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BAHADUR REPRESENTATIONS FOR UNIFORM RESAMPLING
AND IMPORTANCE RESAMPLING, WITH APPLICATIONS
TO ASYMPTOTIC RELATIVE EFFICIENCY

By PETER HALL

Australian National University

We derive Bahadur-type representations for quantile estimates ob-
tained from two different types of nonparametric bootstrap resampling—the
commonly used uniform resampling method, where each sample value is
drawn with the same probability, and importance resampling, where dif-
ferent sample values are assigned different resampling weights. These
results are applied to obtain the relative efficiency of uniform resampling
and importance resampling and to derive exact convergence rates, both
weakly and strongly, for either type of resampling.

1. Introduction. In problems involving confidence intervals and hypoth-
esis tests, attention is commonly focused on the distribution of the statistic
T =n'/ 25 546 — 9), where 8 is an estimator of an unknown parameter 6 and
n 102 estimates the variance of 6. Our aim in this paper is to describe
Bahadur-type representations ([1], [6], page 91ff) for bootstrap estimates of the
quantiles of 7', obtained from two different types of nonparametric bootstrap
resampling—the commonly used uniform resampling method, where each
sample value is drawn with the same probability; and importance resampling
(Johns [5]), where different sample values are assigned different resampling
weights. Our results lead to a concise and rigorous account of the efficiency of
uniform resampling relative to importance resampling.

Our main results are described in Sections 2.2 and 2.3, dealing with the
cases of uniform resampling and importance resampling respectively. Section 3
presents an outline of the proofs of the main theorems.

All our results are framed for the case of the percentile-t bootstrap. How-
ever, all the results have direct analogs for the ordinary percentile bootstrap.
In particular, the following properties are identical in percentile and per-
centile- cases: asymptotic variances, asymptotic efficiency of uniform and
importance resampling, optimal choice of the importance sampling parameter
and the order of magnitude of the difference between a bootstrap quantile
estimate based on B simulations and its counterpart based on an infinite
number of simulations.

2. Quantile estimation

2.1. Notation. Let X, X, X,,... be independent and identically dis-
tributed d-vectors with mean u, and assume that the quantity 6 which we

Received September 1988; revised June 1990.

AMS 1980 subject classifications. Primary 62G05; secondary 62G30.

Key words and phrases. Bahadur representation, bootstrap, efficiency, importance sampling,
quantile, strong approximation, uniform resampling.

1062

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz
The Annals of Statistics. RIK@J:Y
WWw.jstor.org



BAHADUR REPRESENTATIONS 1063

wish to estimate may be written as #(w), a smooth function of the mean. Let
X =n"'T,_,X, denote the mean of the n-sample 2'= {X,,..., X,)}, and take
6(X) as our estimate of 6(u). Denote components of vectors by superscripts,
and write 6,(x) = (9/3x%)8(x) for the first partial derivative of § with respect
to x‘. The asymptotic variance of n!/?(6(X) — ()} is given by

d d
=2 X 6(n)8(n)o,
i=1j=1
where o/ = E{(X — u)Y(X — n)’}. To avoid trivialities, we assume that o2 > 0.
As our estimate of o2 we take

d d
2= Z Z Oi()_()oj(}_()&ija
i=1j=1
where 6 = n7'L, _ (X, - X)X, - X).

Note that we may write 6%/ = n~'L, _, X X] — X'X/, which is a function
of three univariate means. We shall assume that X, and so also the vectors
X,,, have been lengthened so that they include all the components needed to
compute &. In particular, X, must include those products X} Xj for which
6,(x)8,(x) is not identically 0. For example, in the case where 0(X) = X lisa
univariate sample mean, the variance estimate is 6% = n7!1¥ ,(X)? — (X1)2
Here X, should be taken as the 2-vector (X}, (X})?)T. Of course, this conven-
tion means that 6(X) is a nontrivial function of only some of the components
of X. The extra, adjoined components are present so that we may write
6 = y(X), for a smooth function y.

