The Annals of Statistics
1991, Vol. 19, No. 2, 918-934

SENSITIVE AND STURDY p-VALUES!

By JoHN I. MARDEN
University of Illinois at Urbana-Champaign

We introduce new criteria for evaluating test statistics based on the
p-values of the statistics. Given a set of test statistics, a good statistic is one
which is robust in being reasonably sensitive to all departures from the null
implied by that set. We present a constructive approach to finding the

- optimal statistic. We apply the criteria to two-sided problems; combining
independent tests; testing that the mean of a spherical normal distribution
is 0, and extensions to other spherically symmetric and exponential distri-
butions; Bartlett’s problem of testing the equality of several normal vari-
ances; and testing for one outlier in a normal linear model. For the most
part, the optimal statistic is quite easy to use. Often, but not always, it is
the likelihood ratio statistic.

1. Introduction. In most hypothesis testing situations, especially multi-
dimensional ones, there are many plausible testing procedures from which to
choose. Popular criteria used to judge procedures include consistency, admissi-
bility, Bayesness, robustness, unbiasedness, minimaxity, local optimality,
Bahadur exact slope and Pitman efficiency. Often, even after applying several
of the above criteria, there remains a number of attractive procedures. In this
paper we introduce new criteria which depend only on the null distribution,
distinguishing them from the criteria mentioned above, whose use can sub-
stantially narrow the search for a single procedure.

We start with a set T of desirable test statistics, each one sensitive to
particular alternatives. This set can be chosen on objective (e.g., admissibility)
or heuristic grounds. Our goal is to find a statistic which will be robust among
those in T in the sense of being reasonably sensitive to all departures from the
null as implied by T.

We have in mind certain types of hypothesis testing situations. To simplify,
we think of three basic types. In the first, the result of the hypothesis test is
the main conclusion of the study, for example, whether a drug works or
whether a company should sponsor employee support groups. It is reasonable
to expect the researcher to work hard to design a test procedure appropriate
for the situation, being careful to incorporate whatever prior information
about the structure of the alternative space is at hand. Bayesian methods in
particular can work well. In the second situation, there is a large but finite-
dimensional set of possible effects, and one wishes an overall test to decide
whether it is worthwhile investigating these effects more closely. An example
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is in analysis of variance, where one tests for high-order interaction, or
equality of variances, and would not explore further unless a test showed
significance. Goodness-of-fit tests encompass the third situation, where one
desires an assessment of whether the model in use gives a reasonable fit to the
data. The alternative tends to be very diffuse, often infinite dimensional. There
may be some general directions of lack of fit to which one wishes sensitivity,
but little knowledge of the exact alternative structure.

This paper is geared toward the latter two situations. We evaluate test
statistics via their p-values. We prefer the p-value approach to the usual
accept-reject paradigm for such situations since the test statistics are to be
used to provide directions during a statistical analysis and assurances after the
analysis, rather than carrying the weight of the main conclusion of the study.
Furthermore, when analyzing a set of data, one is confronted with having to
iterate among testing hypotheses, estimating parameters and checking models.
It is not unusual to have testing situations of the second and third kind
presenting themselves at the rate of several per hour. Thus it is not necessary
or appropriate to prespecify a level for each test.

Frequentist notions in general, and p-values in particular, have generated
quite a bit of controversy lately. Casella and Berger (1987) and Berger and
Sellke (1987) have debated the appropriateness of p-values as evidence against
the null. It is clear that it is dangerous to misinterpret a p-value as the
probability that the null hypothesis is true. As all frequentist measures, its
properties refer to results occurring as the experiment is repeated. In addition,
an outcome which is very unlikely under the null might be even more unlikely
under the alternative; hence low p-values should not automatically lead one to
embrace the alternative. Despite these objections, the p-value does have a
precise meaning, being the probability of obtaining, under the null, a result as
or more extreme. And when choosing which procedures to use, it is important
to balance philosophical comfort with temporal constraints. For example, the
Bayesian approach provides a coherent formulation for inference, but for many
aspects of a data analysis, it is not worth the time and trouble to conjure up a
prior or class of priors and grind through to the posterior. The p-values
provide valuable and convenient guidance, and careful researchers will keep in
mind their deficiencies.

To present our definitions, we assume we have the set T, a set of real-valued
test statistics, along with the knowledge of whether to reject the null hypothe-
sis for large or for small values of T € T. We will make the simplifying
assumptions that each statistic has a continuous distribution F, under the
null, and that this distribution does not depend on which element of the null
obtains. Then the p-value for T in T, pp(x), is simply 1 — Fp(T(x)) if
rejecting for large values of T, or F (T'(x)) if rejecting for small values, where
x is the observation. Under the null, the p-value has a uniform (0, 1) distribu-
tion.

