfies (6.1), the hypercube method would give an
attainable lower bound.

Constants. By using the hardest one-dimensional trick, we can prove the
following lower bound [see Fan (1989a) for details].
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THEOREM 5. If 3 is a symmetric, convex set containing the origin, then the
minimax risk of estimating Q(x) from the observations (1.1) is at least

2 4
(62) sup %07 (22,1
xes  lxll

and as o — 0, for any estimator 5(y).

4 2
(6.3) supE,(8(y) - Q(x))*> sup {i(Tx)—}az(l +0(1)),
x€3, x€3,|lxll>0 ”x”
where p(7,1) = inf sup E,(8(z) — 6%)? and z ~ N(6, 1).

lol<r
It is proved by Fan (1989a) that p(r,1) = 47%(1 + o(1)) (as 7 — «) by using
a Bayesian approach with a sequence of prior densities given by
(2m + 1)6%™
(6.4) gn(0,7) = — it limisn

Comparing the lower bound (6.3) with the upper bound (3.9) for estimating
ETj"ng with a hyperrectangular constraint {x € R” |x;| < Gj~“}, we have that
when a > q + 0.75,

lower bound cz. _,

(6.5) , aso—0,

= =

upper bound — C,,C,,_,,
where C, = ¥£7j " can be calculated numerically. Table 1 shows results of the
right-hand side in (6.5).

From Table 1, we know that the best truncated estimator is very efficient,
when « is a little bit away form ¢q. Thus, the difficulty of the hardest
one-dimensional subproblem captures the difficulty of the full problem pretty
well in the case a > q + 0.75.

TABLE 1
Comparison of the lower bound and upper bound (a > q + 0.75) a = 1 + g + 0.5¢

q i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=19 i=8

\

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0.910 0.976 0.991 0.996 0.998 0.999 1.000 1.000 1.000
1.0 0.812 0.940 0.977 0.990 0.995 0.998 0.999 0.999 1.000
1.5 0.744 0.910 0.963 0.984 0.992 0.996 0.998 0.999 0.999
2.0 0.700 0.887 0.952 0.979 0.990 0.995 0.998 0.999 0.999
2.5 0.671 0.871 0.944 0.975 0.988 0.995 0.997 0.998 0.999
3.0 0.651 0.859 0.938 0.972 0.987 0.994 0.997 0.998 0.999
% 3.5 0.638 0.851 0.934 0.970 0.986 0.993 0.996 0.998 0.999
4.0 0.629 0.845 0.931 0.968 0.985 0.993 0.996 0.998 0.999
4.5 0.622 0.842 0.929 0.967 0.984 0.992 0.996 0.998 0.999
5.0 0.618 0.839 0.928 0.966 0.984 0.992 0.996 0.998 0.999
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TABLE 2
Comparison of the lower bound and the upper bound (g + 1)/2 < a < q + 0.75)

q=0 q9=1 q=2 q9=3 q=4

« ratio a ratio @ ratio « ratio « ratio

0.55  0.0333 1.15 0.0456 1.75 0.0485 2.35 0.0495 2.95 0.0499
0.60  0.0652 1.30 0.0836  2.00 0.0864  2.70 0.0864 3.40  0.0858
0.65 0.0949 1.45 0.1159  2.25 0.1170  3.05  0.1153 3.85 0.1132
0.70  0.1218 1.60 0.1431 2.50 0.1419  3.40 0.1383  4.30 0.1345

. hypercube lower bound
ratio =
upper bound by g7 (y)

When (¢ + 1)/2 < @ < q + 0.75, by comparing the lower bound (3.10) and
the upper bound (3.9), again we show that the best truncated estimator attains
the optimal rate. Table 2 shows how close the lower bound and the upper
bound are.

Table 2 tells us that there is a large discrepancy at the level of constants
between the upper and lower bounds for the case that (¢ + 1)/2 <a <q +
0.75.

Bayesian approach. The following discussion will focus on estimating the
quadratic functional Q(x) = L7j%; with the constraint x € 3 = {x: |x;| <
J™

The traditional method of finding a minimax lower bound is using Bayesian
method with an intuitive prior. However, in the current setting, all intuitive
Bayesian methods fail to give an attainable (sharp in rate) lower bound [see
Fan (1989b) for a proof]l. Thus, finding an optimal rate of estimating a
quadratic functional is a nontrivial job. Here, by an intuitive prior, we mean
that it assigns the prior to each coordinate x; ~ 7;(6) independently.

