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Consider the problem of continuous invariant estimation of a distribu-
tion function with the weighted Cramér-von Mises loss. The minimaxity of

the empirical distribution function, which is also the best invariant estima-
tor, is proved for any sample size. This solves a long-standing conjecture.

1. Introduction. This paper presents results on the minimaxity of the
empirical distribution function, which is also the best invariant estimator of a
distribution function, for the finite sample size invariant decision problem,
involving the weighted Cramér-von Mises loss function. The formulation,
introduced by Aggarwal (1955), is as follows.

Let X,,...,X, be a sample of size n from an unknown continuous
distribution function F, which we assume, without loss of generality, to have
support on (0, 1). Let Y,..., Y, ., be the order statistics of 0, X;,..., X,,1,
and write

(1.1) Y=(Y,...,Y,).
The action space is given by
(1.2) A = {a(?): a(t) is a nondecreasing function from (0, 1) into [0, 1]};
the parameter space is given by
(1.3) ® = { F: F is a continuous distribution function
with support in (0, 1)};

and the loss function is

(1.4) L(F,a) = [(F(t) - a(t))"h(F(t)) dF(t),
where
(1.5) h(t) =t (1 -1)""
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936 Q. YU AND M. CHOW

The decision problem of estimating F' is invariant under monotone trans-
formations. The invariant estimators have the form

(1.6) d(Y,t) = _Zoujl(Yj <t<Y.,),
i=

where the u ;’s are constants and 1(E) is the indicator function of a set E. It
can be shown that d(Y,¢) is of constant risk. So the best invariant estimator,
denoted by d,, exists and has coefficients j/n, j =0,1,...,n. That is, the
best invariant estimator is the empirical distribution function (EDF) F(¢) [see
Aggarwal (1955)]. Also, it is asymptotically minimax [see Dvoretzky, Kiefer and
Wolfowitz (1956)] and is admissible if and only if the sample size n is 1 or 2
[see Yu (1989a, b, d)]. This also implies that F(¢) is minimax if n = 1 or 2.
Much study has been devoted to the theoretical properties of the best
invariant estimator under the above set up with a general h(¢) for the loss
function (1.4). The admissibility of the best invariant estimator was an inter-
esting open question [see, for example, Cohen and Kuo (1985)]. As is well
known, admissibility is a stronger result than minimaxity. When h(#) =1,
Brown (1988) proved that the best invariant estimator is inadmissible for all
sample sizes n > 1. When A(¢) = t*(1 — )?, a, B > —1, Yu (1988 and 1989a)
extended Brown’s result and proved the inadmissibility of the best invariant
estimator in the case a,B8 € (—1,0] for n > 1. Also, Yu (1989a) proved the

inadmissibility of the best invariant estimator in the case n > 2, « = —1 and
B=0or a=0and 8= —1. When n =1, Yu (1989b) showed that the best
invariant estimator is admissible if (1) a = —1and B> —1 or @ > —1 and

B = —1or (2) either a or g > 0.

Whether or not the empirical distribution function is minimax for n > 3
has been an outstanding open question [see, for example, Ferguson (1967),
page 197]. Yu (1989c) gave a proof of the minimaxity of the best invariant
estimators for n = 1 assuming a general A(¢) in the loss function (1.4). In this
paper, we prove that F(¢) is minimax for n > 3 and within the class of
estimators d(%, ¢t) satisfying the following condition:

(1.7) d(Z%,t) is nonincreasingin x,,i =1,...,n, where ¥ = (x,,...,%,).

The minimaxity of F actually holds without the previous condition. For ease
in understanding and for the sake of space, we present the proof that F(¢) is
minimax for n = 3 and under conditien (1.7) in detail in Section 2 and outline
the approach to generalize the proof to n > 3 and without the condition (1.7)
in Section 4. For details of the proof that F(¢) is minimax for n > 3 and under
the condition (1.7), see Yu and Chow (1988). For details of the proof that F(¢)
is minimax without the condition (1.7), see Yu (1988b).

A parallel problem is to consider the Kolmogorov—Smirnov loss function
L(F,a) = sup[{|F(t) — a(#)]}, which is also invariant under the above mono-
tone transformations. Friedman, Gelman and Phadia (1988) obtained the best
invariant estimator d, for sample sizes n > 1 and proved its uniqueness. Two
interesting open problems are whether d, is minimax or admissible.
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In Section 2, the lemmas and theorems needed to prove the minimaxity
result of F within the class of estimators satisfying (1.7) for n = 3 are stated.
Then the proof of Theorem 3 is given. The main idea of our approach to prove
the minimaxity result is as follows.