Consider two test statistics U and V, both functions of the data x, and their
respective p-values p,(x) and py(x). Suppose the p-value for U is observed
to be @, and consider the possible values py could have. If, generally, these
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values tend to hover around «, then one would be equally comfortable with
using U or V. However, if p, tends to be quite a bit larger than «, then one
would prefer to use U, or if py tends to be much smaller than «, one would
prefer V. There are many ways to quantify the tendencies, such as means,
standard deviations, quantiles, etc. We consider two values, the smallest and
largest possible values, respectively,

(1.1) i(U;V, @) = inf{py(x)|py(x) 2 o}
and
(1.2) s(U;V,a) = sup {py(x)|py(x) <a}.

[For technical reasons, we have “ > " and ‘“ < ”’ in the definitions rather than
equalities. In many applications, the extrema occur on the sets where p(x) =
a.] These measures are admittedly rather coarse, but other measures depend
in a complicated way on which alternative obtains. We expect that statistics
which perform well according to (1.1) and (1.2) will have good overall behavior.

We have two related measures of robustness. They are both functions of «
and T, as well as the statistic under consideration.

DeFINITION 1.1. The sensitivity of the statistic T is Se(T; a) =
inf{i(U; T, )|U € T}, and the sturdiness is St(T'; a) = sup{s(T; U, a)|U € T}.

Thus Se gives the smallest possible p-value which could have arisen from
the set T when the p-value for T is a, and St gives the largest p-value T could
yield given that some statistic in T has p-value a. A statistic is sensitive if Se
is not too much smaller than a, so that when pr(x) =a, one can feel
confident that no other statistic would be much more significant. A statistic is
sturdy if, when it is possible to achieve a p-value of a, p;(x) remains fairly
close to a. These two notions are almost inverses. In Section 2 we show that

(1.3) Se(T,a) =B = lim St(T,B") <a < lim St(T, B')
B'1B BB

and

(1.4) St(T,B) =a = lim Se(T,a’) <B < lim Se(T, a').
a'la a'la

In many cases, one can use (1.3) and (1.4) to determine Se from St or vice
versa.

For any T,

(1.5) Se(T,a) <a and St(T,a) > a.

We are interested in the robustnesses both qualitatively and quantitatively.
We will say that a statistic T is insensitive at a if Se(T, a) = 0, and fragile at
a if St(T, a) = 1. On the positive side, T' € T is most sensitive (most sturdy) if
it maximizes (minimizes) Se (St) among statistics in T.

In Section 2 we present some preliminary results which facilitate calculation
of the quantities and provide a constructive approach for finding the optimal
procedures. The form of the optimal tests is very reminiscent of the ‘““intersec-
tion” part of the union-intersection tests of Roy (1953). He decomposes a
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multivariate alternative hypothesis into a number of component hypotheses,
obtains an acceptance region for each and then takes their intersection. The
acceptance regions of our optimal tests are also intersections of a collection of
acceptance regions. If the acceptance regions of the statistics in T are gener-
ated by arbitrary intersections of Roy’s component tests, then under mild
conditions his test is indeed the most sensitive and sturdy.

Section 3 is a short section on two-sided tests, showing that if T contains all
possible two-sided versions of a particular test statistic, then the optimal
statistic is the one which provides equal tail areas for each level «. In Section 4
we consider combining independent tests. Letting T be the set of monotone
test statistics, we show that Fisher’s procedure is optimal. Section 5 treats
problems which test the mean in spherically normal models, as well as some
problems in other spherically symmetric and exponential family models. In the
normal case, the set T is the class of admissible tests, and we show that the
likelihood ratio statistic (LRS) (extended, if necessary, to be defined for all
levels) is optimal. Since Fisher’s procedure is also the LRS for its problem, one
might wonder whether the LRS is always optimal. It is not in general true.
Exceptions are found in Section 2 when testing a normal variance is 1, in
Section 5 for certain exponential family models and in Section 6. In that last
section, we consider two more examples. In Bartlett’s problem of testing the
equality of several normal variances, we show that the LRS is not optimal with
respect to the admissible (among invariant) procedures. The most sensitive
and sturdy statistic is indicated, and a large sample approximation to it is seen
to be a weighted sum of squares of the normalized sample variances. In testing
for one outlier in linear regression, we show that the LRS is most sensitive and
sturdy when T is the class of statistics generated by the individual tests for
targeted observations. However, when T is the set of admissible statistics, we
find that there is no optimal procedure, and in fact all statistics are insensitive
and fragile.

REMARK. A Bayesian analog of our criteria can also be imagined. We start
with a set of prior distributions on the alternative. For a given such prior 7,
we obtain a prior on the whole space by setting the probability of the null at
1/2 and the conditional probability given the alternative at 7. Then for an
observation x and prior 7, we calculate the posterior probability of the null.
Analogs to i and s in (1.1) and (1.2) are obtained by inserting priors for
statistics, and posterior probabilities of the null for p-values. Then priors
optimal according to the analogous criteria to those in Definition 1.1 will be
those which are robust with respect to the posteriors. In the case of testing
that a spherically symmetric bivariate normal mean is 0 versus that it is in the
nonnegative quadrant (as in Section 5), we found that if all priors are allowed,
then they are all insensitive and fragile. We did not explore this approach
further.

