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TESTING FOR SPHERICAL SYMMETRY OF A
MULTIVARIATE DISTRIBUTION

By LubwiG BARINGHAUS

University of Hannover

Rotationally invariant tests based on test statistics of the von Mises
type are proposed under the hypothesis of spherical symmetry of a multi-
variate distribution. The tests are distribution-free when the hypothesis of
spherical symmetry is true. The asymptotic distributions of the test statis-
tics are derived under the null hypothesis and under any fixed alternative.
A simple criterion for consistency is given. The results are illustrated by
numerous examples of test statistics which give rise to tests being consis-
tent against all alternatives.

1. Introduction. There is a considerable body of literature relating to
the problem of testing for symmetry of a one-dimensional distribution. How-
ever, only a few of the tests proposed for this problem are consistent against
any fixed alternative. For example, the analogues of the Kolmogorov—Smirnov
test and the Cramér-von Mises test given by Butler (1969) and by Rothman
and Woodroofe (1972), respectively, enjoy this property. For the hypothesis of
spherical symmetry of a multivariate distribution, the present work aims to
develop some broadly useful tests that are consistent against general alterna-
tives. It is assumed that the center of symmetry is known; in Euclidean
(p + 1)-dimensional space, it is taken to be the origin of the coordinate system
chosen. A (p + 1) X 1 random vector X, then, is said to have a spherically
symmetric distribution if X and HX have the same distribution for all
(p + 1 X (p + 1) orthogonal matrices H. The basis for our tests is the
well-known fact that if the distribution of the Euclidean length |X| = (X'X)!/2
of X is continuous, the distribution of X is spherically symmetric if and only
if |X| and |X]”'X are independent and |X| ™ 'X is uniformly distributed on S,,
the unit hypersphere in (p + 1)-dimensional space [see Kariya and Eaton
(1977)]. Therefore, based on a random sample of (p + 1) X 1 random vectors
Xi,..., X, with continuous distribution function F(x) = P(|X;| < x), testing
for spherical symmetry is equivalent to testing simultaneously for indepen-
dence of |X;| and Z, = |X,|”'X,, and for uniformity of the distribution of the
Z; on S,. In fact, for the special case p = 1, Smith (1977) suggests testing for
circular symmetry by using the test statistic

U, = n[:foz”Yn(t, 8)? dF.(t,6),
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900 L. BARINGHAUS

where

Y.(2,0) = F,(t,6) - % n(2)0
(1.1)

2w

1 on 1
[T\ Fu,0) = 5= F,(2)6]|do,
0 2

t>0,0<6<2,
F,(t,6) is the empirical distribution function of the polar coordinates (1X;], 6;)
of the X;, the 6, being the angles with respect to an arbitrary polar axis, and
F,(¢) is the empirical distribution function of the |X;|. The third term on the
right-hand side of (1.1) is added to get a test which is invariant under
rotations. The limiting null distribution of U, is seen to be that of a weighted
infinite sum of independent y? variables. The test based on U, is shown to be
consistent against all alternatives. In his paper, Smith writes that it is not
clear how the present method could be generalized to get a test for spherical
symmetry in higher dimensions which is invariant under rotations. However,
integrating Y, (¢, 6)® with respect to (1/2m) d@ dF,(¢) instead of dF,(t,0), we
get the test statistic

n

T = 2—w~f()°°(f()2”Yn(t,e)2do) dF,(),

which can be written as

1 _ R, -1 R, -1
(1.2) T,-— L h(ZiZj)mln(l— 1= == )

i,j=1 n n
where, for v =1,...,n, R,, is the rank of |X,| in the sample |X,|,...,|X,I,
and the function h(¢), —1 < ¢ < 1, is given by
1
h(t) = — — — + 2 1.
€2) 3~ 1, areeos ¢ Py (arccost)”, ltl <

This function has a representation of the form
h(t) = Y «,CXt), <1,
g=1
where C2(¢) is the Chebyshev polynomial of the first kind of degree ¢ and the
coefficients a, are seen to be

1

Q=F2qz, q=1,2,....

[¢3
Using the basic trigonometric identity cos(a — 8) = cos a cos B + sin « sin 3,
it is seen that
Co (2

zZ) 0 , 0 ’
5 = [C2(212)C(2'2) dw(2), 21,22 € 8,

(1.3) 5
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where o denotes the uniform distribution on S;. Thus, denoting by u, the
empirical distribution of the sample (Z,, IX,]),...,(Z,, |X,]), we get

(14) T,=n fl2aq[[qu°(w’z)I[0’x](y) d,u,,(w,y)] dw ® F(z,x).
o

The statistic 7, has the same limiting null distribution as the statistic U,
proposed by Smith. Moreover, for any fixed distribution of the (Z,, |X,]),
(1/n)T, tends to

¢ = Z 2a, [| E(CO(2iz) 11X, < 2))|" dw ® F(2,)