Given an estimator d and ¢ > 0, by the preliminary lemmas and theorems
in Section 2, one can find an invariant estimator d,; and a contin-
uous distribution function F such that |[R(F,d) — R(F,d,)| < 2e. So 2¢ +
R(F,d) > R(F,d,) > R(F,d). Then inf; supy R(F,d) = R(F,d,). Hence d,
is minimax.

In Section 3, the proofs of preliminary theorems and the construction of d,
and F previously mentioned are given. In Section 4, an outline of the approach
to establish the minimaxity result of F for n > 8 and without the condition
(1.7) is given.

2. Minimaxity results under condition (1.7). For convenience, we
write d = d(¢) = d(&,t) = d(Y, t). Without loss of generality, we assume that
all estimators we consider are functions of the order statistic Y [see (1.1)],
since they form an essentially complete class.

Given a distribution function F(¢), let dF denote the measure induced by F,
that is, dF{(a,b)} = F(b) — F(a); let (dF)* denote the product measure
dF X --- X dF with k factors, 2 = 2,3,... . Given a one-dimensional measur-
able set B, let B* denote the product set B X --- X B with & factors. We
denote Lebesgue measure by m. By a.e. m, we mean almost everywhere w.r.t.
Lebesgue measure. Note that according to our notation, given a measurable
set B in R*, m™Y € B} # m™{(X,,..., X,,) € B}. For example, when n = 3,
m3(Y,,Y,, Yy): Y, < 1< Yy} = 8Im3{(X,, X,, X3): X, < 3<X,}, where m* is
the product measure m X --- X m of k factors. We shall see that restricting
consideration to the following class of estimators suffices.

(2.1) Vv= <d: d(?,t) =0for¢ <Y, and d(?,t) =1lfort>Y, ae. m”“}.

Yu (1989d) proved the following lemma related to the set V.

LEMMA 1 [Yu (1989d)]. Suppose that n > 3. Under the loss function (1.4)
and (1.5), if an estimator d & V, then there is an F € O such that R(F,d) =
+ o0, ‘

In order to prove the minimaxity result in Theorem 3, we want to show that
for any estimator d satisfying (1.7), there is an F' € ® such that
(2.2) R(F,d) = R(F,d,).

Note that (2.2) holds for all d & V since d, is of constant risk and Lemma 1
shows that there is an F € ® such that R(F,d) = +«. From now on,
estimators we consider are limited to the class V.
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We first state the following theorem whose proof is in Section 3.

THEOREM 1. Suppose that n = 3,[a, bl € (0,1), d € Vand d satisfies (1.7).
For any integers N, k > 0, there are intervals I,..., I, and real numbers
u,v € [0,1] such that u < v and

@ I, =[a;b] i=0,...,k and a=ay<b;_;<a;<b;<b, j=
L.,k

G) 1d(Y,t) —ul < (@2/N) if Y,e Ui LI, t<Y, and t,Y, Y, €
U’,",L=jlm,j =1,...,k,

(ii)) 1d(Y,8) — vl < @/N)if Y, Yy € Uf LD, ¢t <Ysandt,Yye Uk I,
j=1,... k.

Note that d(¥,t) = 0 for ¢ < Y, and d¥,t) =1 for t > Y,, since d € V.
Furthermore, in statement (ii), ¢ € (Y,,Y,) and in statement (iii), ¢ € (Y,, Y3).
So Theorem 1 establishes the fact that on a subset of (U §=OI j)3+1, d is very
close to an invariant estimator d,, where
0, ift<y,,

u, ifY <t<Y,,
v, IfY,<t<Ys;
1, ifY;<t.

d1=

By properly choosing & and I,’s (see Section 3), we construct a uniform
distribution function F on U j’=OI i e,

k k
F) = [ l(xe Uzj) m( Ij)dx,
—o j=0 j=0
which is the F needed in Theorem 2.

THEOREM 2. Suppose thatn = 3 and d € V is an estimator satisfying (1.7).
For any 6 > 0 and n > 0, there exist a continuous distribution function F and
an invariant estimator d, of form (1.6) such that d, € V and

(2.3) (@) ({(T,2):[d(,2) - dy(P,1)| = 8}) <.

