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LARGE SAMPLE THEORY OF ESTIMATION IN BIASED
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By PETER J. BickeL? anD J. RiTov
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The Hebrew University of Jerusalem

Biased sampling regression models were introduced by Jewell, general-
izing the truncated regression model studied by Bhattacharya, Chernoff
and Yang. If the independent variable takes on only a finite number of
values (as does the stratum variable), we show:

1. That if the slope of the underlying regression model is assumed known,
then the nonparametric maximum likelihood estimates of the distribu-
tion of the independent and dependent variables (a) can be calculated
from ordinary M estimates; (b) are asymptotically efficient.

2. How to construct M estimates of the slope which are always Vn
consistent, asymptotically Gaussian and are efficient locally, for exam-
ple, if the error distribution is Gaussian.

We support our asymptotics with a small simulation.

1. Introduction. One of the most commonly used models in statistics
postulates that an observation (X,Y) drawn from an infinite population
follows a linear regression model,

(1.0) Y=p8TX+e,

when ¢ ~G and X,,; ~H are independent. Here B,,,, G and H are
assumed unknown with H not concentrated on a hyperplane. If we sample
with replacement to obtain (X,,Y,), & = 1,...,n, classical estimates of these
parameters are available whose large sample theory is well-understood. Re-
cently, attention has focused on models in which the sampling from the
population is biased. The most important example is truncated regression
discussed recently in Bhattacharya, Chernoff and Yang (1983), Woodroofe
(1985) and Tsui, Jewell and Wu (1987). Here (X,Y) is observed only if Y is
above (or below) a threshold y,. Jewell (1985) and Jewell and Quesenberry
(1986) following work of Coslett (1981), Manski and Lerman (1977) and Vardi
(1985) propose a generalization of the truncated regression model giving a
variety of interesting examples. These are the biased sampling regression
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798 P. J. BICKEL AND J. RITOV

models which we study. They are described as follows. We consider a popula-
tion of (X, Y) pairs following the distribution (1.0).

A set of possibly overlapping nonexhaustive strata S;,..., Sg is defined.
Stratum S, is sampled with probability A*, ¥ A* = 1. Then we sample
biasedly from the stratum with probability proportional to w(i, x,y) for item
(x,y). In many applications w(i, x,y) = I((x,y) € S;). If I denotes the stra-
tum variable and G, H have densities g, h with respect to Lebesgue measure
and u, respectively, then (I, X,Y) has density with respect to counting
measure X u X Lebesgue measure

g(y — Bx)h(x)
W.(G, H)

(1.1) p(i,x,y) = Afw(i,x,y)
fori=1,...,8, where w > 0,

WG, H) = [ [w(i,x,y)g(y = B %)h(x) dydn(x)

and W, are assumed finite and positive. The A} are assumed to all be positive.
For truncated regression, s = 1, S; = {y: y < y,}, w1, x,y) = 1(y < y,).

We propose to study estimation of 8, G, H in model (1.1) under the broad
assumption that X has known finite support {x,,..., xx}. Additional condi-
tions are specified in Section 2. In a second paper we intend to study situations
in which X does not have finite support. We proceed as follows:

1. We derive and give the asymptotic theory for the nonparametric maximum
likelihood estimates of G, H if B is known and show that these estimates
are efficient.

2. We propose a class of estimates for 8, G, H in the general model which are
Vn consistent. We give the asymptotic theory of the procedures and show
how members which are efficient at submodels can be selected.

The key observation needed for point 1 is the exponential family representa-
tion of (1.1) given in (2.1). Then, the asymptotics of the case 8 known follows
as in Vardi (1982) by noting that the MLE of G can be written as a weighted
sum of the empirical distributions of Y given I and X, where the weights are
estimated through a solution of (K — 1) X (S — 1) M-equations in the un-
knowns A;W, and h(x;). The asymptotic distribution of the estimator now
follows from the well-established theory of M-estimation. When B is also
unknown, we add another equation to this set to take care of B. This equation
can be obtained from any M-equation that may be used for the estimation of
the slope without biased sampling. Together we get (K — 1) X (S —1) + 1
equations and the result follows again from the theory of M-estimation.

The paper is organized as follows. In Section 2 we define the procedures,
state our main results and relate our work to that of other authors. Section 3
has the proof of the results and further discussion. A small simulation study is
given in Section 4.
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2. The main results.