= E(h(2{Z,)min(1 - F(X,]),1 - F(X,))))
in probability. Since all the «, are positive, we have £ = 0 if and only if
(1.5) E(CX(Ziz)I(X,l <x)) =0 forallg=1,2,..., 28,220,
the latter being equivalent to
E(cos(q8,)I(IX,| <x)) =0 = E(sin(q6,)I(X;] <x))

for all y = 1,2,..., x > 0, where 0, is the angle of X, with respect to the
polar axis. However, this is true iff for F-almost all x > 0 the Fourier
coefficients of order g > 1 of the conditional distribution of 6, given |X;| = x
vanish. Thus, £ = 0 if and only if 6, is uniformly distributed on [0, 27) and is
independent of |X,|, that is, ¢ = 0 iff the distribution of the X; is circularly
symmetric. It follows that the test obtained by rejecting the hypothesis of
circular symmetry for large values of T, so as to get a test of given size
a € (0,1) is consistent against any fixed alternative.

Now, any other statistic T, of the form (1.2) which is based on a function
h(t) admitting for |#| < 1 an expansion into a series of Chebyshev polynomials
C(¢) with positive coefficients @, seems to be a suitable test statistic for
treating the hypothesis of circular symmetry. Changing from the case p = 1 to
the general case p > 2, we have, replacing the Chebyshev polynomials C°(t)
by the Gegenbauer polynomlals C)(tyof order A = (p — 1)/2, the correspond-
ing assertions to (1.3) and (1.5). To be precise, let » be the uniform distribu-
tion on S,, and let E, C Ly(w) be an orthonormal basis for the real surface
(spherical) harmonics of degree g, ¢ > 0. Then the following hold:

1. E, has v(p, q) = (pzzlz) +(p+q1 1.
2. The vector space spanned by the union of all the E , g > 0, is dense in the
space of continuous functions on S, with respect to the supremum norm
on S,.
p
3. Surface harmonics of different degree are orthogonal with respect to .
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4. The addition formula holds, that is,
Y. o(2)e(w) =d(p,q)CH2w), 2, w€E€S,q=1,

¢EE,
where d(p,q) =2 or d(p,q) =v(p,q)/C}(1)=(1 + q/A) according as
p=lorp=2

Also E, = (1}. [See Stein and Weiss (1971), pages 140-148, and Erdélyi,
Magnus, Oberhettinger and Tricomi (1953), pages 232-248.] As a consequence,
we get (1.3) and (1.5) again and obtain that, for p > 2,

' C)(2{z,)

(13) = [CGCN ) de(z), a5 S,

and

i) E(C}(Ziz)I(X,l <x)) =0 forallg=1,2,...,2€8,,2>0,

if and only if the distribution of X, is spherically symmetric.

Now, it is obvious to treat the hypothesis of spherical symmetry with a test
statistic 7, of the form (1.2), where the function h(#), |¢| < 1, admits an
expansion into a series of Gegenbauer polynomials with nonnegative coeffi-
cients,

(1.6) h(t) = f a,CHt), <1
q=1

Note that, since |C}(#)| < C}(1) for |t| < 1, the series converges uniformly for
|t| < 1. Moreover, |h(?)| < h(l) for |t| < 1, and h is continuous on [—1, +1].
Note also that (up to additive constants) by a theorem of Schoenberg (1942)
the class of functions h(¢) admitting an expansion of the form (1.6) coincides
with the class of continuous functions that are positive definite with respect to
S,. A function h(?), —1 <t < +1, is said to be positive definite with respect
to S, if

n

Y cich(zjz) =0, n=12,...,

J k=1

for all real c; and points z; € S,,.
As in the two dlmensmnal case, the statistic T, can be written as

2
(14) T, -nz ] C2we) b u3) di(w )] do o Fo(a2),

where a} = (1 + ¢/Ma, and u, and F, are the empirical distributions of the
(Z;, 1X; ) 'and 1X,l, respectlvely

We remark that test statistics of the form (1 /L] j-1h(Z;Z)) with h asin
(1.6) were proposed by Giné (1975) to treat the hypOtheSlS of umformlty for a
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random sample Z,,...,Z, on S,. Thus, in a sense, we are dealing with
adaptations of Gine’s uniformity tests. Besides the motivation given by Giné,
there is an intuitive approach to these tests. Because a uniformity test should
be invariant with respect to orthogonal transformations of the data, let d be a
metric on S, satisfying d(Hz, Hz') = d(z,2'), 2,2’ € S, for all orthogonal
(p + 1) X (p+1) matrices H, and put V, =1/n)L};_,d(Z;, Z;)*. Then,
intuitively, V, tends to be larger if the hypothes1s of umformlty is true that is,
this hypothesis should be rejected for small values of V,. Now, Bochner (1941)
proved that the metric space (S,,d) can be 1sometrlcally embedded in the
Hilbert space I, iff the metric d is of the form d(z,, z,) = (h(1) - h(z{z))'"2,
where 4 is as in (1.6) with positive coefficients «,. But then, up to an additive
constant, V, = —-(l/n)El 1M Z/Z).