The proof of Theorem 2 is in Section 3. Theorem 2 leads to the proof of
minimaxity.

THEOREM 3. For sample size n = 3 and under the loss function (1.4) with
h(t) =t - )71, d, is minimax within the family of estimators satisfying
.

Before we give the proof, we need the following lemma.

LEMMA 2 [Yu (1989d)]. Suppose n > 2. For any € > 0, there exists an
n > 0 such that for all F € ©® and B c R™*! satisfying (dF)"*Y(B) <7, we
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have

(2.4) EfYY"l(B)h(F(t)) dF(t) <.

Proor oF THEOREM 3. By Lemma 1, it suffices to consider d € V. Suppose
that d € V and d satisfies (1.7). By Theorem 2, there exist an F € ® and an
estimator d, € V of form (1.6) and thus of constant risk such that (2.3) holds.
To prove the minimaxity of d, it suffices to show

(2.5) |R(F,d) — R(F,d,)| < 2.

Thus, 2¢ + R(F,d) > R(F,d,) > R(F,d,), since d, is the best invariant
estimator. Note that £ and d are arbitrary, provided that d satisfies (1.7). So

inf{ sup R(F, d): d satisfies (1.7)} = R(F,d,).
Feo®

We now prove (2.5). For any € > 0, given 7 as in Lemma 2, let § = ¢/6 and
let

(2.6) B = {(7,¢):|d(¥,t) - dy(¥,1)| = 5},
then (dF)*(B) < 7 [by (2.3)] and by Lemma 2, Ef}?l(B)h(F(t)) dF(t) <e.
|R(F,d) - R(F,d;)| (noted,d, V)

=‘EfYY3[(F ~d)® - (F-d))
x[1(|d — dy| = 6) + 1(|d — d,| < 8)] R (F(t)) dF(t)l
< Ef;f[l(ld —d,| > 8)

+|(F = d)* = (F - d,)*|1(1d - d,| < )| h(F(t)) dF(2)

< E/;:al(ld — d,| = 8)h(F(t)) dF(t)
+ Ejy’fz[d —dy|1(1d - d,| < 8)k(F(t)) dF(t)
< Efl:sl(B)h(F(t)) dF(t) + 2¢5
[B is as in (2.6), ¢ = Ef;:ah(F(t)) dF(t)]

<g+ 2c6 =2¢ (sinced =¢/6,c=3).
This completes the proof. O
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3. Proofs of Theorems 1 and 2. In this section we give the proofs of
Theorems 1 and 2 when n = 3. Since the proofs are very long, we proceed via a
series of lemmas and remarks. We outline the main logic of the proof as
follows.

(3.1) Let d = d(Y,¢) be an arbitrary estimator in V satisfying (1.7).

Hereafter in this section, we assume that d is as in (3.1). We will prove that
there exist an estimator d, as defined in (3.15) and a distribution function F
as defined in (3.20) such that (2.3) holds. Theorem 1 is the key part of the
whole proof. It shows that there is a measurable subset of (U%_,I,)**! on
which d is very close to an invariant estimator d,. d; and F are defined after
Theorem 1 is established. Theorem 1 is proved by an induction argument.
Lemma 3 is the justification of the first step in the induction.

We first define a set By ;< [0.1,0.9] [or any closed interval in (0, 1)], which
plays an important role in the following development. Given ¢ > 0, let

(3.2) N> % where ¢ = E[YY%(F(t)) dF(t) = 3.

For any x € [0.1,0.9], define
¢;(x) = lim inf{h: m(Y,,Y,, Y, € N(x,8):
8§07

(33) d(%,4) > h,Y,_, <t <Y} =0},
J = 2,3, where N(x,é) is the neighborhood of x.

Define i = (i, i5), where the i ;s are positive integers and

(34) Byy={x€[0.1,09]:c;(x) € N TN ,J=2,8).

REMARK 3.1.  Here is the explanation of ¢;(x) in (3.3).

() Let h(8) = inf(h: m¥Y,, Y,, Y, € N(x,8): d(¥,t) > h, Y;_,
t <Y} =0}, then h(8)|ci(x),as §10.