2. Preliminaries. In this section we give some approaches to calculating
the robustness in Definition 1.1 without having to deal explicitly with the
statistics U. For a statistic T' and level @, denote the acceptance region of the
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corresponding test by

(2.1) A(T,a) = {x|pr(x) = a}.
The intersection of all level a acceptance regions will be denoted
(2.2) A,= N AT, ).

TeT

Our first result gives geometric definitions for the robustnesses.

LEmMa 2.1. ForT€eTand 0 <a <1,

(2.3) Se(T,a) = SL;p {BIA(T, @) c Ag}
and
(2.4) St(T,a) = igf{B|A(T,B) cA,).

Proor. First note that for any U € T, p,(x) = inf{B|x & A(U, B)}, which
is to say that the p-value for given U and x is the infimum of the levels g for
which the level B test based on U rejects H,. Thus from Definition 1.1 we
have

2.5 Se(T,a) = inf inf inf & A(U,B)}.
(2.5) (T,a) = inf _inf 'in {Blx & A(U, B)}

Interchange the first two infima in (2.5) and then combine the resulting second
and third, so that with

(2.6) A={A(U,B)lU€ Tand0 < B < 1},
we obtain
(2.7) Se(T, a) = Aing{l —P(A)|A°NA(T, a) + B} = a*,

where P denotes the null probability.

Let B* = sup{Bl|A(T, @) C Ag}, so that (2.3) will follow upon showing that
a* = B*. Start by taking B > B*. Then A(U, a) ¢ A, so that A N A(T, a) #
. Hence by (2.2) there exists some A with 1 — P(A) = B8 such that A°nN
A(T, a) + @. Thus by (2.7) a* < B. Since B is an arbitrary number greater
than B*, we have a* < B*. Next, take A € A with A° N A(T, a) # &. Then
A(T, a) ¢ A; hence A(T,a) ¢ A, where y = 1 — P(A). Thus 1 — P(A) > B*;
hence from (2.7) a* > B*. We have shown (2.3). '

For (2.4) we have that p;(x) = sup{Blx € A(T, B)}; hence

(2.8) St(T,a) = sup sup sup{B|x € A(T, B)}.
UeT xeA(U,a)* B
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Now combining the first two suprema in (2.8) yields

St(T,a) = sup sup{B|x € A(T, B))
x€AS, B

= sup {B| A%, N A(T,B) + O} =«a'.
B

Let B’ = inf{B|A(T, B) c A,}. We want to show that «' = B'. First, if B < «/,
then A7, N A(T, B) # &; hence A(T,B) ¢ A, and B < p'. Thus o' < B'. For
the reverse, note that 8 > o’ implies that A(T, 8) c A_; hence B > B/, proving
that o' > B'. Thus we have (2.4). O

Using Lemma 2.1, it is fairly easy to obtain bounds on Se and St and to find
the optimal values.

LeMmA 2.2, Let a* = sup{ll — a < P(Ap)}. Then for any T€ T and
O<acx<l,

(2.9) Se(T,a) <a* and St(T,a)>1-P(A,).
Proor. First
(2.10) {BIA(T,a) c A} {BI1 —a < P(Ap))

since P(A(T, @)) = 1 — a. Thus the supremum over the former set in (2.10),
which is Se(T, a) by (2.3), is less than or equal to the supremum over the
latter set, which is a*, proving the first part of (2.9). Next, note that

(2.11) (BlA(T, ) cA,) < (81 - B < P(A,)}.

The infimum over the former set in (2.11) is St(T, a) by (2.4), and it is no
smaller than the infimum over the latter set which is clearly 1 — P(A,),
completing the proof of (2.9). O

Lemma 2.3. (a)Iffor T* € T and some a, A(T*, @) = A ., then Se(T*, a) =
a*; hence T* is most sensitive at a. If, in addition,
(2.12) lim P(Ag) = P(A,.),

BTa*

then T* is essentially uniquely most sensitive at « in the sense that for any
other U, Se(U, a) = a* implies that
(2.13) P[A(T*,a) AA(U,a)] = 0.

(b) If A(T*,a) = A, where &’ =1 — P(A,), then S((T*, ) = a'; hence T*
is most sturdy for that a. Also, T* is the essentially unique most sturdy

statistic at a in the sense that for any other U, St(U, a) = o' implies that (2.13)
holds with o instead of a.