Obv10usly, T, is rotationally invariant. Moreover, by the continuity assump-
tion on the distribution of IX;l, it is distribution-free when the hypothesis of
spherical symmetry is true. The asymptotic distribution of T, in null as well
as nonnull cases is derived in Section 2. Consistency properties of the test
obtained by rejecting the hypothesis of spherical symmetry for large values of
T, are also discussed in Section 2. For the proofs, only standard theorems on
V-statistics are used. Examples of functions h(¢) admitting expansions into
series of Chebyshev polynomials or Gegenbauer polynomials with positive
coefficients and, therefore, providing tests that are consistent against general
alternatives are given in Section 3. Approximations to the limiting null distri-
butions of the test statistics proposed in Section 3 are suggested in Section 4.
An impression on the accuracy of these approximations is offered by some
numerical computations and simulations. The paper concludes with some
remarks concerning possible extensions and applications.

2. Asymptotic properties of the tests and test statistics. Recall that
F is the continuous distribution function of the |X,|. Introducing the indepen-
dent random variables U; = F(IX,]), i = 1,..., n, being uniformly distributed
on the interval [0,1], and denoting by F.* the empirical distribution of the
Ui,...,U,, we may write the statistic T, as

1 n
-/ [;i,gh(zizj) (max(U], ;) <u)]an*<u>.
Let us define another statistic,

T/ = j;l[% Zn: h(Zi’Zj)I(max(Ui, U)) < u)] du

i,j=1

1 n
-— ;: h( )mm(l U,1-U),

i 1

being a V-statistic of degree 2.
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THEOREM 2.1. On the null hypothesis of spherical symmetry, T, and T, are
asymptotically distributed as

where the W, , are independent random variables distributed as x2, ., With
_[ptq—2 pt+tg-1
V(p’q)_( p-1 )+( p-1 )

and dq2= a,/2 0or &, =a,/(L+q/A) and A = (p — 1)/2 according as p = 1
orp > 2.

Proor. Define the kernel k((z;, vy), (25, v5)) on (S, X [0,1D x (S, X [0,1])
by

k((21;v1), (25,05)) = h(2{zz)min(1 — vy, 1 — Ug).

Let ¢)'(2), m =1,...,v(p,q), be v(p,q) linearly independent real surface
harmonics of degree g, and let the ¢ " be orthonormal on S, with respect to
w, i.e.,

f[w(z)] w(dz) =1, m=1,...,v(p,q),

[ei2)ep(2)o(dz) =0,  Lm=1,....¥(p,q), L *m.

Define ¢.".(z,v) = \/—<p’”(z)cos((r - 3)mv),z€S,,0 <v <1 Then

[ (21,0 R((21,01), (22, 02))(d2r) dvy = N7 45722, 02),
2,€8,,0<v,<1,

where A7, = d[(r — )] % In view of E(k((Zy,Uy), (2, vy)) =0 for all

q,r

2, €8, vze[O 1], and

< oo,

SPAGEE ‘2][3;%0;(1)

we can apply Theorem 2.3 of Gregory (1977) to obtain the result for the
V-statistic T/. When the hypothesis of spherical symmetry is true, we
have E(h(Z '2)) = 0 for all z € S,. Therefore, E(h(Z;Z;)) = 0 and
E(h(Zl’Zz)h(ZéZ.g)) = 0. By noting that

d

R, -1

o - B2 ) <o)
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2 1
o)
n
it is easily seen that E(|T, — T,|>) = O(1/n). Hence, T, has the same limiting
distribution as T)). O

and that

R,,-1 R,,-1
E||max(U,, U,) — max( ) )

n n

In the work of Baringhaus (1988) the limiting distribution of T, is obtained
also for suitable sequences of contiguous alternatives. It turns out to be the
same as that of the infinite sum of random variables stated in Theorem 2.1,
the W, . being noncentral Xf(p’ ¢ variables now. For a sequence of contiguous
alternatives chosen, one may try to find that function h(¢), positive definite
with respect to S, giving maximal asymptotic power. To derive results in this
direction, one may consult the paper of Neuhaus (1976) dealing with this
subject in a more general framework.

The asymptotic distribution of T, for any fixed nonnull distribution is
stated in Theorems 2.2 and 2.3.