2.1. Suppose (I, X;,Y,), k=1,...,n are iid. with common density
(1.1). Consider first the case 8 known (8 = 0 without loss of generality). The
nonparametric maximum likelihood estimates of H and G are easily seen to
concentrate on {X,,..., X}, {Y;,...,Y,}, respectively. Suppose that the A, are
also free. As far as maximum likelihood estimation of G and H goes, this
makes no difference since these estimates, if they exist, are the same as
estimates based on the conditional likelihood given I,,...,I,. Identify the
distinct values of the X; with {1,...,n.} and those of the Y; with {y,,...,y,}
and redefine w appropriately. We may reparametrize the model (1.1) with
B =0 as

(2.1) P[[ =i,X=j,Y =yz] = gl*e""+“f"b(y”"’“)w(i,j,yl),
where g* = (gf",...,8%), v=(v,...,v,) with n, the number of distinct
observed strata and p = (u,,..., u, ). Here g* varies over the interior of the

unit simplex, v and u vary freely and
b(yl’ v, /J') = lOgZ evi+#jw(i3 j’yl)'
i,J
To ensure identifiability, we can require X ;e” = 1 as well as L ;e*/ = 1. With
this restriction, v, u and g* are related to the original parameters by

* Y /\ihj .. dG
o = | via, my 0] 4600
(2.2) " "
. = . A. -
V; log Az’ Where i W’l(G, H) Zt W(G,H) )
p;=logh;.

This choice of reparametrization is dictated by the assumption we make
later that X takes on only a finite number of values. It corresponds to the
reparametrization (2), (3) given by Mallows (1985) in his discussion of Vardi’s
model. In this form, the likelihood is a concave function of n, + n, parame-
ters, in fact an exponential family, so the analysis is more transparent.

Maximum likelihood estimates of 2 and A may not exist or if they exist may
not be unique as was noted by Mallows (1985). Suppose, for instance, all
X, = xy. Then, model (2.1) is just Vardi’s (1985) biased sampling model for
which these difficulties already appear. We begin with a necessary and suffi-
cient condition for unicity and existence of maximum likelihood estimates in
model (2.1).

If a,b,c are functions from {(1,...,n.}, {1,...,n,}, {y,,-.. ,yny} to R,
respectively, and

(2.3) w(i, j,y){a(@) +b(j) +c(x)} =0
for all i, j and [ then a, b, ¢ are constant.
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This condition is a corollary of the following:

THEOREM 1. The nonparametric maximum likelihood estimator (NPMLE)
of P exists and is unique. The MLE of (v, u) for the model (2.1) exists and is
unique up to a vector in the following subspace of R™s* "=,

= {(a,b): A csuch that w(i, j,y,)(a(i) + b(j) + c(y,)) = 0}.
In particular, if the observed data are such that
' A,={(a,b):a;= - =a,, b= - =b,},

then the nonparametric MLE of A, h, and G exists and is unique.

If the existence and unicity condltlon holds, then by the exponential family
structure, the MLE’s /\ l1<i<n, -1, h , 1 <j<n,— 1, uniquely satisfy
then,+n,— 2 nonhnear equatlons

(24 A =KL {gl*w(i,j,y,)(Zbiaﬁbw(a,b,m)" }

A

. -1\
(28)  M-LLAT {gl*w(i,j,y,)(z Sohgoia b)) .
J l a,b
where
hx = #{X, = j}/n,
x>l'<='#{Ik=l}/n1 i=1:"':ns7
§F = #{Yk =y,}/n,

|
<. S
Rl
—
>

n,—1

A, =1- A;

i

Mm

i=1
Then, by (2.2), if W, is the NPMLE of W,,

A -1
Ao
=él* Zﬁjz Tw(l,.},yz) ’
P
and W, is proportional to A*/A;. Hence
R -

(26) §1=gA1*{ZﬁJZ ’Fw(l,.],yz)} éy

J i i
where

=Y {th )y rw(l J, yl)} :

l
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The NPMLE of G is given by
(2.7) G(y) = X {8y <y}

It is easy to check that 8, A (with A defined before) are also the maximum
likelihood estimates if the A¥ are assumed known.

The equations (2.4) and (2.5) are the likelihood equations for an exponen-
tional family so that a variety of algorithms are available. Here is a simple and
rapid (for n, n, moderate) algorithm proposed by Wang, which is certain to
converge if A, A exist and are unique.

0. Initialize: 2 = 8%, A = h* i = A%
1. Solve for ANEW in Vardi’s algorithm for
v(i,J,8)
p(i,j,8) = Af Jm

where
V(i’j’g) = Z w(i’j’yl)gl'

l
2. Letfori=1,...,n

A(i, 8) = L v(i, i, 8)h;.
J

Set
N N -1
ANEW _ ’g AG ,
A(i,8) T Ala,8)
-1
NV - T g*[z RYEWANEu (i, j, z>]
i, J
Forl=1,...,n,
éNEW §*[Z ﬁNEW/\NEWw(l j,l)] /ANEW
3. 8= NEW h = ﬁNEW A= ANEW

4. Return to 1 until convergence.

In special cases, simpler approaches work. If S = 1, 5\1 = 1 and the algorithm
reduces to Vardi’s for model (2.7) as was noted by Jewell and Quesenberry
(1986). In this case also the large sample theory we give later can be deduced
from Gill, Vardi and Wellner (1988). If S = 1 and w(x,y) = 1(y < ax + b), we
have the truncated regression model. In this case, G can be calculated explic-
itly even if X is continuous. The asymptotic theory of G and H is well-under-
stood [see Woodroofe (1985)].