Let X,..., X, denote a resample drawn randomly, with replacement,
from the sample Z. Define X* = nTL X

Gi* = - 1ki (Xk _ X )i(Xk*—X*)j,
d

=1]1

The bootstrap method argues that the distribution of T = n'/26~"Y0(X) —
6(n)} may be approximated by the conditional distribution of T* =
n'/%6*~H6(X™*) — 6(X)}, given the sample. (If 6* = 0, we define T * to equal
an arbitrary fixed constant c.)
Write x| = {(x1)% + -+ +(x9)F1/2 for the usual Euclidean metric.

2.2. Quantile estimation by uniform bootstrap resampling. We shall need
the following regularity conditions:

First derivatives of 6 are bounded and Holder continu- -
ous in a neighborhood of u,

(2.2) E(X”) <o and limsup|E{exp(it”X)}| < 1.

|¢| >

(2.1)

The second part of (2.2) is Cramér’s condition; see [2], page 207. Condition
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(2.1) and the first part of (2.2) are sufficient to ensure that T' is asymptotically
normal N(O, 1).

Let 2, ={X},..., X%}, 1 < b < B, be independent resamples drawn ran-
domly, with replacement, from Z". Define

M=

(2.3) Xr=n"'Y X3, Gir=ntY (X5 -XF) (X4 - X,

k=1 k=1
d d B
(2.4) wi= ¥ gl (X)6;,( X)o7,
(2.5) T = n'/%6~ 1{ (X)) - 0()?)},

except that T,* is defined to equal an arbitrary fixed constant c, if &;* = 0.
Write G for the empiric distribution function of T, ..., Tg', and put

¢, = inf{x: P(T <x) = p},

(2.6) £, . = inf(x: P(T} <x|2) = p},

~

¢, p = inf{x: Gp(x) >p}, O0<p<l1

For each fixed n, §p 5 — &£, . as B - o, with probability 1 conditional on Z".
Our next result presents more detail about this last relation, as B,n — ®
together. Let ® denote the univariate standard normal distribution functlon
put ¢ = ®’, and write z, for the solution of ®(z,) =p

THEOREM 2.1. Assume conditions (2.1) and (2.2), and that n° < B =
B(n) < n* for come fixed 0 <& <A <, Let 0 <p < 1. Then

jod fod _ p - GB(gp,oo)
(2'7) gp,B - fp,oo - (P(Zp) + 6n + An’

where 8, = 0, A, = O{(B~! log B)*/*} with probability 1.

Both 8, and A, are random variables. Formula (2.7) is of use in establish-
ing convergence propertles for the sequence §p’ B f ‘.« 1 > 1. For example, it
is easily proved that if n — © and B.— » then

P[BY*{(G4(£,..) - p) < (p(1 - p))*x|2| > O(x)

with probability 1, for —« <x < . Therefore, assuming the conditions of
Theorem 2.1, §p B § . is asymptotically normally distributed with zero
mean and variance p(l — p)/Be(z,)?, both conditional on 2" and uncondi-
tionally.

It is readily proved via Bernstein’s inequality and the Borel-Cantelli lemma
that Gy(€,.) — p = O{(B~!log B)'/?} with probability 1. Therefore by (2.7),
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under the conditions of Theorem 2.1,
€5~ &= O{(B 'log B)"*)

with probability 1. Furthermore, if all simulations are carried out totally
independently of one another, and if B ~ const n°, then it follows from (2.7)
that with probability 1, +(B/log B¢, 5 — ¢ ) has limsup equal to
{2a7'p(1 — P2/ 0(2,).

2.3. Quantile estimation by importance bootstrap resampling. We follow
the prescription given by Johns [5], and refer the reader to that paper for a
general discussion of importance sampling. Our description is confined to the
mechanics of importance resampling.