THEOREM 2.2. For a fixed alternative, put
¢ = E(h(2{Z;)min(1 - U;,1 - Uy)),
o?=Var(h(Z,,U,)), %= Var(g(Uy,))
and
{= COV(hl(Zp Ul)!g(Ul))’

where hy(z,u) = E(h(2'Zy)min(1 — u,1 - U,), z € S, 0<u<1l, and
8(w) = E(h(Z{Zy)], ,(max(U,, Uy))), 0 < u < 1. Assume that o is positive.
Then, as n — =, the limiting distribution of Vn (1 /)T, — &) is normal with
mean 0 and variance 402 + 4¢ + 72,

ProoF. Define the statistic T, as before. Then from standard results on
U-statistics and V-statistics [see, e.g., Hoeffding (1948)] it follows that

1 1A
\/E(;Tn' - f) = 2%77(;i2=:1h1(zi,l/3) - f) +0,(1).

Now let 7, be the empirical distribution of the n? random variables
(h(Zi’Zj), min(l - U,,1 - U))), and let 7* be the distribution of the random
variable (h(Z;Z,), min(1 — U;, 1 — U,)). Putting

n

1
Wn(u)=\/r7(;Z I[O’u](l—Ui)—u), 0<ucx<l,
i=1
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the random variable
1 1= 1
D, - x/r?(;Tn - ;iglg(ui)) e

can be written as D, = [tW, (uXr, — 7*Xd(¢, u)). Since W,(x) converges in
distribution to the Brownian bridge it follows that D, tends to zero in
probability. Hence,

n (1, - £) = a5 - f) + m(%ég(l&) - f) +0,(1)

1 7
- £ @bz, u) + W) - 5e] + 0,00,
i=1
which yields the desired result. O
Before handling the degenerate case o2 = 0, we state the following result.

LEMMA. The following assertions are equivalent:

(a) o2 =0.

(b) ¢=0.

(c) For almost all v € [0, 1), the conditional expectation E(h(Z{2)IU; = v)
is zero for all z € S,.

Proor. If o = 0, then h(z, u) is constant on S, X [0, 1] with probability
1. Let u — 1 to obtain that the constant is 0. Hence, (a) implies (b). From the
representation

E(h(Z{Z,)min(1 - U,, 1 - Uy))
_ qgla;‘/f[E(C;‘(Zl’z)lm,u](Ul))rw(dz) dv,

we deduce that if E(h(Z{Z,)min(1 — U;,1 — U,)) = 0, then for any g with
a, # 0,
0= E(C«;(lez)l[o,vl(Ul))
= B(Io (U E(C)(2i2)|U,)) forall z€S,,v e 0,1].
Equivalently, for ¢ with « ¢ * 0, we can say that for almost all v € [0, 1].
0= E(C)(2{z)|U; =v) forallzes,,.
Thus, (b) implies (c). Obviously, (c) implies (a). O

THEOREM 2.3. Let @ be the fixed alternative distribution of (Z,,1X.)).
Assume that o® = 0. Let k((2,,v,),(25,0,)) be the kernel defined in Theorem
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2.1. Let {A,, g = 0} denote the finite or infinite collection of eigenvalues of k
corresponding to orthonormal eigenfunctions {¢,, ¢ = 0}, i.e., for all q and j,

fk((zl’ V1), (22, Uz))?’(zl, vl)Q(d(zl’ Ul)) = )‘q¢q(zz’ vy) a.e. (Q),

Je,9; dQ = 0 if g # j, and j(pg d@ = 1. Then T, is asymptotically distributed
as LA quz, where W, W,, ... arei.i.d. standard normal variables.

Proor. Since the function A(#) is continuous and positive definite with
respect to S,, all eigenvalues A, are nonnegative and ¥ A, < . Hence, by
Theorem 2.3 of Gregory (1977), the statistic T, defined previously is asymptot-
ically distributed as X A qu2. Using part (c) of the lemma, it can be verified that
E(T, - T,» = 0(1/n). O

Let us discuss now the consistency properties of the test ¢, rejecting the
hypothesis of spherical symmetry for large values of T,,. For any n let ¢, be of
fixed size a, where 0 < @ < 1 is given.

THEOREM 2.4. Let Q be the fixed alternative distribution of the X;. The
sequence {¢,} of tests ¢, is consistent against @ if and only if £ > 0.

ProoF. Since n~!T, tends to ¢ in probability, we have consistency if
§>0.If £ = 0, then 0 = 0 and T, is asymptotically distributed as £ A W2, It
follows at once that for any positive x the limit of P(T, < x) is positive,
whence {¢,} is not consistent. O

Obviously, if some of the coefficients «, in the C;(¢)-expansion of h(z)
vanish, there can be quoted easily an alternative distribution @ such that {¢,}
is not consistent against @. However, if all the coefficients @, are positive,
then ¢ > 0 for any fixed alternative distribution @. Thus, we can state the
following result.

CoOROLLARY. If the test statistic T, is based on a function h(t) which
admits an expansion of the form (1.6) with positive coefficients a,, q = 1,2, ...,
then the sequence {¢,} of tests ¢, is consistent against any fixed alternative.