Let P, correspond to (A,, H,, G,). More generally, use the subscript 0 for
quantities calculated under P,.
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Al. Suppose H, concentrates on a finite number of points {x,, ..., x %)} and
Gy, Hy, A, are such that
Pola(I) +b(X) +¢(Y)=0] =1
implies that a, b, ¢ are all constant with probability 1.

A2. X Agho;w(i, x;,y) is bounded and bounded away from zero.

Let A = (il,...,ﬁsil), h=(h,,...,hg ) (where we identify x,...,xg
with 1,..., K and )Ati, h;=0if ;\’}‘, ﬁj‘ = 0). Let A*, H* G* be the empirical
marginal distributions of I, X, Y, respectively. Define S + K — 2 dimensional
vector functions ¢, ¥y, Y3 on {1,..., S}, {1,..., xx} and R by

. 5, l<m<S-1
’/\,h —_ m? - - )
Vam(l ) {O, S<m<S+K-2,
0, l<m=<S-1,
Yam(%j, A, B) = {aj(m_s+1), S<m<S+K-2,
(2.8)
_/\mzhjw(m7xj7y)A_l(yyA7h): ].SmSS—l,
J
¢3m(yy/\, h)= A
_hm—S+1 Z )‘iw(l’xm - S + lyy)A—l(y7)‘7 h)7
S<m<S+K-2,
where

A(y,\,h) =Y Ahjw(i, x;,y)
iJ
and 9;; is the Kronecker delta. Let

I(Ag, ho, Go) = Vary(¢y(1, Ay, hy) + Yo X, Ao, ho) + ¢3(Y, Ag, hy))

be the (S + K — 2) X (S + K — 2) covariance matrix of the random vector,
where (A, hy,G,) are the population values. Without loss of generality,
suppose A;, > 0, b, > 0 all 4, j.

THEOREM 2. If Al holds, then

(a) With probability tending to 1, the existence and unicity condition holds
and A, h are consistent. Further,

(2) = (2) +I‘1{f¢1(i,A0,h0)d/‘\*(i)
(2.9) +/¢2(x, Ags ho) dlfI*(x) + f(pa(y, Ao, ho) dé*(y)}

+0,(n"1/2),
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() If A2 holds as well and G is given by (2.7), then
(2.10) L(vn (G - G,)) - L(V),

where Vis a Gaussian process discussed in Section 3.
(c) The estimates A, h, G are efficient.

Notes. (i) The covariance structure of V is determined by the expansions
of Theorem 2(b) and (3.4). Its exact form does not appear to be particularly
insightful. .

(ii) The estimates £, A, G are efficient in various senses. The simplest is that
any finite linear combination of them (with G evaluated at a finite set of time
points) has asymptotic variance which is no larger than that of any other
locally regular asymptotically Gaussian estimate of the same linear combina-
tion. The definition of local regularity, which is needed to exclude supereffi-
ciency, and other aspects of efficiency are discussed in Bickel, Klaassen, Ritov
and Wellner (1992), which we refer to as BKRW from now on.

2.2. If B is unknown, it is easy to see that, as in the case of ordinary
regression, maximum likelihood applied to G, H, B leads to all values of B as
being possible estimates. As in the ordinary case this is in part explained by
the fact that the efficient influence function of B8 involves g'/g, whereas the
maximum likelihood estimate of G for B8 fixed is discrete.

Following Jewell, we consider the simpler problem of constructing estimates
which are locally regular Gaussian and hence Vn consistent for all G, H but
are fully efficient only on a particular submodel, for example, G Gaussian.

More generally, let {x,,...,xx} be the support of H and y(-, ) be a
function from {x,,...,xx} X R to R? on which we shall put conditions later.
The function y*(x, y; B, A, G, H) obtained by subtracting the expectation of y
from y is given by

Jy(x,u)Z; jhaw(i, x;,u + B"x;) dG(u)

X, Ak fw(i,x;,u)dG(u)

(2,9) = v(x,y — B"x)

and satisfies

(211) [7*(x,y,B,G,H‘) dP(B,G,H)=0

for all P 4 g ) given by (1.1). So we expect the M estimate j3 solving
Z 7*(Xi7 Yi)éyGy A’ H) = O’
i=1

where A = (Ay,...,A,), to be Vn consistent. Unfortunately, we do not know
G, H, A. Following essentially Buckley and James (1979), we use
v*(, B, Gy, Ay, Hy), where Gy, Ay, H, are the MLE’s of G, A, H for fixed .
(Buckley and James take out the conditional expectation of y given X rather
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than the expectation but this is inessential.) For simplicity, we take B, x real.
Extension to the general case is straightforward.

