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EMPIRICAL LIKELIHOOD IS BARTLETT-CORRECTABLE!

By THoMas DiCiccio, PETER HALL AND JOSEPH RoMANO

Stanford University, Australian National University
and Stanford University

It is shown that, in a very general setting, the empirical likelihood
method for constructing confidence intervals is Bartlett-correctable. This
means that a simple adjustment for the expected value of log-likelihood
ratio reduces coverage error to an extremely low O(n~2), where n denotes
sample size. That fact makes empirical likelihood competitive with methods
such as the bootstrap which are not Bartlett-correctable and which usually
have coverage error of size n~!. Most importantly, our work demonstrates
a strong link between empirical likelihood and parametric likelihood, since
the Bartlett correction had previously only been available for parametric
likelihood. A general formula is given for the Bartlett correction, valid in a
very wide range of problems, including estimation of mean, variance,
covariance, correlation, skewness, kurtosis, mean ratio, mean difference,
variance ratio, etc. The efficacy of the correction is demonstrated in a
simulation study for the case of the mean.

1. Introduction. The method of empirical likelihood was introduced by
Owen (1988, 1990) as an alternative to the bootstrap for constructing confi-
dence regions in nonparametric problems. It is in the spirit of Efron (1981),
who showed that nonparametric inference can be conducted by applying
parametric techniques to suitable families of distributions supported on the
data. Empirical likelihood has some conceptual advantages over the bootstrap,
most noticeably in two dimensions, where it uses only the data to determine
the shape of a confidence region. However, one could be excused for thinking
of empirical likelihood as simply one of many bootstrap competitors. In this
paper we show that empirical likelihood has a major advantage over the
bootstrap and related techniques: It admits a Bartlett correction. Thus, a
simple empirical correction for the expected value of the empirical log-likeli-
hood ratio reduces coverage error to an impressively low O(n~2), where n is
sample size. This is achieved without forcing any constraints of symmetry on
the confidence region. Indeed, the Bartlett-corrected region enjoys all the
conceptual advantages of its noncorrected counterpart; for a discussion of
those advantages see Owen (1988, 1990). Furthermore, the bootstrap is not
Bartlett-correctable, and so the coverage accuracy of bootstrap methods cannot
be enhanced by a simple correction. Usually, the bootstrap can only be
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corrected by resorting to highly computer-intensive methods such as bootstrap
iteration.

As we show, Bartlett correction is available very generally for a wide range
of parameters, including means, variances, covariances, correlation coeffi-
cients, skewness, kurtosis, ratios of means, differences between means, ratios
of variances, etc. We demonstrate that the correction is applicable to all
parameters which admit the ‘“smooth function model,” introduced by
Bhattacharya and Ghosh (1978).

Various authors, including Barndorff-Nielsen and Cox (1984), Lawley (1956)
and McCullagh [(1987), page 212], have discussed Bartlett corrections for
parametric models, but this is the first time they have been considered in
purely nonparametric circumstances. Indeed, it is striking that they should be
available for empirical likelihood, and the fact they do exist demonstrates an
unexpectedly close relationship between parametric and nonparametric likeli-
hood. Thus, there is more to empirical likelihood than first meets the eye.

Nevertheless, it is not possible to obtain our results on Bartlett correction
from classical ones for parametric likelihood. Empirical likelihood requires the
fitting of n — 1 parameters to a data set of size n, and this setting is not even
countenanced by classical parametric statistical theory!

In Section 2 we briefly review the method of empirical likelihood and
describe our main results. Section 3 discusses a simulation study which
confirms the efficacy of Bartlett correction, and Section 4 outlines the deriva-
tion of the Bartlett correction.

2. Results.

2.1. Empirical likelihood and the smooth function model. We begin by
reviewing the method of empirical likelihood. Let X, ..., X, denote a sample
from an unknown r-variate distribution F, having mean u, and nonsingular
covariance matrix 3,. Let 0 = (0',...,09)T be a g-dimensional parameter
(¢ <r) that can be expressed as a function of the mean of the underlying
distribution, and put 6, = 8(u,). This is the smooth function model, intro-
duced by Bhattacharya and Ghosh (1978). The empirical likelihood function L
for this parameter is defined by considering distributions F,, p = (pl,...,p"),
supported on the sample, where X; is assigned mass p°. For a specified value
0, of the parameter of interest, the empirical likelihood L(6,) is defined to be
the maximum value of [1p* over all such distributions that satisfy 6(3 X, p’) =
0,. If no distribution F, satisfying the constraint exists, then by deﬁnltlon
L(6,) = 0. Since I1p® attalns its overall maximum when p* =n~! i =1,.
it follows that the empirical likelihood function is maximized at 6 = B(X )
where X = n~'3 X, is the sample mean. The empirical likelihood ratio statis-
tic is

W, = —2log{L(8,)/L(8)} = —2log{n"L(6,)}.