Define q; = n~ ' exp(—3§,), 1 < i < n, where

d .
(2.8) 8, =An~1V2%"1 Y 9(X) (X, - X)' +n7'C,
j=1

A is a fixed real number and C is chosen so that ¥ .,q;, = 1. [The latter
constraint entails C = ;A% + O(n~'/2) with probability 1 as n — ».] Johns’ [5]
constant a is identical to our —A. As we shall see, the optimal value of A is
positive.

In a change of notation from Section 2.4, let 2;* = {X,},..., X;"}, 1 <b <
B, denote independent resamples drawn by resampling from 2" in a manner
which gives mean weight ¢, to sample value X;:

P(X} = X,

Define X", 6;7*, *2 and T,* as in (2.6)-(2.8). Let N,; denote the number of
times X, appears in 2%, and put

Q”)=qi.

Va(x) =B ) exp(ZNbi6i)7
b: Ty <x i

£, 5 =V5'(p) = inf{x: V(%) > p}.

Then fp, g is the importance resampling estimate of ép,m.

Consistency of ¢, g for ¢, . is almost trivial to prove. To appreciate the
argument, assume all the X,’s are distinct, define Ly ---» Ziny to be the
N = (2"n‘ 1) different resamples (ordered so that the corresponding values ¢

of T satisfy ¢,y < -+ <{,), write M;; for the number of times X; appears
in Z{;, and put
;= [In ™, == n(n_le_ﬁ) -

() ()

(the probabilities associated with ¢ i, under uniform resampling, importance
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resampling respectively). Then V; — V as B — «, where
Vix)= ¥ exp(z Mﬁﬁi) - ¥ m=G(x).
j:t(j)sx i Jitysx

Therefore fp’ s— G Xp) = fp,m. We have proved the following theorem.

THEOREM 2.2. Assume that the distribution of X has no atoms. Then as
B — o, and conditional on &, &, p = &, . with probability 1.

The definition of importance resampling which we have given is an “exact”
version of an elegant ‘‘approximate’ formulation which is suggested by the
discussion in Johns [5]. In our context, the latter definition may be described

as follows. Put
J

Sy = /%1 Y 0,(X)( Xy - X),
J

and let F; and G be the empiric distribution functions of S,..., S5 and
T*, ..., Ty, respectively. For distribution functions K, define

Wi(x) = [ exp(Ay + C) dK(y),
where A and C are as in (2.8). Let
Wil(p) = inf{x: Wg(x) = p},  Gz'(p) = inf{x: Gz(x) > p},

£, 5= G3'[Fa{Wr (p)}]-
Then fp’ p is an approximate form of fp’ 5. It converges to G~ F{W; '(p)}] as
B — «; this does not necessarily egual ép,m.

Our next theorem describes ¢, p — ¢, and &, g — 1, . Where 7, , =
Wz Y(p).

THEOREM 2.3. Assume conditions (2.1) and (2.2), and that n° < B =
B(n) < n* for some fixed 0 <e <A <o, Let 0<p<1land —» <A <o,
Then we have

(i) “exact’” importance resampling:

A s _ P~ VB(ép,m)

(2.9) §p. B~ €po + A

e(z,) + 8, b
(ii) “approximate” importance resampling:

g oA _ FB(ﬁp,m) - GB(ﬁp,w)
p.B " Mp, o(z, + A) + 5,

(2.10) R
p - WFB(np,oo)
— = +A,,,
(p(Zp) + 6n2



BAHADUR REPRESENTATIONS 1067
where §,,8,1,8,, > 0 and A,;,A,, = O{(B~!log B)*/*} with probability 1.
The first term on the right-hand szde of (2.10) is negligible relative to the
second, since B'/*{Fyp(4, ..) — Gp(#, )} = 0 in probability and (B /log B)*/? -
{Fg(fi,,) — Gp(f, )} = 0 with probability 1, as n — .

