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BOOTSTRAP SIMULTANEOUS ERROR BARS FOR
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Université Catholique de Louvain and Universitét Bonn
and Universitit Bonn

Simultaneous error bars are constructed for nonparametric kernel
estimates of regression functions. The method is based on the bootstrap,
where resampling is done from a suitably estimated residual distribution.
The error bars are seen to give asymptotically correct coverage probabilities
uniformly over any number of gridpoints. Applications to an economic
problem are given and comparison to both pointwise and Bonferroni-type
bars is presented through a simulation study.

1. Motivation. Regression smoothing is an effective method for estima-
tion of mean curves in a flexible nonparametric way. Since this technique
makes no structural assumptions on the underlying curve, it is very important
to have a device for understanding when observed features are significant. A
question often asked in this context is whether or not an observed peak or
valley is actually a feature of the underlying regression function or is only an
artifact of the observational noise. For such issues, confidence intervals should
be used that are simultaneous (i.e., uniform over location) in nature. This
paper proposes and analyzes a method of obtaining any number of simultane-
ous error bars at a grid of points. The method is simple to implement and does
not rely on the evaluation of quantities which appear in asymptotic distribu-
tions. The construction is based on a residual resampling technique which
models the conditional error distribution and also takes the bias properly into
account (at least asymptotically).

For an understanding of these ideas, consider Figure 1. Figure la shows a
scatter plot of the expenditure for potatoes as a function of income for the year
1973, from the Family Expenditure Survey (1968-1983). Figure 1b shows a
nonparametric regression estimate which was obtained by smoothing the point
cloud, using the kernel algorithm described in Section 2. As a means of
understanding the variability in the kernel smooth, Figure 1b also shows error
bars, i.e., vertical confidence intervals constructed by the bootstrap method
proposed in Section 2. These bars are estimated simultaneous 80% confidence
intervals. Note that the error bars are longer on the right-hand side, which
reflects the fact that there are fewer observations there and hence more
uncertainty in the curve estimate. The error bars are asymmetric in particular
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at points with high curvature which reflects the correct centering of the bars
by a bias term.

Bierens and Pott-Buter (1987) derived variability bands with pointwise
coverage probability for a related question in demand theory. Clearly there is a
need for effective simultaneous error bars in all applications of nonparametric
regression. Hall and Titterington (1988) constructed a confidence band for
calibration of radio carbon dating. Knafl, Sacks and Ylvisaker (1985) derived
uniform variability bands under the assumption of a Gaussian error structure.

The use of bootstrap methods for assessing variability bands in nonpara-
metric regression was to our knowledge first suggested by McDonald (1982).
There are several ways of bootstrapping in the context of nonparametric
smoothing. The interactive method used by McDonald was based on resam-
pling from the empirical distribution of the pairs of observations. This ap-
proach has also been investigated by Dikta (1988) who showed that, up to a
bias term, a type of pointwise bootstrap confidence interval is asymptotically
correct. If the predictor variables are fixed nonrandom values, resampling
should be done from estimated residuals as has been argued by Bickel and
Freedman (1981) in the setting of linear regression. Hirdle and Bowman
(1988) applied this resampling scheme to the nonparametric regression proce-
dure, also in the case of random predictor variables on estimated residuals.
This form of bootstrapping preserves the error structure in the data and
guarantees that the bootstrap observations have errors with mean zero. There
are two main advantages to this approach. First, it correctly accounts for the
bias and hence does not require additional estimation of bias or the use of a
suboptimal (undersmoothed) curve estimator. Second, no assumption of ho-
moscedasticity is required; the method automatically adapts to different resid-
ual variances at different locations.

The resampled data is smoothed to give an approximation to the simultane-
ous distribution of the estimator at a grid of points. This distribution can
either be used directly to obtain simultaneous error bars, or a simple Bonfer-
roni approach can be used. We also study methods for generating bars which
are based on groups of gridpoints. This approach provides a general frame-
work, which includes the direct and Bonferroni methods as extremes.

In Section 2 we give a technical introduction to our method and present
theorems which demonstrate the asymptotic validity of the bootstrap simulta-
neous errors bars. In Section 3 simulations and the previous application are
discussed. We describe this economic example in more detail and do a compari-
son of different grids of error bars through simulation. The simulations
indicate that handling the bias is the most difficult aspect of this problem,
especially when the regression function has substantial curvature. The analy-
sis of Section 3 provides a quantification of this difficulty. For this reason, in
the examples we considered, 80% error bars had actual coverage as poor as
50-65%. In Section 4 we give proofs of the theorems in Section 2.