(11) c;(x) is the essential supremum of d(Y,t) [denoted as ess sup d(¥, ¢)] in
the nelghborhood of (x,x,x,x) € R®! provided Y;_, <t <Y, ie, for any
8 > 0, except on a zero-measure set, d(Y,¢) < h(8) for (Y,t) c (N(x £)) e
{Y 1 <t <Y} Furthermore, for any h < h(8), m¥Y,Y,,Y; € N(x, §):
d(Yt)>h Y 1 <t<y}>o.

(iii) If c; (x) € ((i; — D/N,(@; + 1)/N), then there exist real numbers &
and h(8) such that c;(x) < h(6) <(i; + 1D/N [since h(8)|c;(x) as 6|0
by (@)).

<
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REMARK 3.2. Note that
U By ;= [0.1,0.9].

0<iy, ig<N

By the Baire category theorem [see Royden (1968)] and without loss of
generality, one can assume that there is an interval [a, b] c [0.1, 0.9] and some
By ; such that

(i) By, is dense in [a, b],
(11)d(Yt)<(z +1)/N1f 1<t<Y'j=23 Y, Y; €la,bdl

[Otherwise, take some x € By ;N (a, b), then by (ii) and (iii) in Remark 3.1,
there exists a 8 > 0 such that d(Y,?) < h(8) < G+VD/NifY_,<t<y,
Jj=2,8,Y,Y; € N(x,9) [see (i) in Remark 3.1] and N(x, 8) C [a, b] for a
small 8. Then By, ; is dense in N(x, 8) and this N(x, 8) can be taken to be the
new (a, b).]

Note. In expression (ii), by Y;, Y; € [a, b], we mean Y,,Y,,Y;, ¢ € [a, b],
since Y; <Y, <Y3; and Y;_;, <?¢ <Y,. A similar implication applies hereafter
for convenience. .

From now on, we assume that By, ;, [a, b] and i = (i,, i) are specified as in
Remark 3.2. Let

(3.5) u=1i,/N and v=1i4/N.
[(u,v) and (iy/N,is/N) will be used interchangeably hereafter for conve-
nience.]

LEmmA 3. Given N as in (3.2), for any x € (a,b) N By ; and for any
n > 0, there are intervals I, and I, satisfying:

@ I,=[a;b],i=1,2,a=a, <b; <a, <b, <band [b,, b,] € N(x,n),
(ii) Id(?t)—u|<2/sza1<Y <bjanda,<t<Y,<Y;<b,,
Gii) |d(Y,t) — vl <2/Nifa, <Y, <Y2<b and a, <t <Y; < b,.

ProoF. Since By ;is dense in [a, b], (a, b) N By ; is not empty. Taking an
x € (a,b) N By ;, we have
(3.6) cy(x) € (u—1/N,u+1/N) [see(3.4) and (3.5)].

For any 7 satisfying: n > 0, a <x — n and x + nn < b, it follows from (iii) in
Remark 3.1 that there exist real numbers § € (0, ) and h(8) such that

(3.7 co(x) <h(8) <u+ 1/N.

By (ii) in Remark 3.1, h(8) = esssup d(Y, ) in (N(x, 8)* N [Y, <t < Y, < Ys]
which has positive measure, thus, there exists (b;,y,,¥3, ;) € (Y,t) e
(N(x,8))*: Y, <t <Y, < Y,} (note that b, < s, <y, <y;) such that

(3.8) h(8) — 1/N <d(by,ys,¥3,81) < h(9).
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Take a, = a, then for all (¥, ) satisfying a, <Y, <b, <s, <t <Y, <Y; <
¥4, we have

u—2/N <cy(x) — 1/N [by(3.6)]
<h(8) —1/N [by(3.7)]
< d(by,¥2,9s,51) [by (3.8)]
<d(Y,,Y,,Y,,t) =d(Y,t) [bymonotonicity of d in ¥;’s and ¢]
<(ig+1)/N=u+1/N
[by (ii) in Remark 3.2, since (a,,y3) C [a, b]].
Thus there exist real numbers a,, b;, s; and y, such that
(3.9) u—2/N<d(Y’,t)<u+1/N
if Y,€[ay,b,],8<t<Y,<Y;<y,,

which would imply (ii) in the lemma.

Now we try to establish an expression similar to (3.9) and related to v. Since
(s1,2) € (a,d) by () in Remark 3.2, there exists an x, € By ;N (5,,,). So
we have

(3.10) c3(%o) € (v—1/N,v+ 1/N) [see(3.3) and (3.4)].