3. Examples. For applications, it is important to present functions A(#)
of the form (1.6) with values that are easy to calculate for all values of t.
Moreover, the distribution of the test statistic based on such a function A(#)
should converge rapidly to its limiting null distribution. Additionally, to treat
the limiting null distribution numerically, the coefficients «, in the expansion
(1.6) should be easy to calculate. Regarding also the results stated in Sections 4
and 5, we assert that the functions 4(¢) presented in this section comply with
these demands. However, there may be other functions that are even better in
this respect.
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We treat the examples for the cases p = 1 and p > 2 separately. For p > 2,
first we adapt the most interesting test statistic proposed by Giné (1975) and
Prentice (1978) for testing of uniformity on S,. As was shown by Giné (1975)
and Prentice (1978), the function

(3.1) hy(¢) =1 — 27! arccos ¢, -l1<t< +1,

has an expansion into a series of Gegenbauer polynomials of odd degree, and
the function

LA+ 3) 2

2r'(A + 1)

1/2

' 1
(3.2) hz(t)=§—p 1-t»"", -1=<t<l1,

has an expansion into a series of Gegenbauer polynomials of even degree, the
coefficients involved being positive for both the functions. Then any linear
combination ch(¢) + dhy(¢) of h(¢) and h,(¢) with positive weights ¢ and d
give rise to a test for spherical symmetry which is consistent against all
alternatives. For practical purposes, it is convenient to put ¢ =1 and d =
2(rp) Y 2I(A + 1) /(T(A + 3))?, yielding the function

(83) h(t)y=c, - 27'1[arccost +(1- tz)l/z], -l1<t<l,

where ¢, = 1 + 4(wp) T2 + 1)/T(A + ). It has a representation of the
form (1.6), where

2
2¢\ 2¢-1 [T(A+1DT(qg-3)
4 =1+ = =1,2,
(3.4) e ( A)72(2q+p) Tg+a+y) |7 ¢ 2
and
2
2q -1 I'(A + 1)I'(q - 3)
: =1+ -2 =1,2
(3 5) a2q—1 (1 A )77' [ F(q + A+ %) ’ ) “y
The test statistic T,, based on h(¢) can be written as
T - (2n + 1)(n + 1)c,
(3.6) " 6n
' 4 _ _ R, -1 R, -1
-— ¥ [zZ+ sinZiZj]min(l - 11— =2 )
TN 1 ci<j<n n n

where ZZ-= arccos Z;Z; is the spherical distance (great circle distance) be-
tween the points Z; and Z; on S,. Each of the functions 4 ,(¢), i = 1,2, itself
provides a suitable test for testing the hypothesis of spherical symmetry. The
test based on & (¢) is an adapted version of Ajne’s test for testing of uniformity
on S, [see Mardia (1972)]. The test statistic based on h,(#) is an adapted
version of Giné’s statistic for testing of uniformity on H,, the sphere S, with
antipodes identified. However, the test based on the single function %,(¢) is not
consistent against all alternatives. To get a further test enjoying this property
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we note that h,(¢) = L5 _;a,,_1Cs,_(t), where a,,_, is given in (3.5), and

20'(A + 1) ( 2q)2[(q -)IrA +17?
1

hy(t)? = —_— +
1(?) w2 qz A wI'(A+q +1)

It <1,
where ¢'(2) denotes the first derivative of the digamma function. The repre-
sentation (8.7) is easily derived from the power series of (/2 — arccos t)2,
|t| < 1, by equating the polynomials (2¢)%? as

(2g)IT(A) & 2k + A
F(A+qg+1) ;T (g +A+1)(q—k)!
Any weighted sum of h,(¢) and h,(¢#)? — 2¢'(A + 1)/7? can serve as a kernel

function which provides a test being consistent against all alternatives. We
remark that

(26)* = CH(t), It <1

2¢'(A + 1) 8 i 1
? 72q0(2q+p+1)
Giving weights & to h,(#) and & to h,(#)? — 2¢'(A + 1)/72, and putting
3 1 * 1
d,= -5 — 2 2
32 (2m)° ,;—0(2¢+p+1)

we get the kernel function

arccos¢  (arccos t)’
(3.8) h(t) =d, - yp + Py -l1<t<1.