Proor. For (a), since P[A(T*, a)l = 1 — «a, (2.3) and A(T*, a) = A . show
that Se(T*, @) > a*, which by (2.9) proves equality. If Se(U, a) = a*, then by
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(2.3), for any B < a*, A(U, a) C Ag; hence

(2.14) A(U,a) ¢ () Ag =B,..
BTa*

Now (2.12) shows that P(B,.) =1 — a; hence with (2.14) we have that
P[B,. — A(U,a)] = 0. Equation (2.12) also shows that P(B_. —A_.) = 0.
Thus (2.13) follows. For (b), we use (2.4) and (2.9) to show that St(T*, a) = «a'.
If St(U,a) = o', then by (2.4), for any B > o', A(U,a) C A hence A=
U, AW, B) cA,. Since P({x|py(x) =a'}) =0, P[A(U,a) — Al =0, and
since P[A(U,a)] =1 — a' = P(A,), we have essential uniqueness. O

We now show that sensitivity and sturdiness are almost inverses.
LemMmaA 2.4. Equations (1.3) and (1.4) hold.

Proor. Suppose Se(T, @) = B. Then by (2.3), for any g’ < 8, A(T, a) C Ag;
hence by (2.4) St(T', B') < a. Thus the first limit in (1.3) holds. Similarly, if
B' > B, then A(T,a) ¢ Ag; hence St(T', B') > a. Thus (1.3) holds. Equation
(1.4) can be proven in the same way. O

From (1.3) and (1.4), we have that if Se(T,a) as a function of « is
continuous and strictly increasing on (0, 1), then St is its inverse. Also, if T is
insensitive (fragile) for all «, then it is fragile (insensitive) for all a.

3. Two-sided tests. We assume that we have a two-sided testing problem
and a single preferred one-dimensional statistic W with continuous distribu-
tion function Fy,. The desirable tests are those with acceptance regions of the
form {xla < W(x) < b} for some (possibly infinite) constants ¢ and 4. Then T
consists of all statistics of the form T'(W(x)) such that for each level «, its
acceptance region in terms of W is a closed interval. Thus T is a pseudoconvex
function.

Using (2.2), we have that

(3.1) A, = {x|Fg'(a) < W(x) < Fl(1 - a)}

since the right-hand side of (3.1) is contained in any level a acceptance region
of the form {x|a < W(x) < b}, and the two regions {x|W(x) < F;’(1 — @)} and
{x|Fy(a) < W(x)} are level a acceptance regions. Since the A ’s can be
generated by the statistic T* € T,

(32) T*(W(x)) = 2Min{Fy(W(x)),1 - Fy(W(x))},

and P(A,) = Min{2B, 1} is continuous, Lemma 2.3 can be used to prove that
T* is essentially uniquely most sensitive and most sturdy. :

From a practical point of view, T'* is very attractive. To find its p-value,
upon observing W(x), one need only find the smaller of the two tail areas and
double it. In some problems, such as testing that the mean of a normal
distribution is 0, there is symmetry about 0, and the T *-test is the uniformly
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most powerful unbiased and/or invariant test, and also the likelihood ratio
test. In some other problems, such as testing that the variance of a normal
distribution is 1, we do not have symmetry, and the test (3.2), uniformly most
powerful unbiased, and likelihood ratio test will be different.

Lemma 2.1 can be used to find Se and St for given T € T and «. Let the left
and right tail probabilities for the acceptance region of the level a test based
on T be l(a) and r(a), respectively. Then Se(T, a) = Min{l(a), r(a)} and
St(T,a) = Min{l(B) + r(B)II(B) = a and r(B) > a}.

4. Combining independent tests. We investigate one of the aspects of
meta-analysis, specifically, combining independent tests. See Hedges and Olkin
(1985). We have n independent hypothesis testing problems based on the
independent statistics X;,..., X, respectively, and wish to combine the
statistics into one overall statistic to test the null hypothesis that all n
individual null hypotheses hold. We assume that each X; has a single abso-
lutely continuous distribution under its null hypothesis, and that it is appro-
priate to reject the ith null hypothesis for small values of X;. Then, without
loss of generality, we can take the X;’s to be Uniform (0, 1) under the null and
each X; to be its own p-value. Letting f; be the density of X, the combined
problem tests

(4.1) H, X,, X,,..., X, are independent U(0, 1)
versus
H,: f(x;) is nondecreasing in x; on (0, 1) for each i,

and not all f; are Uniform(0, 1). The results quoted below will still apply if we
take as the alternative all joint densities which are componentwise nondecreas-
ing.

There have been many methods proposed for combining the n statistics into
one. We will focus on a select five, chosen for their ease of implementation as

well as their spanning the range of admissible tests. Their rejection regions for
a given a are

n
Fisher:  []X; < exp{—x2, ./2},
i=1 N

Tippett: Min{X,,...,X,} <1-(1-a)"",

n
(4.2) Normal: Y, ®~Y(X,) < Vn® (a),
i=1
n
Sum: Y X, <ec,,
i1
Maximum: Max{X,, ..., X,} <a'/".