Writing FIB(x) = Z{fzm: x; < x} we see from (2.4) and (2.5) that GB and ﬂB
are obtained by solving the following S + K — 2 equations for A g Ag:

B = hop s [l 2y, + ;)
A A -t A
x(z Agghygw(a, x,, u + Bxb)) dGj (u),
a,b

A= ;‘iBZ_ i‘jﬁ[w(i’ Xj,u + Bx;)
(2.13) ’ -1
X(Z Xaﬂilbﬂw(a,xb’u +Bxb)) dé;(u)’
a,b

where G, is the empirical df of Y, — BX;,i=1,...,n and
(2.14)  dGy(u) = dG;(u)(Z Aighigw(i, x;,u + Bx; )_IC*,;I,
i,J
where
(2.15) ¢, = f(z'ﬁiﬂfzjﬂw(i,xj, u + Bx; )_ldég‘(u).
iJ
Then (2.11) becomes
(x5 - Bx) dB*(x, y)

(2.16) - Z hj/s)‘iﬁfy(xj’t)w(i,xpt + Bx;)
t,J

-1
X(Z Aghpw(i, X;,t + Bx; ) dGj(¢) = 0.
i, J

Now (2.12), (2.13) and (2.16) are M equations in the S + K — 1 unknowns
(hyg,..., hk—1)ps Aigs - - -, As—1ps B?, given by

(2.17) W(A, R, B, P) =0,

where P is the empirical distribution of the data. The mth coordinate of
W(A,h, B, P) is, for a given P on {1,..., S} X {x),...,xg} X R, given by

W.(A,h,B,P) = [#,(i,x,y,A,h,B) dP,
1<m <S8+ K- 2, where
Uiy 2,9, A, h, B) = Gy, (i, A, b)) + Bom(%, X, B) + g, (%, y — Bx, A, h,B).
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The functions ¢, {, are obtained by substituting w(i, x,y + Bx) for w(i, x, y)
in (2.8) and

'/;3m(u7A7h7B)
==\, hjw(m,xj,u + ij)A“l(u,)\,h,B), forl<m<S-1,
J

= _hm—S+1 Z )‘iw(i’xm—s+1’ u+ me—S+1)A_l(u’ A h, B),
i

forS<m<S+K-2,

where

A(u,\h,B) =Y Aghyw(a, xy, u + Bxy).
a,b

Further
WS+K—1()" h’ B’ P)

= f[?’(x,y - Bx) — (;Aihﬂ(xﬁy = Bx)w(i,x;,y — B(x _xj)))
t,J

XA Yy — Bx, A, h,B)] dP.

Let
‘Zs+K—1(x,y,)‘,h,B)
2.18) = v(xy—Bx)
- Z.y(xj,y - Bx)w(i,x;,y — B(x — x;))A"(y — Bx, A, h, B).
iJ

Let P, correspond to (A, ko, Gy, By)- Here are some further conditions.

A3. G, has an absolutely continuous density g, with finite Fisher infor-
mation [((g4)?/g,Xx)dx and y(X,Y — BX) € L,(P,). Let

(I, X, Y) =v(X,Y = BoX) = ao(I) = bo(X) — co(Y = By X),

where ao(I) + by(X) + ¢o(Y — By X) is the orthogonal projection of y(X,
Y — By X) in L,(P,) on the space of all variables a(I) + b(X) + c(Y — B, X).
Then, assume

(2.19) E’o(&(l, X, Y)Xi—é(Y— B,X)| # 0.
0

A4. Let
V(1) = Vn (W(r, B) - W(r, P)),
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where 7 = (A, h, B8). Then

[Va(7) = V(7o)
1+ Vnlr = 7 tlr = 7ol <€, =0,(1) foranye,l0.

(a) sup

oW,
(b) W(-, P,) is differentiable and the matrix [a—(fo, P,) | is nonsingular.
T .

J

We have the following result. For an example, see Section 4.

THEOREM 3. Suppose Al and A2 hold with Y replaced by Y — ByX and
w(i,x,u) by w(i,x, u + Box), along with A3 and A4. Suppose a consistent
solution # = (A, h, B) of (2.17) exists. Write 7 for (A, h, B). Then

(a) The matrix
M = E[y(1,X,Y,7)VI(I, X,Y,79,Gy)],
where Vi is the gradient of the log-likelihood with respect to
(Al’ ceey As_l, hl’ ceey hK—l’ B),
is nonsingular and
n
=1y +n M 'Y §(I, X;,Y;, Ao, ho, Bo) + 0,(n71?).
i=1

(b) If y(x,y) = —x(g}/80Xy), then the estimates X, h, B are efficient at P,.

NotE (a) CaLcULATION OF #. The following algorithm B should work. We
have no assurance of its convergence

OUTER LOOP:
Nonlinear equation solution algorithm for Wg_ QA B h 8 B> P)y=o.
INNER LOOP:
(1) Get A B> A p from algorithm A with
w=w(,x,y+ Bx).
(2) Compute Wy, x_ 1()A«ﬂ, ﬁﬁ, B, P*) from (2.18).