The test statistic based on this function can be written as
(2n + 1)(n + 1)d,
n 6n
(39) . R,-1 _ R, -1
- ) — (2m) ZZ ]mm( - , 1 — )
n

2mn 1si<jsn n

To obtain other test statistics, we start from the generating function for
Gegenbauer polynomials,

(1 - 2tw + w?) Z (t)w lwl <1,]t <1

Then, for any fixed real number w, 0 < w < 1, the function

(3.10) R(t) = (1—2tw+w?) " -1, =<1,

has an expansion of the form (1.6) with positive coefficients «, = w? Further
examples of this kind are easily obtained by starting from other generating
functions for Gegenbauer polynomials.
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For the case p = 1 the examples posed for p > 2 can be adopted. In fact, a
function A(#) which is positive definite with respect to S, is also positive
definite with respect to S,, when p’ < p is a positive 1nteger If h(¢) has the
expansion h(t) = L} _,a, C A(t), it follows from Gegenbauer’s addition for-
mula,

[q/2]

C)2) = P ay Coax(t),
k=0

with A’ = (p' — 1)/2 and
CT(W)(g =2k + M)T(E+A = A)T(qg =k + )
e T(AT(A = A)EIT(qg —k + A + 1) ’

Ay

that the expansion of h(#) into a series of Gegenbauer polynomials C;"(t) is

) [q/2]
(3.11) h(t) = Y a Z a, Clon(t), -—l=<t<+1.

q=0 =
If p' =1 (e, X' =0), @, ,C)"5,(¢) should read
9 I'(k+A)I(g—Fk+2A)

T(A)’k!(q - k)!

q
}C;’_zk(t), k< 3

{ T(A +q/2) }2 Y
T(A)(g/2)!]) 2
Note that any coefficient of C)(¢), ¢ = 1,2,..., in the C;(#)-expansion of A(¢)
is positive if any coefficient of C)t),q=1,2,..., in the C’;(t)-expansmn of

h(#) is positive. One may use formula (3. 11) to derive the Cl;)(t) expansions of
the functions h(¢) stated in (3.3), (3.8) and (3.10). However, in view of
C2(#) = cos(q arccos ¢), these expansions can also be obtained from the Fourier
series expansions of h(cos #), 0 < 6 < 7. Applying the latter method to the

functions

4 2 1/2
(3.12) h() =1+ — - ;T—[arccost +(@1-)"7,
313 bt 1 arccost' (arccost)®
: =— - + ,
( ) ( 12 4 87?2

the coefficients «, in the C;’(t)-expansion are seen to be

(8.12) ay, = 8[(2¢ — 1)(2¢ + D72, @y, =8[(2¢ - 7] %,
(3.13) a, =27 Y(mq) %,

respectively. See Ryshik and Gradstein [(1957), formulas 1.444, 6, and 7] and
Hansen [(1975), formula (17.2.8)]. Formula (3.11) may be used to derive the
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C.(t)-expansion of
h(t) = (1 - 2w + w?) " —,Fy(A, A;1;w?), A>0,0<w<1.

An easy computation gives

(Mg

h(t)=2) quFl()‘,)‘+Q3Q+l;wz)TC;)(t), -1<t<+1.
q=1 !
For the special case A = 1, we have
3.14 h(t) = 22— W) 1<t<+1,0 1
. =——, -l<t<+1,0<w<]1,
(3.14) ® 1 - 2tw + w? = w

which has the expansion

(8.15) h(t) =2 ) wiCl(t), -1<t<1,0<w<1.

g=1
Note that this function is one of the generating functions for the Chebyshev
polynomials of the first kind.

We point out that the test statistic based on the function given in (3.13) is
the modified version of the statistic proposed by Smith, already obtained in
Section 1. The considerations given previously suggest that T, from (3.9) is its
counterpart in the case p > 2.

4. Approximations to sampling distributions. First, we look at the
bivariate case and consider the test statistic based on the function
1

(4.1) h(t)=7—4—t, ~1<t<+1,
7

obtained from (3.14) by putting w = %. In view of
0 y2
coshy=[]|1+ ———
r=1 772(r - %)
and

b sinh
IT cosh(2-9y) = —,
qg=1 y

the Laplace transform of the asymptotic null distribution of the test statistic
T, based on A(t) given in (4.1) is V2s /sinh V25, s > 0. It equals

® 2s \ 7!
q]:[1 1+ ) s>0,

which is known to be the Laplace transform of W, + W,, where the W,,
i = 1,2, are independent random variables and the distribution of W, is the
same as the limiting null distribution of the Cramér-von Mises statistic. It is
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also well known that the distribution of W, + W, is the same as that of
((2/m)K)?, where the distribution of K is the limiting null distribution of the
Kolmogorov—-Smirnov statistic.

Let us now have a look at the test statistics based on the functions defined
in (3.12) and (3.13). A first-order approximation to upper tail probabilities of
the asymptotic null distributions is suggested by some Tauberian theorems for
Laplace transforms. A rigorous proof of a theorem which is in this direction
was given by Zolotarev (1961). The approximations stated in our paper are
based on Zolotarev’s work. First, let W be a random variable with Laplace
transform

a q i
1+ |——|s] , §=0,
1 2
(r=3)=
where the a, are positive real numbers satisfying ©5_;a, < «. Let a; be the
unique largest @,. Then P(W > x) may be approximated by

© a, 1 e 1 -t 2
(4.2) qulz(l T a2 - 1)2) 1:[2(1 T (2r - 1)2) eXp(_ZE:)'

In view of II7_o(1 — @2r— 172 =mn/4 and TI7_,1 — y%2/@r — 1)?) =
cos(my/2), (4.2) reduces to

(4.3) ;L]flzcos(%(z—j)l/z)]_lexp(—%).