Here, Xf, o 18 the upper « point of the chi-squared distribution on v degrees of
freedom, and ® is the standard normal distribution function. For the sum
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TABLE 1
Pairwise comparison of statistics (4.2)

n=2
U|l|lV-> Fisher Tippett Normal Sum Maximum
Fisher 0.005,/0.017 0,/0.031 0,/0.017 0,/0.009
Tippett  0.178/0.118 0,/0.003 0,/0.001 0,/0.001
Normal 1,/0.078 1,/0.230 0,/0.030 0,/0.015
Sum 1.000/0.117 1.000,/0.291 0.500,/0.078 0.025/0.025
Maximum 1,0.200 1,/0.397 1/0.141  0.100,/0.100

n=5
U||lV- Fisher Tippett Normal Sum Maximum
Fisher 1.5e — 6/5.3¢e — 4 0/1.3e — 2 0/2.8¢ — 3 0/1.1e — 4
Tippett  0.582/0.516 0/1.1e — 7 0/2.9¢ — 9 0/1.1e — 1
Normal 1/0.145 1/0.731 0/8.3e — 3 0/6.6e — 4
Sum 1.000/0.254  1.000/0.816  0.989/1 42e —4/19e — ¢
Maximum 1,/0.816 1,/0.981 1/0.609  1.000,/0.644

Above diagonal: i(V; U, 0.05)/i(U;V, 0.05).
Below diagonal: s(U;V, 0.05)/s(V; U, 0.05).
In each case, a ratio below 1 favors U, and a ratio above 1 favors V.

test, ¢, = (n!'a)/" if ¢, < 1. We also consider other procedures, including
those using the logistic and x? distribution functions.

Objections have been raised to the maximum and sum tests since if one x; is
reasonably high, the test will fail to reject even when all the other x,’s are
small. Se and St provide a way of quantifying such objections.

We first compare the five tests in (4.2) pairwise. For any pair of statistics,
one can imagine the joint distribution of their p-values when X has a given
alternative distribution. The range of the pairs of p-values is independent of
the distribution on X, the limits of the range being given by i and s in (1.1)
and (1.2). See Table 1 for values when a = 0.05. A perfect statistic, according
to our criteria, would be one for which equalities hold in (1.5). From the table,
one can see that Fisher’s procedure comes closest to perfection, although it is
still far from perfect, especially when compared to the maximum statistic. For
the most part, the ordering from best to worst is

Fisher > Tippett > normal > sum > maximum.

One should also notice that all statistics perform worse as n increases.
We turn to Se and St relative to the set of statistics

M = {T(x)|T is continuous and nondecreasing in each x,}.

As shown in Birnbaum (1954), the statistics in M are exactly those which give
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rise to the admissible tests for problem (4.1). Now for any U € M and
a €(0,1), AU, a) c X =(0,1)" is closed and nondecreasing in the sense that
for x,y € X,

(4.3) x€A(U,a)and y; > x; foreachi=y e A(U,a).

LEMMA 4.1. The set (2.2) is

(44) A, = {x ﬁxi > a}.
i=1

Proor. For any point z € X, define A(z) = {x € X|x; > z, for some i}. We
claim that

(4.5) A= N A(2),

2lllz;=a

from which (4.4) can be derived. To see (4.5), first note that for each z with
I1z; = @, A(2) = A(T, a) for some T € M: Take T,(x) = max{x,/z;}. Thus,
from (2.2), we have “C ” in (4.5). On the other hand, suppose that x & A,
Then x & A(U, a) for some U € M. By the monotonicity (4.3), we have that
A(U, @) c A(x), and since T is continuous, A(T, a) is closed; hence P[A(x) —
A(T, a)] > 0. Thus I'lx; = 1 — P[A(x)] < 1 — P[A(U, a)] = a; hence there ex-
ists a z with [1z; = @ and x & A(z), proving (4.5). O

From Lemmas 2.1 and 4.1, it can be seen that

n

(4.6) Se(T,a) = inf []x,
x€AT,a) i=1

and

(4.7) St(T,a)=FT( sup T(x)),

INx;=b(a)

where b(a) = exp(—x3, ,/2). Note, in particular, that a statistic will be
insensitive or fragile if and only if there are points in the rejection region for
which at least one x; becomes arbitrarily close to 0. Using (4.6) and (4.7), we
can make the following calculations:

Statistic Sensitivity Sturdiness
Fisher exp(—x32, o/2) P[x2, > —2log( a)]
Tippett [1-@-a)'"] 1-(1-a/mn
Normal 0 1
Sum 0* 1-Q -a)'/n!

Maximum 0 1
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The * in the display above is to indicate that the result only holds for
a <1 — 1/n!. Otherwise, Se(Sum, @) = 1 — [r!(1 — @)]'/". The next theorem
summarizes the qualitative results for our statistics.

THEOREM 4.2. Relative to M, for 0 < a < 1, we have that

(a) Fisher’s statistic is the essentially unique most sensitive and most sturdy
statistic for all a;

(b) The normal and maximum statistics are insensitive and fragile for all «;

(c) The sum statistic is insensitive if and only if « <1 — 1/n;

(d) Tippett’s statistic is neither insensitive nor fragile for any a, and the sum
statistic is not fragile for any a.