END INNER LOOP
END

NotE (b) CHECKING A4. Condition A4 is readily satisfied if in addition to
A1-A2, we suppose (dy/duXx, u) and (dw/dy)i, x, y) exist and are bounded.
Unfortunately, w is typically discontinuous. To assure the crucial

Vn|W(r, B*) = W(ro, Py)|

tlr—Tl<e,} =0,(1
1+ n'2r — 7, | o =%n po 1)
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we can apply arguments such as those of Pollard (1985), Section 5. For
instance, as we shall show in the next section, the following conditions which
cover truncated regression imply A3.

Cl. For some @« >0andall j=1,...,n,,

Eo{Y(xj, Y - ij) - Y(xj, Y - B,xj }2 = 0(,3 - Blla)

uniformly in B is some neighborhood of B,.
C2. A2 holds.
C3. w(i,x;,y) =LK W, (R)1y 1, vy Where {I;;(k)} are intervals.
NotE (c) EsTIMATION OF G. The natural estimate here is CA}B. Al, A2 and
either boundedness of (dw /du)(i, x, u) or C1, C3 imply that

L(Vn (G, — G,)) » L(W)

in the usual sense, where W is a Gaussian process. We give the proof of this
claim and a discussion of the structure of W in the next section.

NoTE (d) ESTIMATION OF THE ASYMPTOTIC VARIANCE MATRIX OF 7. The
variance matrix of Vn (# — 7,) can be estimated easily if ¢ is smooth enough as
a function of 7 so that

M=-E(H(I,X,Y,7)),

where H is the derivative matrix of . The usual estimate

n

(2.20) M 'n 'Y $67(I, X, Y (MY,
i=1

where

n
M = n_l Z H(Ii’ Xi’ Yu%)
i=1

and z/; =g, ,- A B, B), will work under the usual conditions permitting
approximation of M by n~'L?_ H(I,, X,,Y,, Ay, ho, B,) and the correspond-
ing approximation for the inner term of (2.20).

Unfortunately, ¢ involves w(i, x, y + Bx) which is often discontinuous, for
example, in truncated regression. In that case, we believe careful argument
will show that under mild conditions one can estimate M by

n
M=n"'Y H(I, X, Y, %),
i=1
where H is obtained by taking finite differences of ¢ at step lengths of order
appropriate to the assumed smoothness of g. (Derivatives can be taken for all
parameters other than B.) We have not examined these questions in any detail.
As usual an alternative would be to use the bootstrap.
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NoTE (e) ONE STEP ESTIMATION. In the absence of results on existence and
consistency of 7, if the conditions of Theorem 2 hold and a Vn consistent
estimate 7 of 7 is available and M evaluated at 7 is consistent, we can
construct 7 satisfying Theorem 2(b) noniteratively by taking one Newton-
Raphson step from 7. Such 7 are readily available if, say, we have a stratum
with w = 1 or in special cases such as truncated regression where the struc-
ture of w is relatively simple.

Note (f) EFFiciEncy. If y = —xg{/8,(y), it follows easily that # is effi-
cient at all points of the submodel {P,, , 4 )} but not at all points of P. It is in
principle possible to obtain estimates efficient at every G, by estimating
&(¢/80- We do not pursue this here.

NoTE (g) ESTIMATION OF 8 WHEN G, H ARE UNIDENTIFIABLE. Suppose we
wish to estimate B and (A, &) are considered as nuisance parameters. Then A1
may be too strong. It is actually not needed. Note that W, (A, k, B, P) =

=1,...,8S + K — 2 define merely the MLE A h If Al is not satlsﬁed
these equatlons are linearly dependent and can be reduced tog<s+K-2
equations for g parameters defined as the coefficients of a basis for (say) the
orthocomplement of A, given in Theorem 1. Note that A s and h, appear in
the equation defining B, Wsik- I(Aﬂ, h,, B, P) = 0. However, it follows from
the discussion preceding (2.11) that WS k1A g h g Bs P) can be rewritten as

f(r,;S+K—1(x’y7 AB? hﬁ’B) dp
(2.21)

= [¥(x,y — Bx) dP ~ [y(x,y — Bx) db,,

where f" (with some abuse of notation) is the MLE of the joint distribution of
(1, X, Y) assuming that g is the true slope. It was proved in Theorem 1 that
P always exists and hence the estimating equation W, _,(, A g B P)y=0is
well defined. Smoothness conditions on this function of 8 or C1-C3 and A2
will guarantee asymptotic normality of a consistent root of this equation, even
if Al does not hold.

It is true, however, that the inner loop of the algorithm suggested in (a) may
fail to converge (in terms of A and k) if Al does not hold. Yet one can use this
algorithm, by stopping it when the expression in the RHS of (2.21) converges.