For any 7 satisfying n > 0, s; <xo, — n and x, + 1 < y,, it follows from (iii)
in Remark 3.1 that there exist real numbers 8, € (0,7) and h(8,) such that

(3.11) c3(xg) <h(8y) <v+ 1/N.

By (ii) in Remark 3.1, h(5,) = esssup d(¥, #) in (N(x, 8,)* N [Y; < Y, < ¢ <
Y,] which has positive measure; therefore, there exists an (x,, x,, by, a,) €
{(Y, 1) € (N(x, 8,)% Y, <Y, <t <Y} (note that s, <x; <x, <a, < b, <
y5) such that

(3.12) h(83) — 1/N < d(x1,%3,b5,a5) < h(8y).

Then, by an argument similar to that in deriving (3.9), it follows from
(3.10)-(3.12) that '

v—2/N<d(¥,t)<v+1/N

if a,<Y,<Y,<b;,a,<t<Y3<b,.

(3.13)

Note that (a,, b,) < (s1,¥5), so by (3.9), we have

(3.14) u—2/N<d(¥,t)<u+1/N

if Y,ela,b],a,<t<Y,<Y;<b,.
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Thus (i) and (iii) in the lemma follow from (3.13) and (3.14) and (i) in the
lemma holds too. This completes the proof of Lemma 3. O

Lemma 3 is the special case of Theorem 1 (where & = 1).

ProoF oF THEOREM 1. Given k > 1, we first construct intervals [a, b;],
j=0,...,k+ 1, and then show these intervals satisfy (i), (ii) and (iii) in
Theorem 1. .

For j =0, let By ;, [a,b] and i be the same as in Remark 3.2 and let u
and v be as in (3.5). Thus By ; is dense in [a, b] and (ii) in Remark 3.2 is true.

By Lemma 3 and the previousi assumptions, there exists an x € By ;N (a, b)
and there exist real numbers n > 0 and a, by, a; and h, satisfying
(T1) a=ag<by<a,<h, and by, h, € (a,b) N N(x,7),
(T2) ld —ul <2/N if ayg<Y, <by,a;,<t<Y,<Y3<h,,
(T3) ld —vl <2/N if ag<Y, <Y,<bj,a,<t<Y;<h,.

Note also [a,, h,] € (a, b).

For 1 <j <k, by the induction assumption, we have [a;, h;] C (a,b) (in
particular, from the last paragraph, we have [a,, h,] C (a,d)), ie., By is
dense in [a;, k;]. So by Lemma 3, there exist an x € (a;, h;) N By n > 0,
b;, a;,, and h;,, satisfying

a;<b;<aj,  <h;,; and
) bjs hjir € (a;,h;) N N(x,m)(< (a,b)),
(T2) |d—ul <2/N, if ag<Y <bj,a;,,<t<Y¥y<Yy<h;,,,
(T8) ld-vI<2/N if ay<Y, <Y,<b;,a;,;,<t<Y3<h;,,.
Let I, =[ag, bol,..., I, = [a,, b,]. By our construction procedure,

I,c(aj,h;j)c -+ c(ay,hy) C(a,b), j=1,...,k.

This means U % _.I,, € (a;, h;). It follows from (T2') and (T3’ that

=j'm Jr
k
(T4) |d—ul <2/N if ay<Y, <b;,t<Y, and &Y, Y€ |J I,;
=J
k
(T5) ld—-vl<2/N if ay<Y,<Y,<b;,t<Y; and t,Y;€ U I,.
=Jj

Then (T4) and (T5) imply (ii) and (iii) in Theorem 1, respectively. It is obvious
that (i) in Theorem 1 holds. O
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Now we are ready to define an invariant estimator d; and a continuous
distribution function F needed in Theorem 2. Given d as (3.1), let

0, ift<Y,
u, fY, <t<Y,

(3.15) d, = b, Y, <t<Y, where u and v are as in (3.5).
1, ifY;<t,
Note that d, is of form (1.6) and has constant risk, hence it satisfies
(3.16) R(F,d,) > R(F,d,) foranyF < 0.
Given n > 0, let r, s and integer % satisfy:
(3.17) r+s=10<r<s and r/s<n/11,
(3.18) k > max{(1/3)In(n/4)/Ins,(1/4)Inn/In s},