Proor. Parts (b), (c) and (d) follow from the calculations above. Consider
part (a). Since the acceptance region for Fisher’s statistic (4.2) for any level is
of the form Aj (4.4), Lemma 2.3 shows that Fisher is essentially uniquely
most sturdy for any level. Also, (2.12) holds since P(A,) = P(x3, > —21log(B))
is continuous in B, so that Fisher is essentially uniquely most sensitive for any
level. O

Comparing the statistics in (4.2), we have that Fisher is quite a bit more
sensitive and sturdy than Tippett, and Tippett is much more sensitive than the
remaining three, much more sturdy than the normal and maximum, and
somewhat more sturdy than the sum. As n increases, sensitivity and sturdi-
ness of a given statistic necessarily become worse since the number of statis-
tics considered increases exponentially. From (4.6) it can be seen that the
sensitivity is a volume of an n-dimensional rectangle. Thus it may be more
informative to find the sensitivity ‘“per dimension,” that is, look at the
normalized limit lim , _, . [Se(T, @)]'/". For a € (0, 1), all the statistics in (4.2)
have limit 0, except for Fisher which has limit 1/e. For sturdiness, (4.7) shows
that 1 — St is the probability of an n-dimensional object. When T is sum-like,
we might expect this object to be a corner of an n-dimensional rectangle. Thus
we include a factor of n! in the normalization: lim, . [n!(1 — St(T, a)]*/".
The limits are —log(a) for Fisher, —log(a)/e for Tippett, 1 — a for the sum,
and 0 for the normal and maximum statistics. Tables 2 and 3 contain some
numerical values of the normalized quantities.

TABLE 2
Se(T, 0.05)!/"

T!ln- 2 5 10 20 50 o
Fisher 0.093 0.160 0.208 0.248 0.288 0.368
Tippett 0.025 0.010 0.005 0.003 0.001 0
Normal 0 0 0 0 0 0
Sum 0 0 0 0 0 0
Maximum 0 0 0 0 0 0
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TABLE 3
[n!(1 — SK(T, 0.05)]/"

T!ln - 2 5 10 20 50 ®©
Fisher 1.265 1.857 2.290 2.599 2.825 2.996
Tippett 1.098 1.174 1.172 1.155 1.133 1.102
Normal 0 0 0 0 0 0
Sum 0.950 0.950 0.950 0.950 0.950 0.950
Maximum 0 0 0 0 0 0

Finally, we look at some statistics other than those in (4.2). Many popular
tests are of the form

n
(4.8) Ty(x) = X H Y(x;) <H,'(a)

i=1
for some continuous distribution function H, where H, is the distribution
function of a sum of n independent variables with distribution H. (It is also
common to have H depend on i.) The Fisher, normal and sum tests (4.2) are
of this form, with H being the distribution function of, respectively, —y3,
normal and uniform. Some general points can be made based on the support
of H:

1. If H has support (—»,») or (0, ), then the statistic in (4.8) is insensitive
and fragile for all a € (0, 1).

2. If H has support (—«, 0), then the statistic is neither insensitive nor fragile
for any a €(0,1). In fact, H(H,; (a)" < Se(Ty, @) < H(H,; (a)) and
H,(H Ya)) < St(Ty, a) < H,(H Y(a'/™)).

Thus, for example, since the logistic distribution H(x) = (1 + exp(—x))~! has
support (—x, ), the corresponding statistic (4.8) is insensitive and fragile.

One popular set of choice for H is the y? family, where in our setup we take
H, to be the distribution of —y2. We allow nonintegral values of v, so that
“X2” means gamma with scale parameter 1/2 and shape parameter v/2.
Letting T, = Ty, it can be shown that

2 2 n .
Se(TV,a) = P(XV = Xvn,a/n) ) if v < 2,
P(x? = x; a/n), if v> 2,
and
St(TV, a) _ P(an = n,\/f,al/n), 1f v <2,
P(Xf’l = Xf,a)’ if v> 2.

We also have that
P(x2zv), ifv<g,

lim Se(T,, a)"" = { .
e’/?, if v> 2,

n—o
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and
—log(a)T(v/2 + 1)e*/?
lim [n!(1 - ST,, @))]"" = (v/2)"" ’
0, if v > 2.

if v <2,

5. Spherical normal variables. Let X ~ N, (0, I,), where X and 6 are
n-vectors, I, is the n X n identity matrix and N, represents the n-dimen-
sional normal distribution. We are interested in testing

(5.1) H,:0=0 versus H,:6 V- {0},

where V C R”" is a closed convex cone with vertex 0. The book by Barlow,
Bartholomew, Bremner and Brunk (1972) contains a thorough discussion of
such problems. From Eaton (1970), we have that the set of admissible tests
consists of those with acceptance regions (essentially) in A(V), the set of
closed, convex and monotone [V] subsets of R”, where a set A is monotone
[V]if

(5.2) xc€Aandy—xeD(V)=yeV,

D(V) = {yly'x < 0 for all x € V} is the dual of V and y'x = L y,x,. Thus, for
example, if V=R", D(V) = {0}, so that (5.2) is vacuous, and if V is the
nonnegative orthant, the condition (5.2) is the same as (4.3).