3. Proofs and additional discussion.

DEFINITION Let Gg" be the graph with vertices {1,...,n,} and edges
io, i iff X w(, ], y)h*Z w(z Js y)h*}dé*(y)> 0. Deﬁne similarly a
g'raph GY with vertlces {1,.
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NECESSARY CONDITION FOR EXISTENCE AND UNIQUENESS. The graphs G¥ and
GY are connected.

To prove this, suppose A, h exist and are unique. Note that the graphs do
not depend on the actual values of h* (and )t* respectively) but only on the
pattern of positive and zero values. In particular, replace fz* by fz A’L!‘ by A i
respectively.

The connectedness of the graphs is [see Vardi (1985)] now implied by
existence and uniqueness of solutions of the likelihood equations in the models
in which A and A, respectively, are assumed known and equal to kA,
respectively. But A, A (respectively) which are assumed to exist are pre-
cisely such solutlons The condition is not sufficient. For instance, suppose
w(1,1,1) = w(2,2,1) = 1 and w = 0 otherwise and that 2 points are observed.
Then the graphs are connected but the necessary and sufficient condition for
existence and unicity (2.3) fails. [Take a(1) = —b(1), a(2) = —b(2) and
c(1) = 0].

DeFiNITION. Let G5 be the graph with vertices {1,...,n,} and edges
o 0 [T fz*w(i,j, Dw(i', j, t) dG*(#) > 0. Define similarly the graph G5
w1th vertices {1 L nLh

SUFFICIENT CONDITION FOR EXISTENCE AND UNICITY. The graphs G5 and G5
are connected.

To prove this, suppose that the graphs are connected and without loss of
generality that (2.3) holds for a, b, ¢ such that ¢(Y) = 0 and a takes on two or
more values. Let V = {i: a(i) = a,}, V¢ = {i: a(i) # ay}. Then V and V¢ are
connected in GS5. Then there exists i € V, i’ € Vit such that w(i, j,¢) and
w(i', j,t) are both positive. Hence a(i) = a(i’) a contradiction and suffi-
ciency follows. The condition is not necessary. Take w(1,1,1) = w(2,2,1) =
w(1,2,2) =w(2,1,2) = 1, w = 0 otherwise. Then the graphs are not strongly
connected yet (2.3) is satisfied since a(1) + b(1) = a(2) + b(2), a(1) + b(2) =
a(2) + b(1) implies b(1) = b(2) and a(1) = a(2).

If the sufficient condition is not satisfied and the necessary condition is
satisfied, one should proceed to check the necessary and sufficient condition for
the existence of a unique MLE. In most. cases of interest, this should not be
hard. In particular, if n, X n, is not large, checking the condition is equiva-
lent to investigating the solutlon sub space of at most n2n? equatlons in
n, + n, unknowns [of the form a(i) + b(j) = a(i’) + b(j") for any i, j,i,j'
such that r,w(i, j, Dw(, j, 1) > 0].

Proor oF THEOREM 1. Since the model is an exponential family, the proof
is quite standard [cf. Brown (1987), Theorem 5.5, page 148]. Suppose that, as
happens with probability tending to 1, n, = K, n, = S. Fix any (u,v) and
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(a, b) and consider
f(a) = Ln(V —aa,u — ab) - Ln(V’ I“’)

1 n L, et male Dy (i 5 V)
= — —_ + —
nkgl[ ala(l,) +b(X)) ~ log = — - m St

where L, (v, ) is n~! times the log-likelihood of the sample at (v, u). Then

_ -y £, {a() +b(j)) e w(i, x;, V)
a=0 k=1 ):ije”‘+"fw(i,xj,Yk)

2

_(Zw{a(w +h()en (i x;, ) ||

Zije“i”f'w(i,xj,Yk)

since the kth summand is the conditional variance of a(I,) + b(X,), given Y,.
We obtain equality if and only if each term is zero or (a(i) + b(j) +
c(Dw(i, j, Y;) = 0 for some vector c. Let AS be such that A, N A¢ = {0} and
A, ® A5 = R*""= We see that L, (v — aa, u — ab) is strictly concave in « for
(a,b) € AS,.

L,(v—ab,u—aa) —L,(v,n)

1 n
(3.1) = ;kgl —a(a(l,) +b(X,))

+min{a(i) + b(j): w(i, j,Y,) > 0} + O(1)],

where O(1) does not depend on the data. Since (a, b) ¢ A, we must have

lim L, (v —ab,p —aa) = —x.