Conditional on 2, Vy(£ ) and Wg(7, ) are sums of independent and
identically distributed random variables. By making use of this fact, we may
employ formulas (2.9) and (2.10) much the same way that we did (2.7), this
time to establish convergence properties of §, p §p « For example, it may be
proved from the Lindeberg-Feller theorem that if » - © and B — «,

P[BY2(Vy(£,.) ~ b} < (A, p)x| 2| > @(x)

with probability 1, for — < x < «, where 7(A, p)2 = sA2®(z — A) — p% From
this fact and Theorem 2.3 we see that f B . w18 asymptotlca.lly normally
distributed with zero mean and variance (A, p)? /Be(z,)?, both conditional
on £ and unconditionally.

Suppose §p - = §p » Wwith probability 1. In Section 2.2 we showed that
§p B § has asymptotic variance p(1 — p)/Be(z,)?, and we have just seen
that f f has asymptotic variance 7(A, p)? /Be(z, )2. Therefore the

efﬁc1ency of fp,B relative to fp,B is p(A, p) = 7(A, p)?/p(1 — p). The mini-
mum of 7(A, p), and hence the minimum of p(A, p), occurs when A=A,
satisfies the equation 2®(z, — A) — A"%o(z, — A) = 0. It is readily shown
that this equation has exactly one solution. Table 1 lists values of A, and
p(A p, p) for different values of p. Now, p(A,, p) is increasing in p. For p > 4y
maximum efficiency in estimation of ¢, is obtained by estimating the
(1 — p)th quantile of the distribution of — T * conditional on &

Using (2.10), we may prove that, under the conditions of Theorem 2.3,
.fp B f »=O((B~'log B)'/?, and that if the simulations are conducted
totally 1ndependently of one another, with B ~ const n*, then the lim sup of
+(B/log B)l/z(fp s — &,..) equals (2/0’)1/27'(A p)/qo(zp) with probability 1.

TasBLE 1
Values of A, p(A,, p) for selected p

p A, p(A,, p)
0.005 2.6561 0.0145
0.01 2.5074 0.0263
0.025 2.1787 0.0569
0.05 1.8940 0.1002
0.1 1.5751 0.1732
0.5 0.6120 0.5722
0.9 0.1150 0.8889
0.95 0.0602 0.9348
0.975 0.0320 0.9617
0.99 0.0139 0.9813

0.995 0.0074 0.9892
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3. Proofs. We confine ourselves to an outline of the proof of (2.10), which
is the more difficult to prove of results (2.7), (2.9) and (2.10). A key is to
smooth the distributions of S* and T'*, to eradicate their discreteness. Let ¢,
b > 1, be independent standard normal variables, independent of everything
defined so far. Let ¢ > 100 be a fixed constant, chosen so large that n¢ >
B(n)' for all n. Replace X, by X2 = X, + n~°, at each place it appears in
the formulas for S, and T,". Let S{ and T} denote the resulting new versions
of S, and T;; we shall use the superscript ° throughout to denote this
smoothing operation. Write P’, E' and Var' for probability, expectation and
variance, respectively, conditional on &Z".

Let S° and T° denote generic versions of Sy and T} ; write Fg and G§ for
empiric distribution functions of S¢,...,S3 and T7,...,T§; and put F° =
E'(FQ) and G° = E'(G}), the distribution functions of S° and T° conditional
on & Define f° =F“ and g° = G?, the conditional densities of S° and T°.

Our proof is largely by a sequence of lemmas.

LemMA 3.1. Under the conditions of Theorem 2.3, and for each ¢ > 0,
sup {|Fo(x) — e(x + A)|+|f(x) — ¢'(x + A)|

—oo<x <o
+]g°(x) —e(x + A)| +]g%(x) —¢'(x + A)[} - 0
with probability 1.