(i.e., max{s** /4, s3*} < n/4).
By Theorem 1, given r, s and £ as in (3.17) and (3.18), there are disjoint

intervals I,..., I, such that (i), (ii) and (iii) in Theorem 1 hold. By taking

subintervals of I,’s, without loss of generality, we can assume that

(3.19) m(IO)'m(Il)“--'m(Ik)=r:rs:-'-'sk 1.k

(note T} grs' + s* = 1). Otherwise, since m(I;) > 0 for all j, there are

subintervals I* c I; such that

m(IO) (Il):---' (Ik)=r'r3'---:rsk_l:sk.

On these I *’s, (i), (ii) and @iii) of Theorem 1 still hold
Define a uniform distribution function F on Uk oI; by

(3.20) F) = [ 1(xe Uzj) m( Uzj)dx.
—o j=0 j=0
REMARK 3.3. Note that F @ and F has support only on U §=OI s where
I, =[a;b]]land b, ; <a;, j= , k. Also note that
. )=F(a;,)=1-s7, =1,...,k,
(321) (J 1) ( _1) .] o .

dF(1y):dF(Il)): - :dF(I,) =r:rs:---:rs""':s".

ProOF OF THEOREM 2. Given d €'V, for any n > 0 and N > ¢/(2¢) as in
(3.2), there exist d; as in (3.15), s,r,k as in (3.17) and (3.18), I,’s as in
Theorem 1 and (3.19) and F as in (3.20). Since d, d, € V, it follows immedi-
ately that d = d, if £ <Y; or ¢t > Y;. In order to prove Theorem 2, it suffices
to show for 6 = 2/N that

(3.22) (dF){(V,1): ¥, <t < Y,,

d(Y,t) —u| >5> <17/2
(3.23) (dF){(P,1): Y, <t < Yy, |d(Y,t) - v| = 8} <n/2.
We verify (8.22) in part (A) and (3.23) in part (B), respectively.
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(A) Since the support of F is U _OI we only need to check the behavior of
d=d(Y,Y, Y5 t)on (U5 1)) A {Y; < t <Y,}. Define

H, = {(UIJ.) \( U Ij) } N{Y, <t<Y,},
(3.24) =i J=itl .

H,= (L)' n{Y,<t<VY,).
Then the H’s are disjoint and
k o4
(3.25) UHj=(UIj) N{Y, <t <Y,}.

By (i) in Theorem 1, {(Y,£) € H;: Y, € I,, 1, Y,, Y, € U% i} c (Y, t) e Hy:
ld(Y,¢) — ul <8}, (8 =2/N). Thus

(@) ({(7.6) e Bz |d(¥, 1) - u| < 5})

k
> (dF)* {(Y’,t) €H;:Y, €l,t,Y, Y, | Ij})
(3.26) Jj=i+1
= 3![0 dxlfo dtft dx, fx dxg [see (3.21)]
= rgti+3
Al o k 4 g4
(3.27) (dF)*|{(Y,t) e (inlj) N{Y, <t <Y,} Vi

The following parﬁtion is helpful for deriving (8.28). For i = 0,...,% — 1,

= {(Y,t) €H;:Y €l,andt,Y,,Y;e |J Ij} [measure = er4z+3]

Jj=i+1

k
U{(Y,t)eHi:Yl,teIiande,Y3e U Ij}

Jj=i+1

6 .
[measure = Zrzs 4i+2

k
U{(Y,t)eH,;:Y,,t,Y,e€l,and Y, € U Ij} [measure = —rigtitl
j=i+1

1 .
U{(Y, t)€H;:Y,,t,Y,Y; € Ii} [measure = Zr“s“‘].
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By (3.24) through (3.27) and the previous partition, we have
(aF) ({(T,t) € H;: |d(Y,t) - u| 2 5})
(@) ({(,¢) e H: (2, 1) - u| < 5))

(3.28)  (dF)*(H,) — rs**3  6r2?2 + 4r3s + r*
< =

4T e (see the partition)
11r
<Ts—<% [by (3.17)], i=0,... k-1

Thus by (3.24) through (3.28) and (3.18), we have (3.22), i.e.,
(dF)'({(T,0): Y, <t < Yy, |d(T,2) - d,| 2 5})