The structure of our hypercube method suggests that it may be possible to
improve the constant factor of the lower bound via a Bayesian method: take
the largest n-dimensional hypercube in 3 and then assign the prior 7(6) on a
diagonal line segment starting from the origin to a vertex of the hypercube,
with probability 27" to each diagonal line segment. Then, the minimax lower
bound of estimating a functional 7 A;x? is bounded from below by

n 2
(Z AJ.) o?B_(A,/a,n),
1

where B,_(, n) is the Bayes risk of estimating 62 based on » i.i.d. observations
from 0.5N(6,1) + 0.5N(—6, 1) with a prior 7(8) concentrated on 8| < 7, [see
Section 2.5 of Fan (1989a) for detail]l. We suggest to take a sequence of prior
(0) given by (6.4).
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7. Proofs.

Proor oF LEMMA 1. Without loss of generality, assume that o = 1, and
write n, as n. Then the likelihoad ratio of the joint densities under H, and
H, is

(71) Ln = l_ILn,i’
1
where
L, ;= exp(—12/2)[exp(l,y;) + exp(—1,:)] /2.
Denote ¢, ; =log L, ;. Then

12 12y iyt

— e 6
¢n,i - 2 9 12 + Op(ln)

Consequently,
2 _ 1)12/9 — I4(yt —
log L, + nlt/4 Zl (67 - V)i%/2 - (i - 3)/12]
yn/212 Jn/212
By invoking the central limit theorem for the i.i.d. case, we conclude that
logL, +nl;/4
yn/212

under H,. Note that under H;,

log L, — ni /4 213 [(v2 - 1-12)/2 - 13(y! — Ey})/12] — nii(2 +12)

yn/212 B Vn/2
+0,(Vnly).

+0,(Vnli}).

- N(0,1)

Now under H;,
nE(|ly?-1- l,%l/ﬁ)“ =0(n"') and nE(|yf - Ey;‘|/\/ﬁ_)4 =0(nY).

Hence, the L&apounov’s condition holds for the triangular arrays. By triangu-
lar array central limit theorem, under H,,

log L, — nlt/4
Vn/21;

Consequently, the sum of type I and type II errors of the best testing
procedure is

-, N(0,1).

Vni2
PHO[Ln>1]+PHl[Lnsl]=2<I>(— 5 )(1+o(1)). O
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Proor oF ProposITION 1. For any subset S c {1,2, - -}, let prior u5 be
the probability measure of independently assigning x; +A with probablhty
1 each, for j € S and assigning probability 1 to the point x =0for j&S.
Then by Jensen’s inequality and (3.2),

maxR(B, x) > max{(E#s(x'Bx) +02trB +c — E,s[Q(x)])’
+20 tr B? + 40°E,s(¥ B') ),

where tr A is the trace of a matrix A. Let D, = E#s(xx’), which is a diagonal
matrix. Simple calculation shows that
E s(x'Bx) = tr(BD,) = tr(DgD,),
E,s(x'B%) = tr(B?D,) > tr(D3D,),
tr B2 = tr B'B > tr D}.
Thus by {7.2) and the last three displays,
maxR(B,x) > maxE sR(Dpg,x) = maxR(DB,x)

xE€3,

The last equality holds because 3. 3) is convex in x and consequently attains
its maximum at either x =0or x = A2

Proor oF THEOREM 2. We will prove that the estimator (3.4) with m = n,, 4
achieves the rate given by (3.6).

Note that n, increases to infinity as o decreases to 0. By the assumptions,
the right-hand side of (3.5) is

(7.3) o((f Aj) (A‘fn+a4/m)) + 402Y 2 AL,
1 1

Taking m = n,, 4, by (3.7) we have
ot/(ngq—1) <A, _1/d*=0(A3).

Thus for m = n, 4, (7.3) becomes

(7.4) 0((%31.) A
1

na,d
+ 402, A%Af-.
1

Case 1. Iflimsup,_¢n, 4A% o2 <, then by (3.7) and Assumption A(i),

n,, 2
(Zd)\j) A% ,=0(n, 4% o) =0(c?).
1

To prove (3.6), we need only to show that L322 A% <
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Note that lim sup, _, , n d)tn dO' < « implies that there exist constants o,
and D (fixed) such that

7.5 nl%2 A2 <D, wheno <o,.
o *nftn, 0

By Assumption A(i), it can be shown that as o decreases from o, to 0, n, ,
should increase from n, , to « consecutively. Thus (7.5) implies that Af A% <
Dj~'% when j>n, Consequently, (7.4) is of order O(c?2). By Theorem 5,
the rate is the optlmal

2

Case 2. If limsup,_on, 4A% ,0° =, then limsup,_.n"%% A% ==

Thus, by Assumption A(ii)

2En”d/\2 2 mzn"dA2A2
lim sup —————— < O(1) limsup 2 5 < oo,
go® (En dA . ) A4 oo ng, dA An,,'d

Hence, (7.4) is bounded by its first term. Consequently, the truncated estima-
tor (3.4) with m = n, , achieves the rate given by (3.6), which will be further
justified to be optimal by Theorem 3. O