Proor. Define
i=E(Xy;)=n"1Y X exp(-5,),
i=1

$= Var/(X:i) =n 'Y (X, - a)X, - ﬁ)TeXP(_5i)’
i=1
M = (M*) where
W= A5 0(R)et, Si=n1 Y (X, - X)X - %)
Jj=1 i=1

Since 8, = An~'/2671L ;6,(XX X, — X)/ + n"'C, where C is chosen so that
Y exp(—3§,) = n, then c= 1A2 + 0(1),

(3.1) f=X+n"12M+o(n"7?), $=3+0(1).

Therefore the vector U = n'/%(Xy — X) satisfies E'(U) = M + o(1) and
Var'(U) = $, + o(1). Write f for the density of U conditional on 2, and f,
for the normal density with mean M and variance 3. Arguing as in the first
part of Appendix 2 of [3], we see that it suffices to show that

(32) sup(1 + IxI*)| f(x) — fy(x)] > 0,
(3.3) sup(1 + |x[?)|(8/0x"){ (%) — fo(x)}| = 0, eachi.
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Observe that n'/%(X;* — X) has characteristic function, conditional on Z,
given by ¢(t) = e Sx(#)*, where x(¢) = n71L,J(t, X,, —Aé7!, X),
J(, x, A, 1) = exp{n ™ 2ult, x, A, w)}, u(t, x, A, pn)={Av(w) +it}T(x — p) and
v(w) is the d-vector whose jth element is 0 j( w). The characteristic function of
U, conditional on &, is ¥(t)exp(— sn~2°tTt). Hence by the inversion theorem
for characteristic functions,

(3.4) f(x) = (2m) ¢ jl;@de_ x(t)"exp(—3n~2tTt — it"x) dt.

Write x, for the characteristic function correspond to f,. Given a vector
y =&, ..., yDT of nonnegative integers satisfying £y’ < 2, define D” to be
the differential operator IT;(3,/9¢/ )”’. Results (3.2) and (3.3) will follow from
the inversion formulas for f and fo if

(3.5) fRd(l + |t|)|Dv{e—cX(t)nexp(—-;-n—zctrt) _ Xo(t)}|dt -0
with probability 1, for all such y’s. Note that (9/dx’) f(x) is obtained by
differentiating under the integral sign in (3.4); this is the reason for the term

(1 + |¢)) in (3.5). Result (3.5) may be proved by routine, although algebraically
complex, methods. O

Define 43 5 = Wig(p), 2. = Wik(p), €35 = G {F3(h2 )}, £5. =
Go-YFo(72 ).

LeEmMmA 3.2. Under the conditions of Theorem 2.3,
Ao ) - 1/2
|np,B - np,wl = 0{(3 ! lOgB) >
with probability 1 as n — o,

Define 1, = 4y g, L(n) = Wro(n), Lp(n) = Wgg(n) and D(n) = Ly(n) -
Lg(ny) — {L(n) — L(np}.

Lemma 3.3. Under the conditions of Theorem 2.3 and for each C; > 0,

sup D(n) = 0{(3—1 log 3)3/4}
In—m | <C(B~!log B)!/?

with probability 1 as n — .

Proor. Observe that

B
D(n) =B7! El U,(n)
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where
Uy(n) = ["exp(Ax + C)d{I(S} <x) — F*(x)},

and note that n; >z, as n > . If In; —2,| <C; and Iy —2,| < C, then
conditional on y, the random variables U,(n) are independent and identically
distributed with

|U(m | <Cs,  E{U(m)} =0, Var'{Uy(n)} < Cyn — .
Application of Bernstein’s inequality ([4], page 17) now gives
sup P{|D(n)| > Co(B~"log B)**}
In—m.l<C(B~!log B)/?
< 2exp(—C5C¢ log B),

for n sufficiently large.