é)(dF)‘i({(i?’,t) e H;: |d(Y,¢) - u| 2 5}) [by (3.25)]

£r3(dF) ({(P,0) € H;: |d(Y,0) — u| = 8))
<
Tt aR) ({(7.1) € Bi:|d(F,0) - u| < 5))
< %

where the last inequality holds due to (3.18), (3.27), (3.28) and the following
fact:

(3.29) Ifa;,b,>0and a,/b, <n/4,i <k,then ) a,/). b, <n/4.

i

+ (dF)*(H,)

(B) The idea in the proof of (3.23) is the same as that of (3.22). Define

k k
{t, Y,, Y€ U Ij}\\{t, Y, Y;e U Ij}
j=i j=i+1

Dk = {t,Yz,Y3 eIk7Y2 < t < Y3}.
Note that D,,..., D, are disjoint and

Di= ﬂ{Y2<t<Y3},

0<i<k,

4

N{Y, <t <Y,}.

k

(3.30) Lk) D, = ( Ul
j=0

Jj=0

Similarly to (3.28) in the proof of part (A), we claim that for { = 0,.. k=1,
(dF)'({(V,¢) e D;:|d(P,2) - v] = 5})
(aF)*({(¥,t) € D;:|d(¥,¢) - v] < 5}

<

(3.31)

NE

., (dF)Y(D,) < -}.
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The reason is as follows. Note that for i = k,

(dF)*(D,) = (dF)*

{(T’,t) €D, Y, e kJIj orY, € Ik}) [by (3.21)]
j=0

_ 31[[01“3”dy1 fll_skflfy3dtdy3 dy,

Y2 Y2

+j;1_3kdy1[1f1_(vzsdtdy3 dy2]

Y17 Y2

< 3![[01_skdy1 '[ll_s‘k[y:fyj3dtdy3dy2

At L i

= 5% <n/4 [by(3.18)].
Thus (3.31) holds for i = k. For i < k,

(P ({(T,¢) € D;: d(P,¢) - v] < 5})

> (dF)* [by (iii) in Theorem 1]

k
{(?, tyeD;:Y,el, t Y, € U.Ij}

Jj>i

= (dF)*
(3.32)

i—1 k
{(?,t)eDi:Yle UL,Y,el,t,Y, e UIJ.})

Jj=0 j>i

+(dF)*

k
{(?,t) €D;:Y,Y,el,t,Y,e |J Ij})

J>i

i—-1
= 3![( Y rs’")rs3i+2/2 + rzs4i+2/4J [by (3.21)],
m=0

() ({(¥.,t) € Dy: |d(P,¢) - v] < 5})

> (dF)*

k
{(?,t) €D,:Y,, Y, e, t,Y, € | Ij})
(3.33) j>0
[by (iii) in Theorem 1]
> 3!r2s?/4.

[Compare to the second term in the end of (3.32) for i = 0].
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As in part (A), D; (i = 1,...,k — 1) can be expressed as a union of subsets:

k
{(?,t) €D;:Y,el;,tY;€ U IJ}

Jj>i

k
U{(?,t) €D;:Y,tel;,Y;€ U Ij}

J>i

U{(?,t) €D;:Y,,t, Y€ Ii>} N

i-1

{Y1 e U Ij} ulY, el}
j=0

[essentially 6 (not 3) disjoint subsets]. By this partition and (3.32), we have

(aF)*({(¥.t) e D;: d(F,¢) - v| > 5})

k
< (dF)*|{(Y,t)eD;:t,Y, €I, Y€ Ul;orY, Y, e 1,.})
(3.34) j>i
= 6[(r + oo +rsiTl)r2g8itl /g 4 p3g%itl /6 [by (3.21)

F(r+ o ArsiTrists6 4+ (rsh) /24|, =1, k- 1.