Proor orF THEOREM 3. Note that {A,} is a decreasing sequence and
1,(3)=A,. The r, defined by (2.6) is A2Y7A;/2. Thus, by Theorem 1 [see
2.7),

supE,(5() ~ T(x)* = (#(-d/¥8) + o), [ £ /4. o

Proor oF THEOREM 4. First we prove the truncated estimator (3.4) achieves
the rate given by (4.3). We treat the case p = 2 and p > 2 separately. When
p = 2, maximum risk of the truncated estimator (3.4) is

m
(7.6) maxR(qr,x) < C%(1,,/8,,)° +2% 20 + 4Co? max A2/3;.
XE3,y 1 l<j<m

Take m = n, 4. Note that as ¢ - 0, n, ;, = ». By (4.4) and Assumption B(ii),
there exists a constant o, such that when o < oy,

(7.7) 62 >co2 > —jc—
Ro,at (ng q+ 1ot

By (1.7,
( ng d/8 ad) <0( " 404)'
Consequently, by (7.6) and Assumption B(i), we have

(18)  maxR(ar ) = O(ng,akl, 0 )+0(02 max )@/5)

l<j<n,,
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Case 1. If limsup,_,nA%/82 < o, then the sequence {\2/6,} stays
bounded and by (4.4) and (7.8),

maxR(qp,x) = O(co?).
xez24
Hence, the rate O(o?) is the attainable one.

Case 2. If limsup, . nA%/82 = «, then % =o(n, 4A% o*). If the se-
quence {A2 /6,} stays bounded, then (7.8) is of order O(na)«znaa“). Otherwise,
by Assumption C(ii) and (7.7),
max,_;_, A2/§; 1
lim sup 25/ 2080 21/ 2 < 0(1) limsup ——— < .

o—0 na’dAna'dU' o0 na,dﬁna,da

Thus, we conclude that the truncated estimator q;(y) achieves the rate
no,’ dAznmdU"t.
Now, let us consider the case p > 2. The maximum risk of the truncated

estimator is given by
oo 2 m
Y ijf + max Y, Xj(Za‘“ + 40'2xj2).
m x€%,

Let ¢ = p/(p — 2) be the conjugate number of p /2. Then by Hélder’s inequal-
ity, we have for any x € 3,

© © 1/q ©
Y A< (Z ()‘j“;j*z/p)q) (Z 5j|xj|p)

m m

max R(qy,x) < max
xE2p x€3,

2/p

(7.9) )(p—Z)/p

©
< C2/p( Z Af/(p—2)5j—2/(p—2)
m

Similarly, we have
i m (»-2/p
(7.10) 21 )tisz < Cz/p(zl A‘2ip/(p—2)5j—2/(p—2))
By (7.9) and (7.10),
Ll 2(p—2)/p
R(qp, x) < C¥P| Y AB/(P=D5-2/(p=2)
alcg%f (qr, %) (% J j
= m (p-2)/p
2 4 22 2 -2)s—-2/(p—2
+ 221 Xio® + 40°C /P(ZlAjP/(p s /P ))
(7.11)
= 0(/\2”,5;,4/pm2(1’_2)/1’ + mA2mo,4

m (p—-2)/p
+0.2( Yy Ai,p/(p—2)5j—2p/(p—2)) )’
1
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by Assumption C(i’) and Assumption B(i). Now, by taking m = n, ; and using
the fact that [see (4.4)]

(7.12) A C el

(7.11) is of order

Ngq (p-2)/p
(1.13) o(na,mv,ﬁ o[ £ apr-ni o) )
1

Cast 1. Iflimsup,_,, n®P~4/@P)2§-2/P > o then it is easy to show that
N2P/(P=D§-2/(P=2) = Q(n=GP-V/AP=D) = o(n~15).
Consequently,
Z A2np/(p—2)5;2/(p—2) < o
1

and (7.13) is of order O(a2).

Cask 2. Iflimsup, ., nGP~9/@P)2 §-2/P = o then by Assumption C(ii’)
Ng.a (p-2)/p
2p/(p-2)5—2/(p—2 2 §-2/p,(3p—4)/@p)) — 2 2
Y ,\jp/(p )5j /(p—2) < O()‘n,‘sna /P pBp=4/( p)) = O(na)‘n,,"' )
1

Hence, (7.13) is of order O(n,22 o*). The truncated estimator achieves the
rate given by (4.3).

Now, let us show that the rate of convergence is the optimal one. Note that
the n-dimensional inner length {,(3,) = (C/X}8;)"/?. For the n,, , defined by
(4.4), we have

2
\/—n:(lna,d(zp)/o) <D,
where D > 0. Thus, by Theorem 1 for any estimator 7T'(y),
sup E,(T(y) — Q(x))* = ®(~D/V8)r?
x€E€3,

a,d’
where
Ne,d 2
rna,d - Zl /\j(lna',d(zp)) /2 za nardAna,da-z
and a > 0. Thus, the conclusion follows. O
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