To appreciate the implications and extreme generality of the smooth func-
tion model in nonparametric inference, let us consider the case where 6 is the
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correlation coefficient of a bivariate random variable (X,Y). (Thus, ¢ = 1).
Now, 6 is a function of five means, E(X), E(Y), E(X?), E(Y?) and E(XY).
Therefore, applying the argument in the previous paragraph requires taking
g=1and r=5 (not r = 2). A problem involving a variance ratio requires
g =1 and r = 4 [since four means are involved, E(X), E(Y), E(X?) and
E(Y?2)]. A problem involving the bivariate pair (mean, standard deviation) for a
univariate population has ¢ = 2 and r = 2, and so on. The essential assump-
tion is that 6 be a smooth function of the mean u, having sufficiently many
derivatives in a neighborhood of u,. Usually the function has, in fact, an
infinite number of derivatives; this is the case in all the examples considered
previously, and in many other circumstances (ratios of means or variances,
skewness, etc.). '

2.2. Coverage accuracy. It follows from the argument which we shall give
in Section 4 that

P(W,<2) =P(x; <z) +O0(n™h),

and thus the error in coverage level of confidence regions obtained by using the
chi-squared approximation to the distribution of the empirical likelihood ratio
statistic is of order O(n~!). Empirical likelihood regions share this size of
error with most confidence regions constructed by bootstrap methods [Hall
(1988)]. However, unlike bootstrap methods, empirical likelihood admits a
Bartlett correction. That is,

(2.1) P|Wo{E(nR™R)/q) " < 2| = P(x2 <2) + O(n2),

where R is a g-dimensional vector, defined in Section 4, such that W, =
nRTR + Op(n_3/ %). The error in the coverage level of confidence regions
obtained using the Bartlett adjustment is of order O(n~2). These expansions
follow from the usual assumptions which guarantee the existence of certain
Edgeworth expansions, namely the existence of sufficiently many moments of
F,, that F, satisfies Cramér’s condition and that 6(-) is smooth.

The ratio {E(nRTR)/q} ! admits a simple expansion,

(2.2) (E(rRTR)/q) ' =1—-an"'+ O(n"?),

where a is a fixed constant. We shall give a general formula for a in Section
2.4. In practice, one may estimate a by replacing unknown population mo-
ments by their empirical counterparts. Replacing a by an estimate 4 and
ignoring the O(n~2) term in (2.2) does not upset the validity of (2.1):

P{Wy(1 - dn™') <z} =P(xZ<z) +O0(n?).

This is the Bartlett correction: a simple, empirical adjustment for the expected
value of log-likelihood ratio, reducing coverage error by an order of magnitude.

2.3. Why does the Bartlett correction work, and why is the bootstrap not
Bartlett-correctable? In general, statistics S which give rise to two-sided
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confidence intervals have distributions which admit Edgeworth expansions
whose terms decrease in powers of n~'. For example, if S = {n'/%(6 — 6,)/6),
where n 62 denotes an estimate of the variance of 6, then

(2.3) P(S<z)=P(x?<z)+n"'p(z"/?)(2m) *e™*/2 + O(n"?),

where p is an odd polynomial of degree 5. If the terms in p of degrees 3 and 5
vanish identically, so that p(uz) = cu for a constant ¢, then it is clear from
(2.3) that a simple adjustment for the expected value of S will remove the
term of order n~! from the right-hand side of (2.3):

P{S/(1-n"') <z} = P{-2"/%(1 — 3n"'c) < N(0,1) < z/3(1 — 3n"'c)}
+nlez/2(2m) %722 + O(n"2)
=P(x2<z)+0(n7?).

It is also clear that if either of the terms of degrees 3 and 5 in p does not
vanish, then the term of order n~! in (2.3) cannot be removed by a simple
adjustment of this form. That is precisely the reason why Bartlett correction is
available for empirical likelihood but not, in general, for the bootstrap: When
S = W,, the resulting polynomial p does not contain terms of degrees 3 or 5,
but such terms are usually present in other cases. [The reader is referred to
Hall (1988), where versions of p are given in the case of general bootstrap
problems. Those p’s involve terms of degree 3, although not necessarily of
degree 5.]

Our proof of the efficacy of Bartlett correction reduces, essentially, to a
demonstration that p contains no terms of orders 3 or 5 in the case S = W,
Exactly why this should be the case is not clear to us.