To give first-order approximations to upper tail probabilities of the asymptotic
null distributions of the test statistics proposed in the case p > 2, let W be a
random variable with Laplace transform

-v(p,q)/2
%q
> s) , s=>0,
1 2
z)m

(1+q/M)(r -

where the a, are positive real numbers satisfying ©5_,a,C}(1) < «. Let a; be
the unique largest a,. Then P(W > x) may be approximated by

m{a,(1+1/)) ~172\) ~¥P.9)/2
cos| & a1+ q/x)

V>(1+l)1’3)

1

1+2

0 0
IT11
r=1qg=1

4 (p+1)/2 o
I
q=2

(4.4)

X P
A da

where the random variable V is distributed as x2, ;.

Better approximations to upper tail probabilities may be obtained by using a
refined version of Zolotarev’s theorem stated in a paper of Hoeffding (1964).,
There are various methods of expansion and inversion which may give still
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better approximations. The reader is referred to the work of Blum, Kiefer and
Rosenblatt (1961) and the references given therein.

5. Simulations and numerical results. In the case p =1, ie., the
two-dimensional case, let T}, T}, and T,!; be the test statistics based on the
functions

Bt 1 arccost  (arccos t)2
=— - +
i) = 1 4 8w

4 2
) =1+—= - —[arccost +(1- t2)1/2],
ko ko

and
(-1

7 ’
5 —t

hy() =

respectively. Correspondingly, let T2, T)% and T)%; be the test statistics based
on the functions

1 arccos ¢ N (arccos 1.‘)2
+ - ’
472 4 87?2

Ri(t) = 2
! 16

3 2
h3(¢t) = 3" ;[arccost + (1 - t2)1/2],

and
9 1/2
hy(¢) = (1_7—_7) -1,
8

obtained from (3.3), (3.8) and (3.10), respectively, by specializing there to
p = 2, i.e., the three-dimensional case, putting w = ; in (3.10).

The rows of Table 1 marked “«” give numerical values for some upper
quantiles of the limiting null distributions of these test statistics. For T},
these are values of ((2/7)K,)% where K, is the (1 — a)-quantile of the
limiting null distribution of the Kolmogorov—Smirnov statistic. For the other
statistics, the table gives approximate values offered by the approximations
suggested in (4.3) and (4.4). Thereby, the various infinite products involved
were found by numerical methods to six decimal places. Additionally, for
sample sizes of n = 20 and n = 50, Table 1 presents some empirical upper
quantiles of these test statistics obtained by a simulation study with 10,000
replications. From this, one may conclude that the (approximate) upper quan-
tiles of the limiting null distributions provide approximations to the exact
quantiles of the test statistics that are satisfactory for sample sizes of n > 20.
However, due to the fast convergence to the limiting distribution, Monte Carlo
methods provide an attractive way to calculating critical values.
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TaBLE 1
Empirical quantiles of the test statistics

n 0.750 0.900 0.950 0.975 0.990
TYL 20 0.0536 0.0729 0.0867 0.1007 0.1183
50 0.0516 0.0704 0.0852 0.0991 0.1153
® 0.0508 0.0696 0.0838 0.0980 0.1169
T, 20 0.8867 1.2058 1.4306 1.6394 1.9416
50 0.8797 1.1785 1.4000 1.6460 1.9892
® 0.8597 1.1607 1.3884 1.6161 1.9171
T, 20 0.4449 0.6321 0.7689 0.9028 1.0710
50 0.4311 0.6259 0.7759 0.9105 1.0940
@ 0.4210 0.6090 0.7469 0.8876 1.0756
T,?l 20 0.0536 0.0672 0.0770 0.0861 0.0990
50 0.0524 0.0661 0.0760 0.0844 0.0956
@ 0.0555 0.0682 0.0777 0.0871 0.0994
T2, 20 0.9178 1.1467 1.3055 1.4357 1.6383
50 0.8911 1.1208 1.2762 1.4370 1.6656
® 0.9509 1.1531 1.3044 1.4545 1.6517
T2 20 0.2178 0.2905 0.3447 0.3943 0.4564
50 0.2084 0.2785 0.3332 0.3829 0.4496
o 0.2185 0.2879 0.3395 0.3901 0.4567
6. Remarks.