Furthermore, D, has a similar partition as follows:

k
D, = {(Y, t)eDy: Y, Y, el t,Y,e U Ij}
Jj>0

k
U {(17, t)€Dy: Y, Yy tel, Y, U Ij}

>0
U{(Y,t) € Dy: Yy, Yy, ¢, Yy € I}
(essentially 3 disjoint subsets). So by the partition and (3.33), we have

(3.35) (dF)*({(Y,2) € Dy: |d(¥,2) - v| = 8}) < 6[r%/6 + r*/24].
The right-hand sides of (3.33) and (3.35) satisfy

336 r’s+rt/4  5r g by (3.1
(’ ) 67‘282/4 <6‘;<Z [y('7)]'

Note

(r+ - +rsiY)[r2s%*1/2 + r3%3% /6] 4r g
(r + .. +rsi-1)r83i+2/2 < g < '4— [by (317)] .
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By the above inequality, (3.36) and (3.29), the right-hand sides of (3.32) and
(3.34) satisfy

+

] (r+ -+ +rsi=l)p2gdi+l N POl (p g ppgitl)p3g8i N (rsi)4
2 6 6 24

(3.37)

4

[cimy prs™2  p2gtin
8I[(Zh2ers™) 5+
n

< —.
4

By (3.33), (3.35) and (3.36), it is easy to verify (3.31) for i = 0. By (3.32),
(3.34) and (3.37), it is easy to verify (3.81) for i = 1,...,k — 1. Then

(@) ({(T.1): Yy <t <Yy, |d(P,0) - dy| > 5})

b
< g:(dF)“({(?,t) €D, - v| 2 8}) + (dF)*(D,)

[by (3.30)]
£t24(dF) ({(7.) € D;: |d(T, 1) - v] > 5})

S (T e Da a0 — ol <a)) Y

< _’21 [by (3.31) and (3.29)],

which is (3.23) and this completes the proofs of part (B) and Theorem 2. 0O

4. Minimax result for n > 3 and without condition (1.7). In this
section, we state the minimax result for » > 3 and without condition (1.7). For
the sake of space, we only give some comments on the proof of these results.
We assume that in this section the setup of the problem is the same as
1.1)-(1.5).

THEOREM 4. Suppose that d = d(Y,t) is a nonrandomized estimator with
finite risk and is a (measurable) function of the order statistic Y. For any
€,6 > 0, there exist a uniform distribution function F(t) on a positive
Lebesgue-measure subset I and an invariant estimator d, [of form (1.6)] such
that

(dF)”+l(<(Y1""’ Y, t): |d(Y t) - 1(17,t)| > 5}) <3,
where n (= 1) is the sample size.

TuEOREM 5. Under the assumptzons (1.1)-(1.5) in Section 1, the best
invariant estimator d, = F(t) is minimax for sample size n > 1.
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In the following we first give some comments on the proof for n > 3 and
under condition (1.7). Then we give some comments on the proof for n > 3
and without condition (1.7).

We first note that, in Section 2, Lemmas 1 and 2 are true for n > 2 and the
proof in Theorem 3 can go through by slightly modifying coefficients and
notation (e.g., Y; is replaced by Y,).

We can similarly modify the arguments in Section 3. Of course, all the
notation [e.g., (3.2), (8.3) and (3.4)] has to be revised for general n. For
example, the general form of Theorem 1 for n > 2 is Theorem 1*.

THEOREM 1*. Suppose that the sample sizen > 2 and [a,b] C (0,1),d €V
and d satisfies (1.7). For any integers N, k > 0, there are integers 0 < i, <
- <i, < Nandintervals 1, ..., I, such that

@D I =1la;b] i=0,...,k and a=0a,<b;,_;<a;<b;<b, j=
L.,k _ A

G |d(Y,t) —i,/NI<2/Nif Y,,...,Y,_, € Ui, t< Y,tY,. ..,
YnEUfnszm,whereq=2,...,nandj=1,...,k.

Now we give some comments on how to eliminate condition (1.7), which is a
monotonicity assumption on the estimators considered. Under this assump-
tion, any estimator d is continuous almost everywhere. Under only the
measurability assumption [i.e., without condition (1.7)], an estimator d is
approximately continuous a.e. [see Munroe (1953), pages 291-292], i.e., d(¥, t)
is approximately continuous at (¥,,¢,) if for any ¢, 6 > 0, there exists a
neighborhood N(r) of (¥, t,) with radius r such that

m" Y ({(Z,¢) € N(r): |d(X,t) — d(Zp,t,)| > &}) 5
<$é.
m"*1({(%,¢) € N(r)}) B
In the previous sections, the minimaxity of d, within the class of estima-
tors satisfying (1.7) is proved by using the fact that d is continuous a.e. m™*1.
Hence the minimaxity of d, among estimators which are approximately

continuous a.e. can be proved similarly. For details of proofs without condition
(1.7), see Yu (1988b).
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