Let 7n,n®,... be a sequence such that 7, — C, = n® <@ < --- <
n®B17D <o+ Cy < 9BV and n*Y — 9 = B! for i > 1. Then B, ~ 2C,B.
Given ¢ € (ny — Cy,m + Cy), let i, denote that integer between 1 and B,

such that 7D < ¢ < 9, It may be proved from Lemma 3.1 and Bernstein’s
inequality that

sup |D(n<if)) - D(§)| = O(B 'log B),
[€—2,l<Cy

sup |D(n®)| = O{(B‘1 log B)3/4}

i |n(‘)—n1|.<_C1(B"llog B)1/2

almost surely. The lemma follows from these two results. O

Take n; = 1, ., and fix C; > 0. By Lemma 3.1, L' and L" are uniformly
bounded on any finite set. Furthermore, 1, — z,. Hence

|L(n) = L(n) = (m — ) L'(m)| < An(n — my)®

uniformly in |y — n,| < C,, where A, > 0 denotes a random variable satisfy-
ing

limsup A, <

n—©

almost surely. Take n = 77 5. Then by Lemma 3.2,
_ 1/2
n —n, = O{(B'log B)"*},
and so by Lemma 3.3,
_ 3
L(n) = L(m) = Lg(n) = Lp(m) + O{(B ' log B)**}.
But Lg(n) = p + O(B™1), and L'(n,) is bounded away from 0 (by Lemma 3.1),
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SO
p — Lg(m)
nm—m= W
Define 1, = 9., & = €2, = Gy {F°(#3 L)},
Dy(n) = Fg(n) — Fg(ny) — {F°(n) — F°(ny)},
Dy(¢) = G3(¢) — Gi(&1) — {G°(¢) — G°(én}

Our next two lemmas may be proved much as was Lemma 3.3.

O{(B~*log B)3/4}

LEMMA 3.4. Under the conditions of Theorem 2.3 and for each C; > 0,

sup |Dy(n)| = O{(B~*log B)**},
Im—ml <Cy(B~log B)'/2
3
sup |Dy(£)| = O{(B " log B)™"},

|¢€—¢&1<C(B~!log B)!/2

with probability 1 as n — .
LEmMmA 3.5. Under the conditions of Theorem 2.3 and for each C; > 0,
[ o o 0 - 1/2
sup {|Fg(x) — Fo(x)| +|G3(x) — G°(x)|} = O{(B~*log B)"*}

x| <Cy

with probability 1 as n — .
Lemmas 3.1, 3.2, 3.4 and 3.5 may be combined to prove Lemma 3.6.
LEMMA 3.6. Under the conditions of Theorem 2.3,
F3(45,8) = F°(#,) = O{(B~"1og B)" "},

{p = Ls(#5,)} (.
L' (5,

(3.6) Fg(15,8) — F°(5,.) =

O{(B~'10g B)”"}
with probability 1 as n — .

Our next lemma is a straightforward consequence of Lemmas 3.1, 3.5 and
3.6.

LeEmMma 3.7. Under the conditions of Theorem 2.3,
20 1/2
0 p— £, = 0{(3 !log B) }
with probability 1 as n — .
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Define ¢, = G, {F(#2 )}, ¢ = £3 5. By Lemmas 3.1, and 3.4 and 3.7,
FB(np,B) - G§(§1)
8°(¢1)

From this result, (3.6) and the fact that L'(x) = exp(Ax + C)g°(x), we con-
clude that
Fo £o (T'p °°) GB( )
gp’ B gp’ B of fo
g(é.-)

D,®

£— ¢ = +0{(B™'1 B)3/4}

b - LB(ﬁ;,m)
2°(£;,)exp( A%S . + C)
with probability 1. Using Lemma 3.1 to 31mphfy the denominators on the

right-hand side and noting that §1‘; » and 17y ., both converge to z, with
probability 1, we conclude that

éo _é\o — Fg(ﬁ;,w _Gf}( A;,on)
pB o Sp o(z, + A) + 82,

+0{(B ' log B)*"}

p - LB(ﬁ;,w)
¢(zp) + 532
where 6%, = 0 and 62, — 0 with probability 1. This leads readily to (2.10). O

+ 0{(B~'1og B)*},
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