REMARK 1. Due to Theorem 2.1 and the remark following the proof of
Theorem 2.1, the large sample theory of our tests is of the general form
described in Beran (1975b). Therefore, Beran’s conclusions concerning the
asymptotic power of the tests apply. To be precise, putting

vp,ary1 R, -1\’
T, or= =X 2, || »
n,q,r n mZ=1 [n igl q,r( 12 n )]

where the ¢", are defined in the proof of Theorem 2.1, we get using Mercer’s
theorem that 7T, can be represented in the form

T,= Y ¥ a[(r-4H=] T, ..
g=1r=1

The limit distributions of the T, , . under the null hypothesis and under the
given sequence of contiguous alternatives are the central and noncentral 2
distributions occurring in the corresponding limit distributions of 7|, with the
weights @, [(r — )]~ 2 Let T, 40,70 53Y, be the component with the (unique)
largest weight. Then, following Beran, for sufficiently small significance levels
a the asymptotic power of the test equals or exceeds that of the level a test
based on T, , ., depending on the noncentrality parameters occurring in the
limit distributions of the T, , ., (g, r) # (g, o). If for a sequence of alterna-

tives the limit distribution of T, , , is central xy* while for some T, apr, 1018
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noncentral y?2, the power of the test based on 7T, is a small fraction of that
based on T, , ,. The approximations to the asymptotic power proposed by
Beran (1975a) can also be adopted. Additionally, Beran’s results concerning
the local asymptotic efficiency applies, supporting the assertions on the asymp-

totic power given previously.

REMARK 2. The (local) asymptotic Bahadur efficiencies or local Pitman
efficiencies can also be computed for any two test statistics of the form (1.2) or
for any test statistic of the form (1.2) with respect to the likelihood ratio
statistic obtained if the X; have a normal distribution with mean vector zero
and covariance matrix 3, which is assumed to be unknown. For a detailed
discussion, we refer to the work of Baringhaus (1988), which points out that
the results carry over to the broader class of test statistics obtained from (1.2)
by replacing min(1 - (R,, — D/n, 1-(R,; — 1/n) by k(R,;, — D/n,
(R,; — 1)/n), where k(u,v) is a suitable kernel on [0, 1] X [0, 1]. As a conse-
quence, one is able to pick functions A and % providing local asymptotic
Bahadur efficiency 1 with respect to the likelihood ratio statistic in the normal
case.

ReEMARK 3. Testing for spherical symmetry can also be done by combining
a test for uniformity of the directions Z; and a test for independence of the
directions Z; and the radii |X;|. Suitable tests for uniformity on S, have been
proposed by Giné (1975) and Prentice (1978). For a test of independence
between the directions and radii, we refer to the paper of Jupp and Spurr
(1985).

REMARK 4. We have assumed that the center of symmetry u, say, is
known. If u is unknown, often it can be estimated consistently [see, e.g.,
Maronna (1976)]. If /i is an estimator of u, then putting X, =X, -/ and
Z,=X,/1X,| and denoting by R, the rank of |X,|, one is led to propose

1 R,-1 R, -1

i’j= n n

as a test statistic for the hypothesis of spherical symmetry.

When the hypothesis of spherical symmetry is true, the distribution of Tn
depends on the distribution F of the |X; — u|. Thus, to give a critical value,
one may possibly proceed by bootstrapping, that is, estimating F by the
empirical distribution F, of the |X;| or by a continuous distribution ¥,
coinciding with F, at the points of discontinuity of F, and then calculating
the critical value of 7', by assuming F, or F, to be the true distribution of the
IX; — . Since the calculation of this critical value is usually difficult, it must
in turn be estimated. Typically, this is done by Monte Carlo simulation.

It should be mentioned that the hypothesis of elliptical symmetry can be
treated in an analogous manner [Baringhaus (1988)]. For another treatment of
this hypothesis we refer to the work of Beran (1979). Additionally, one is let to
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a test for the hypothesis of normality of a multivariate distribution [Baringhaus
(1988)].

REMARK 5. Smith (1977) mentioned that tests for the hypothesis of circu-
lar symmetry apply to certain problems in animal navigation. Another applica-
tion may be to samples of wind data consisting of simultaneous measurements
of wind speed and wind direction on certain days at a certain site, where the
hypothesis of circular symmetry means independence of the direction and
speed with the direction being uniformly distributed. Samples of wind data are
studied by Jensen (1981). Assuming that the samples are taken from a
hyperboloid distribution, he also proposes a test for the hypothesis of circular
symmetry.

In paleomagnetic studies it is of importance to determine whether the
natural remanent magnetism of rock units is stable for long periods of time.
Adapting the conglomerate test [see Irving (1964)], we suggest applying a test
for the hypothesis of spherical symmetry to samples representing measure-
ments of direction and intensity of the remanent magnetism in specimens
taken from a conglomerate of the rock unit to be tested. Rejection of the
hypothesis indicates that magnetization occurred after the deposition of the
conglomerate. If the hypothesis cannot be rejected, the magnetization of
the rock unit is assumed to be stable.
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tationsschrift [Baringhaus (1988)] written at the University of Hannover. The
author is most grateful to the Editor, the Associate Editor and the referees for
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