We take T to be T(V), the set of all statistics T' such that for each «,
A(T, a) € A(V). See (2.1). For @ <1 — P(D(V)), the level « likelihood ratio
test (LRT) has acceptance region

(5.3) A*(a) = ﬂv H(y,c,),
where
(5.4) H(y,c) = {xly'x < c},

V, ={y € Vlllyll = 1} and ¢, is the constant which yields the level «. The LRT
does not exist for @ > 1 — P(D(V)), but the set A*(a) exists for all a. Note
that the statistic corresponding to the sets in (5.3) is

(5.5) T*(x) = sup y'x.
- yeV;

The next lemma is of use in this and the following sections.

LeEmMA 5.1. Suppose the sample space X is an open convex subset of R"
and P has support X. If all sets in A of (2.6) are convex and monotone [V]
(56.2), and A includes all half-spaces (5.4) with y € V, and ¢ € R, then
for (2.2),

(5.6) Ag = N H(y,c5(7)),

YEV,
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where cy(y) is given by
(5.7) P(y'X = cg4(y)) = B.

ProorF. Since by assumption all sets (5.4) are in A, we have “ C ” in (5.6).
If x & A, then by (2.2) there exists some T € T such that x & A(T, B). Since
A(T, B) is closed, convex and monotone [V], the separating hyperplane theo-
rem guarantees that there exist y € V, and constant ¢ such that A(T,B) c
H(y, ¢) strictly and x & H(y, c). Thus 1 — 8 = P(A(T, B)) < P(H(v, ¢)) since
P has support X, so that ¢ > ¢(y). Thus x ¢ H(y, c(y)); hence x is not in the
right-hand side of (5.6), so that we have (5.6). O

Our main result for this section follows.

THEOREM 5.2. The statistic T* in (5.5) is essentially uniquely most sensi-
tive and sturdy in T(V) for all a. In addition, for T € T(V),

(5.8) Se(T,a) = 1 — <1>( sup  sup 'y'x)
ve€V, x€A(T, a)

and

(5.9) St(T,a) =1 — FT(xérggaT(x)),

where ““0” indicates boundary, and A, is as in (5.6) with c (y) =1 — ®(a).

Proor. The result about A, follows from Lemma 5.1 since for y € V,,
v'X ~ N(0, 1). Equations (5.8) and (5.9) then follow from Lemma 2.1. That T*
has the stated properties follows from Lemma 2.3 by comparing (5.3) and A,
and noting that P(A ) is continuous in a. O

Note that (5.8) implies that a statistic is insensitive if and only if the
acceptance region is unbounded in some direction y € V;. In the special case
that V = R", the set A(V) consists of all convex sets, T *(x) = ||x| by (5.5), and
(5.8) and (5.9) become

(5.10) Se(T,a) = 1 - cp( sup ||x||)
x€A(T, a)

and

SUT,a) = 1 - Fy( inf T()),

llxll=c,
respectively, where c, = v/ Xﬁ,a . Also, T is insensitive and fragile if and only if
A(T, a) is unbounded.
The above results can be easily extended to any spherically symmetric null

density for X. The only change will be that the “®” in (5.8) and (5.10) needs
to be replaced by the distribution function of X,. Of course, the set T(V) may
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no longer consist of the acceptance regions of admissible tests. A sufficient
condition for T(V') to contain all the admissible regions is that the density of X
be q(lx — 6]|%) for some convex function g. For another example, let X ~
N,(6,0%I,) and W ~ 0?2, with X and W independent. Problem (5.1) based
on (X, W) is scale invariant, the maximal invariant statistic and parameter
being, respectively, Y =X//W/u and 6 = 6/0. Now T(V) defined on the
Y-space yields the set of tests which are admissible among invariant tests. [See
Oosterhoff (1969) for the case that V is the nonnegative orthant. The general
case can be shown using the ideas in Eaton (1970) and Oosterhoff.] The results
in Theorem 5.2 then follow for this problem with X replaced by Y and &
replaced by the Student’s ¢ distribution on u degrees of freedom.

Finally, suppose that X has a regular exponential family density f,(x) =
&(x) exp{6'x — ¥(6)}, where ¢ is the normalizing constant. Eaton (1970) shows
that T(V) consists of the admissible acceptance regions for (5.1) based on X.
Then Lemma 5.1 gives the set (2.2), and Theorem 5.2 shows that the
most sensitive and sturdy statistic has acceptance region A, for B satisfying
P(Ap) = a. The LRT has acceptance region B, = N, .yH(y, K, + ¢(y)),
where K, is chosen to provide level a. Thus both tests are intersections of
half-spaces, the difference being that the most sensitive and sturdy test takes
all the half-spaces to have the same null probability, while the LRT takes
half-spaces determined by the likelihood function. In the normal case, the sets
of half-spaces turn out to be the same.