We conclude that L,(u,v) is strictly concave on A and approaches — as
(u, v) approaches the boundary of A¢. Hence it has a unique maximum and
the maximizing value corresponds to an MLE of P. To establish uniqueness
and the second part of the theorem, we have to show that Poy=Po_a.v-by
if w(i, j, I a@@) + b(j) + ¢(1)) = 0. But the density of P, _a .—» gven by
(2.1 is ,

ep.,-—a,-+vj—bjw(i’j’ Yl) . e,ui+uj+c(l)w(i’j’ Yl)

* —
= - =g —
gl }:k,me#k St Vm bmw(k7m7Yl) ! }:k,me#k_‘-vm*-ca)w(l’]’yl)
et iw(i, j,Y))

=gl*z MHptv *
k,me mw(k’m’Yl)

]

ProoF or THEOREM 2. Without loss of generality, assume either S > 1or
K > 1. Let pg, v, correspond to the population values via (2.2). Note that A, A
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exist if and only if the concave function
L,(v,p) = Ly(vo,1o) = — 2 &¥(b(Yy, v, 1) — b(Yy, v, o))
l
(3.2) R
+ Z (v; —vi) AT + Z (mj— lejo)ﬁ;‘,
i J

where

S-1 K—-1
v, = log(l -y e”t), Ug = log(l -y e“/)
j=1

i+1

achieves its maximum as a function of S + K — 2 variables. Let G; be the
marginal distribution of Y and A} that of X. Then, as n — o,

sup{| L,,(v, ) = L(vo, o) = L(v, 1) + L(vo, o) :

v, u in a compact neighbourhood of (v, uy)} — 0,

(3.3)

L(v,u) = = [b(y,v,n) dG3(y) + L vidk; + ¥ w;hi;.
i J

Uniformity of convergence follows since for v — v, |u — v,| sufficiently small,

):i,jw(i,j,y))«ihi
Zi,jw(i»j,y))‘iohjo

b(y,V, I'L) - b(y’VO’ :U'O) = lOg

is uniformly bounded and equicontinuous in A, 2. But L is concave and has as
its Hessian

H=-Ey(Var(1(I =1),1(X=j)):1<i<s-1,1<j<K-1[Y).
Since L is strictly concave and
VL(vy, o) =0,

L is maximized uniquely at (u,, v,). The concavity of L, and (3.3) now imply
that, with probability tending to 1, L, is maximized in the interior of any
neighborhood of (v, u,) and consistency of the MLE follows. This result can
also be obtained in a less self-contained fashion but more directly using Brown
(1985) and Ritov (1987).

(b) The equations (2.4) and (2.5) are just an ordinary set of M equations,
[u(i, x, 9, A, h)dP(i, x,y) = 0, where

llj(i,x’y,A’h) = l/’l(l’A,h) + ¢2(x’A’h) + ¢2(y’A’h)

and P is the empirical distribution of (I, X,Y). Then (b) follows from stan-
dard results; see, for example, Huber (1967).
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(c) From (2.6),
N y N -1
é(y)=c—1f (Z)\iﬁjw(i,xj,u)) dG*(u),
—e\ i
where
. . -1
C=[(Z)\iﬁjw(i,xj,u)) dG*(u).
i,J
So, write

C() = Goln) + [~ ()1 59) = Go() d(6* - GF)(w)
(3.4) _Z(ﬁj—hjo)ffm(yl(u7j)§:;(u)

= 0) 5 () dGo() | dGo(w) + Ro(),
where g, g¢ are the densities of G, G5 and where
() = Ehow(is )y o) = L hyow(isa,u)
The remainder R ,(y) is easily seen to be

0,((1A = Aol* + 1A — Rgl?)),

since
. . 8¢
sup,{ X Ahw(i,x;,u) — =—(u)} -, 0
i, J 8o

and g§/g, is bounded away from 0 by A2.

Substitute in the approximations to A — A, & — &, from (b) to derive the
result.

(d) The influence functions of A, A and G all have the structure a(I) +
b(X) + ¢(Y). But the tangent space of the model (1.1) when B = 0 consists
precisely of all such functions; see BKRW, Chapter 4.5. O

Proor oF THEOREM 3. Since the estimator of (A, &, B) is a simple M-esti-
mator, part (a) follows from Huber (1967), see also Theorem 2.2.5 of BKRW
once we have shown that M is nonsingular. But if M is singular, then there is
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a vector d € RS*X-1 d # 0, such that

- al al
dTy 1 span 57.(1’ X,Y,79,Gy), W(I’ X, Y,7,Gy),
(3.5) ' !
al
a—E(I,X,Y,TO,GO),l <i<S-1,1<j<K-1;3,
where [ is the log-likelihood of (I, X,Y). But span{dl/dr;}, 1 <i<S -1, is
clearly a subset of all functions of I and span{dl/dh;},1 <j < K — 1, is a sub-

set of all functions of X. Actually, since d//dA;,dl/0h;,1 <i<S—-1,1<j<
K — 1 are linearly independent vectors in Ly(P,).

ol al
span{ —, —,1<i<S~-1,1<j<K-1} = {all a(I) + b(X)}.
an,’ ok,

Hence (3.5) implies that d7y L {all a(I) + b(X)} ® {8l /3B}. Moreover
(3.6) § Lc(Y—BoX)— Ec(Y—BoX|I) forall c(Y — ByX) € Ly(Py).
To see this note that

Ji(x,5,h,B) dPy 1 5.6\ %,5) = O

for all G. Let

dG,(y) (1 +ne(9)* (1 +nle()I?)
G, & 2 4

and |c| be bounded away from 0 and «. The interchange of integration and
differentiation in

a ..
5 J 959,01, B) AP .6,(%,9)

is then easily justified by A3 and (3.6) follows. Therefore, d”¢ L span{c(Y —
BoX) + a(l) + b(X))}.