2.4. Formula for the Bartlett correction. We first treat the case where
3, = I, the identity. In the notation of Section 1, put

9*6'(n)
Jr T a#ljl . a#ljk

b
MH=Ho

(24) o =E(X{r - X{*), 0.
where X{ and u’ denote the jth elements of X, and u, respectively. Define
0 = (8)), a ¢ X r matrix, and let @ = (@07)"1, M = 67Q0O, N = 07Q,
J
tl — ajklamnoMijanlo, t2 — ajklamnoMjlemMno’
ty = adtmMIRMIm, t, = aMINI4GE (1 — M)™ (I - M)™,
ts = @00467,((1 — M)™* (I - M)'™ + 2(1 - M)’ (I - M)*™},

where repeated subscripts are summed over in the usual summation conven-
tion. Then the Bartlett correction a introduced in Section 2.2 is given by

(2.5) a=q '(5t; — 2ty + 3t3 — ty + its).
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In the case where X, # I, apply the preceding definitions to the function ¢
defined by

P(A) = 6(3F2A)

instead of to 6(A). Note that the derivative in (2.4) should now be evaluated at
30 Y 2ue, not at p,. Of course, @ is obtained from a on substituting estimates
for unknowns. :

2.5. Concluding remarks. It should be noted that an asymptotic expansion
for the expectation of W, does not exist. For example, suppose ¢ = 1 and the
functional of interest is the mean. Then, the likelihood ratio statistic W, is
infinity when the true mean 6, falls outside the range of the data. If F, is not
degenerate, this happens with positive probability, and so E(W,) = «. There-
fore, the problem of adjusting W, by a factor depending on its mean is a subtle
one. Nevertheless, (2.1) is true. The reason is that n~'W, can be approximated
in a distributional sense by R”R (to order n~%/2), and an adjustment deter-
mined by the mean of RTR is effective in improving the accuracy of a
chi-squared approximation.

3. The case of the mean. The case r = ¢ =1 is that of the mean,
6 = u = E(X). Here, formula (2.5) reduces to a = ju,u;2 — su3u; %, where
w;=E(X - n)’ denotes the jth central moment of the population. Our
estimate of a, based on a random sample X, ..., X, drawn from the distribu-
tion of X, is 4 = 3i,4;° — 30%45° where ;= n"!'3(X, — X)’. To assess
the improvement in coverage accuracy which results from these Bartlett
corrections, using either a or d, a modest simulation study was performed.
For various distributions, sample sizes and nominal coverage levels, 5000
simulated data sets were generated and two-sided confidence intervals were
constructed by using three different methods. The first method is the uncor-
rected empirical likelihood method which employs a simple chi-squared critical
value c;_,. The second method utilizes the theoretical Bartlett correction
1 - an~! and involves replacing the chi-squared critical value by c_ /1 —
an~1). This method, of course, assumes knowledge of the actual population
moments. The final method uses the estimated Bartlett correction.

Table 1 reports the results based on simulated standard normal data at
sample sizes 10 and 20. Table 2 reports the results for chi-squared data with
one degree of freedom for sample sizes of 20 and 40. Finally, Table 3 reports
the results for data sampled from the ¢-distribution with five degrees of
freedom, at sample sizes 15 and 30. The actual theoretical values of a for
these three situations are 3, 2 and 3.

Overall, the results are more than satisfactory. Even for normal data, the
uncorrected empirical likelihood intervals have coverage levels significantly
different from the nominal level. In fact, the observed coverage of empirical
likelihood is always below the nominal level. In all cases, the theoretical and
estimated Bartlett corrections substantially improve coverage accuracy. The
most difficult situation is the chi-squared distribution. In this case, the
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TABLE 1
Normal data

Nominal level

80% 90% 95% 99%
n = 10:
Empirical Likelihood 0.7470 0.8446 0.8964 0.9542
Theoretical Bartlett 0.7796 0.8706 0.9182 0.9650
Estimated Bartlett 0.7938 0.8802 0.9246 0.9696
n=20:
Empirical Likelihood 0.7834 0.8830 0.9342 0.9804
Theoretical Bartlett 0.8006 0.8962 0.9418 0.9844
Estimated Bartlett 0.8034 0.8980 0.9424 0.9848
TABLE 2
x% data
Nominal level
80% 90% 95% 99%
n = 20:
Empirical Likelihood 0.7314 0.8288 0.8878 0.9536
Theoretical Bartlett 0.7872 0.8772 0.9262 0.9706
Estimated Bartlett 0.7634 0.8546 0.9034 0.9616
n = 40:
Empirical Likelihood 0.7644 0.8680 0.9236 0.9740
Theoretical Bartlett 0.7910 0.8896 0.9418 0.9800
Estimated Bartlett 0.7804 0.8788 0.9334 0.9774
TABLE 3
t5 data
Nominal level
80% 90% 95% 99%
n = 15:
Empirical Likelihood 0.7516 ‘0.8502 0.9094 0.9692
Theoretical Bartlett 0.8266 0.9106 0.9544 0.9862
Estimated Bartlett 0.7898 0.8884 0.9348 0.9794
n = 30:
Empirical Likelihood 0.7768 0.8784 0.9308 0.9780
Theoretical Bartlett 0.8114 0.9042 0.9496 0.9866
Estimated Bartlett 0.7954 0.8928 0.9422 0.9832
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theoretical adjustment performs quite well; however, the estimated adjust-
ment is only a modest improvement over the unadjusted empirical likelihood
method. The difficulty in this case arises because the sample estimate of a is
quite skewed and biased, with the result being that the estimated correction
does not have as big an effect as the theoretical adjustment. The success of the
estimated Bartlett correction method is especially surprising in the z-distribu-
tion situation as it involves a sample estimate of the fourth moment of the
underlying population.