6. Other examples. We look at two further examples which are interest-
ing in their own right and shed some more light on the most sensitive and
sturdy criteria.

6. 1 Bartlett’s problem. Suppose W, W,,...,W, are independent, W, ~
o’x?. We wish to test Hy: o = -+ = o versus HA o # o} for some i # j.
ThlS problem is scale invariant. We will restrict conmderatlon to scale-invariant
statistics, which is equivalent to considering statistics based on the maximal
invariant statistic x = (x,...,x,_;), where x; =y, -y, and y, = w;/X%?_w,.
Cohen and Marden (1989), Corollary 2.2, show that a necessary condition for a
test to be admissible among invariant tests is that its acceptance region be
essentially convex in x. Thus we take T to contain all the statistics T'(x) such
that the corresponding acceptance regions are among the admissible convex
sets. It is also clear from their Theorem 2.1 that all half-spaces (5.4) yield
admissible (among invariant) tests. Lemma 5.1 then shows that A, is as in
(5.6) and (5.7), where now V; is the unit sphere. It is not easy to find the
constants c¢_(y). We will instead present a large sample approximation to
them, and thus derive an approximate most sensitive and sturdy statistic. We
will assume that v;/n — p; > 0 for each i, where n = L ;. It is then straight-
forward to show that vn (X — p) = N(0, 2(R + ppJ,—1)) in distribution, where
p=(py...,pp,_1), R is the diagonal matrix with entries p;,...,p,_; and

J,_; is the (p — 1) X (p — 1) matrix of 1’s. Thus the set in (5.7) contains,
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approximately, the points x such that

(6.1) vz~ p) 3> 2
VZ[Y'(R +pyd,-1)]

The corresponding approximate statistic is then the supremum over y of the
left-hand side of (6.1), which is the square root of

1 -1
Q(x—mKR+pth)(x—p)

2 [(3:=p) = (3 =P
> — ,
i=1 p;

where ¥ and p are weighted averages with weights 1/p,. That is, the statistic
is the weighted sample sum of squares of the differences (y; — p,). Also,
asymptotically, the null distribution of T approaches ,\/3_1, so the test is easy
to implement.

Neither the exact most sensitive and sturdy statistic nor our approximation
to it (6.2) is equivalent to the LRS, which is ITy}:. The LRT is admissible, and
the test (6.2) is admissible among invariant tests. It is open whether the exact
optimal test is admissible.

T(x)
(6.2)

6.2. Testing for one outlier. We assume a standard normal linear model
with a possible mean-shift outlier, so that we observe Y = DB + 6 + E, where
D is a fixed n X p matrix of rank p <n, B is a p X 1 parameter, E ~
N,(0,02I,) for 02 > 0 and & is an n X 1 parameter vector,

5 € Q = {w € R"|w; # 0 for at most one i}.

The vector & models a possible outlier, where 8 = 0 means there are no
outliers. Thus we test Hy,: 6 = 0 versus H,: § € Q — {0}. The problem is
invariant under the affine group (0, ©) X R? actingon Y via(a,b) Y - aY +
Db. The maximal invariant statistic is the vector of normed residuals, x =
r/llrl, where r = Qy and @ =1, — D(D'D) 'D’, and the maximal invariant
statistic is /0.

The level a likelihood ratio test has rejection region

(6.3) A= {I"z"/ Q; < Ca}-
i=1
Equivalently, the LRS is the maximum of the Ir;l/ V@i 's.
First, take T to be T}, the set of statistics T such that

n

(6.4) A(T,a) = N{e;<rn <d}

i=1
for possibly infinite constants ¢; and d;. Since the distribution under H, of r
is invariant under sign changes, the set in (2.2) is as in (6.4) with ¢, = —d,,
and

(6.5) P(lrl<d;)=1—-a foreachi.
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It can be shown that (y'X)?/y'Qy ~ Beta(1/2,(n — p — 1)/2). Thus with
y =(1,0,...,0), we have that d; in (6.5) is \/@,,b, , where b, is the upper «
point of a Beta(1/2,(n — p — 1)/2). Hence (6.4) becomes (6.3), which with
Lemma 2.3 can be used to show that the LRS is most sensitive and sturdy
among those in T;.

Next, take T to be T,, the set of admissible statistics. Brown and Marden
(1989) can be used to show that the conditions of Lemma 5.1 hold again; hence
(5.6) holds. Thus

. y'x)2
(6.6) A, = {x| sup — <b,
-1 Y@y

Since @ is idempotent, ||x|| = 1 and @x = x, the supremum in (6.6) is 1. Thus,
unless @ = 0, A, is empty. From Lemma 2.1 we obtain that for a« > 0, every
statistic is insensitive and fragile. The dimensionality of the problem may
provide an explanation for what has happened. The vector x is restricted to
the unit sphere on the (n — p)-dimensional subspace given by Q. There are
also n — p directions for admissible tests to protect against. Thus there are too
many tests, in contrast to T, for which there is a finite number of directions.
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