Let d9l/dB be the projector of dl/dB on the orthocomplement of I =
{all a(I) + b(X) + C(Y — By X), c(Y — By X) € Ly(P,)}. We have obtained that

(3.5) implies
dTy LT iy r o
gL T ® {@} =1 & B .

Since §,,...,¥5,x_5 €T and d # 0, we must have dg,x_; # 0. But then, if
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(+, ) denotes the L,(P,) inner product

—_— . ol ol
0={d l/’»g;é = ds+x—ﬂ/’s+x-p£ =dgig-1 %£ .

Since 9l /6B L T,

_al
dS+K—1 Y, % * 0’
since ¥ is the projection defined in A3. We get a contradiction. Hence M is
nonsingular and part (a) follows. . .

(b) ¢ and hence the influence functions of A, A, B, éﬁ(t) are all of the form
a(I) + b(X) + c(Y — By X) + eX(g4/8,XY — By X) (where e is scalar). But by
BKRW, this is precisely the tangent space of model (1.1) and efficiency follows
by Theorem 3.3.1 of BKRW. O

C1-C3 mMpPLY A4(a) AND WEAK CONVERGENCE OF V7n (G,; — G,). To establish
A4(a) it is enough [cf. Pollard (1985)] to show that [jx~!/2log N(x)dx <
where for any ¢ > 0, N(¢) is the smallest cardinality of a class F, with the
following property. For each of A, 2, B in a neighborhood of Ay, h, By, there
are functions 7. and f, such that f, < f(x,y,A, h,B8) < f* and E(f, - f.)* <
€, where

ijAihip(x,y — ﬂx)w(i,j,y - B(x — xj))
Ziinhjw(i’j’y - B(x - xj))

Now A2 ensures that the denominator of f is bounded away from zero and
hence the dependence of f on A and % is simple. The dependence of y on B is
controlled by C1, while C3 controls the dependence of f on B through the
weight functions. [Note the weight function at B’ is equal to the weight
function at B everywhere except on a finite number of intervals, each of length
O(IB — B'D]. C1-C3 taken together ensure that

r
f(x7y7Avh’B) =

2
E(f(X, Y,A,h,B) — inf f(X,Y, Ak, B')) = 0(5'9).
IB'—Bl<d
N(e) is, therefore O(g!S+X+1/2«V D)) and (3.1) is satisfied.
Moreover, C1-C3 guarantee by standard fluctuation inequality argument as
in Billingsley (1968) that the processes n~'/2L%_(fa(X,,Y,;u,A, h,B) —
Ea(X,,Y,; u, A, b, B)} are tight where

1
. _ {y—Bx < u})
almysu b b B) = (w(is 7))

These processes then converge weakly to a Gaussian process with the same
covariance structure and continuous sample functions. Using this and stan-
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TABLE 1 A
Performance of yn
Bias SD 112
la -0.1 1.3 1.23
b -0.0 14 1.43
2a 0.2 1.2 1.19
b 0.1 1.8 1.25

dard Taylor expansion arguments, we deduce that
N N oG n
(8.7 Vn (G5 — Go) = Vn(Gy, — Go) + 7; Vn (B = Bo) + 0p(1)
Bo

and the weak convergence of Vn (CA},S - G,) to W follows. The covariance
structure may be deduced from Theorem 3(a) and Theorem 2(c) since the two
terms in (3.7) are independent.

4. Simulation. The formulae in this situation and the simulation are the
work cf Yonghua Wang.

We consider four situations: In all cases, I =2, A; = 0.2, K= 2, x; = —1,
x,=1land n =100.If B =1, b, = p = 1 — g, the four situations are

1. G,=N(,1) 2. G, = Logistic (0, 0.55)
a. p=0.5 a. p=05
b. p=0.75 b. p = 0.75.

G, in 2 is the logistic distribution with mean 0 and variance 1.

For each of these situations we performed 100 simulations and obtained
Monte Carlo estimates of the mean and standard deviation of vn 8 correspond-
ing to y(x,y) = xy which we expect to be efficient if G, is Gaussian. We also
computed using the theory developed in BKRW, Section 4.4, the theoretical
information bounds for estimation of B.

The results using other measures of the center and spread of 3 such as the
median and interquantile range are consistent with these.

The agreement in the Gaussian case is excellent. The asymptotic variance
appears as usual to be approached from below. The difference in case 2(b)
presumably reflects not only the difference between n = 100 and n = « but
also the Monte Carlo error.
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