4. Derivation of formula (2.5). We give an outline of the argument,
referring the reader to the technical report of DiCiccio, Hall and Romano
(1988) for further details. It may be assumed without loss of generality that

=0 and 3, =1 Let W, denote the empirical log-likelihood ratio for the
mean (not for #). Then it may be shown that

=2}, log{l +t7(X; - #0)},
i=1

where ¢ = t(u,) is determined by the equation

n

Y {1+ £7(X - o)) (X — ) = 0.

i=1
Thence it may be proved that
n=iW, = AJAT — ATFATAR + 2o RATARAL + ATIARIATAR

(4.1) +ZATMAIARAL — 20 hmAIm A ARA!
+ ajknalm"AjAkAlAm _ %ajklmAjAkAlAm + Op(n—5/2)’
where A/17Jk = p~!¥ (X/1 -+ X/ — o/t /%) and the summation notation

convention is implicit in formulae such as (4.1). From this it may be shown,
after very extensive algebra, that n~'W, = R"R + O,(n~%/%), where R =
R, + R, + R, is a g-vector, and for O = @TQ1/2 pP= Q1/2 R, =0"u,,

R = 1OJuMklAjkAl + ajklOJuMklinAmAn

+3Pwoy (1 - M)’ (1 - M)*™ Alam,

RY = —07“N*6} (I — M)"(I — M)™° A*A"A° + 207u]imMEnATIAR AR
+307a/* M*" N6 (1 - M)""(I — M)°? A™APA?
+%OjuMklinAjklAmAn _ %OjuajkmanMkoMlpAznAoAp
_%OjuaklananoMlijonAp
+ 2O ugiknglmoprnoprkp L la pf mTAPATAT
_%OjuajklkaanoMmpAnAoAp
— 3P 0, N7wg¥ (I — M)* (I - M)™°(I — M)"" A'A°AP
— Pugy(I — M)’ (I — M)*™ MreAlA™rA°
+ Py (I — M) (I — M)*™ amro M P M°IA'APAY,
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From these formulae, and after very lengthy algebra, it may be proved that
the sth cumulant of nRTR [Johnson and Kotz (1970), page 153] is

Kk, = 2°"Y(s — 1)!q{E(nR"R) /q) + O(n=%/2).

Ignoring terms of order O(n~22), the sth cumulant of (nR”R) -
{E(nRTR)/q} ! is 2°~'(s — 1)!q, which is the sth cumulant of x2.

By the validity of Edgeworth expansions for n!/2R in this s1tuat10n and
since Wy = nR"R + 0,(n~% 2) it follows that

2 P[W,(E(rR"R)/q)"" <z| = P[(nR™R){E(nR"R) /q) " <]
. =P(x2<z)+0(n3?).

Moreover, by an argument based on the oddness and evenness of polynomials
in Edgeworth expansions that is given, for example, by Barndorff-Nielsen and
Hall (1988), the O(n~3/2%) term in (4.2) is actually O(n~2). Therefore,

P|W,{E(nR"R) /q) " < 2| = P(x% < 2) + O(n"?).
With ¢,,...,¢t; defined as in Section 2.4, and with
te = a/*'NJ gt (1 — M)™"M*,
we may prove that
E(R{R}) =n"lq,
E(R{R}) = n"%(5t; — 3tg + 3t, + 39) + O(n™%),
E(R{RY) =n%(33t, — 13ty + 5ty — t, + 5t — 5q) + O(n™3),
E(R3R3) = n_Z(_Etl + g5ty + 3tg + its — st — %Q) +0(n7?).
Hence,
E(nR"R) = nE(R“R%)
= n{E(R{RY) + 2E(RIRY)
+2E(R{R}%) + E(R4R%)} + O(n™2)
=q+n"Y (5t — 2ty + 3ty — t, + 5t5) + O(n72),
whence
{(E(nRTR)/q) " =1~ (qn) !(5t, — 2t, + ity — t, + 1t5) + O(n"2),

as had to be shown.
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