2. Bootstrap error bars. Stochastic design nonparametric regression is
based on observations {(X;, )}, € R?*! and the goal is to estimate m(x) =
E(Y|X = x): R? > R. The form of the kernel regression estimator, developed
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by Nadaraya (1964) and Watson (1964) is

2.1) () 1 2 Ky(x - X))Y,
. m(x) = — —_
( " ni-a fu(x)
where

A 17
(2.2) fux) = £ Kz = X))

ie

and where K,(u) = h~%K(u/h) is a kernel weight function with bandwidth
h. All results of this paper are stated in terms of this estimator, although the
essential ideas clearly extend to other types of kernel estimators such as those
of Gasser and Miiller (1984) and also to other regression estimators, such as
spline methods, as discussed in Eubank (1988).

The choice of the bandwidth is crucial to the performance of the estimator.
An asymptotic analysis of this choice and discussion of various data based
bandwidth selectors may be found in Chapters 4 and 5 of Hardle (1989). The
results of the present paper are formulated in such a way as to allow this type
of objective bandwidth choice to be employed.

One approach to the problem of finding simultaneous error bars would be to
work with limiting normal distributions of the estimator at the grid points.
However, the joint distribution of the estimator at these gridpoints has
substantial positive correlation, which makes the derivation of joint normal
theory confidence intervals nontrivial. In fact, they essentially should be done
by simulation methods. Since simulation methods are needed anyway, it seems
better to use a more direct approach through bootstrapping, as opposed to
relying on the normal approximation and also to facing the problems of
parameter estimation that such an approach entails.

While bootstrap methods are well-known tools for assessing variability,
more care must be taken to properly account for the type of bias encountered
in nonparametric curve estimation. In particular, the naive bootstrap approach
of resampling from the pairs {(X;,Y;): i = 1,..., n} is inappropriate because
the bootstrap bias will be 0. Our approach to this problem is to first use the
estimated residual

(23) g =Y; — mu(X;).

The essential idea is to resample from the estimated residuals, which are the
differences between the observations and the pilot estimate and then use this
data to construct an estimator whose distribution will approximate the distri-
bution of the original estimator.

To better retain the conditional distributional characteristics of the esti-
mate, we do not resample from the entire set of residuals, as in Hardle and
Bowman (1988). One possibility would be to resample from a set of residuals
determined by a window function, but this has the disadvantage of requiring
choice of the window width. To avoid this we use the idea of wild bootstrap-
ping, as proposed in Hirdle and Mammen (1989) [but see Rosenblueth (1975)
for access to related literature], where each bootstrap residual is drawn from
the two-point distribution which has mean zero, variance equal to the square
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of the residual and third moment equal to the cube of the residual. In
particular define a new random variable ¢* having a two-point distribution G

where G = y8, + (1 — y)§, is defined through the three parameters a, b, vy,
and where d,, 0, denote point measures at a, b, respectively. Some algebra
reveals that the parameters a,b,y at each locatlon X, are given by a =
80 -V5)/2, b=4801 + \/—)/2 and y = (5 + V5)/10. These parameters en-
sure that Ee* = 0, Ee*2 = £2 and Ee*3 = £3. In a certain sense the resam-
pling distribution G can be thought of as attempting to reconstruct the
distribution of each res1dual through the use of one single observation. There-
fore it is called the wild bootstrap. It is actually the cumulative effect of all
these residuals that is used in the generation of the simultaneous error bars.
The above formulation of the wild bootstrap, based on a two-point distribu-
tion, is only one possible approach. Other distributions could be considered as
well and an interesting question for further work is finding whether some will
give better performance. See Section 7 of Wu (1986) for some closely related
ideas in linear regression.

After resampling, new observations

2.4 Y* =m X)) + ek
i g i i

are defined, where i (x) is a kernel estimator with bandwidth g taken to be
larger than A (a heuristic explanation of why it is essential to oversmooth g is
given later). Then the kernel smoother (2.1) is applied to the bootstrapped data
{(X,,Y;*)), using bandwidth h. Let m#(x) denote this kernel smooth. A
number of replications of M ¥(x) can be used as the basis for simultaneous
error bars because the distribution of 7 ,(x) — m(x) is approximated by the
distribution of m%(x) — /i (x), as Theorem 1 shows.

Here and in the following, to help keep the various probability structures
straight, we use the symbol Y|X to denote the conditional distribution of
Y,,...,Y,lX,, ..., X, and the symbol * to denote the bootstrap distribution of
Y*, . LY (XL, Y), . (X, Y).

For an intuitive understanding of why the bandwidth g used in the
construction of the bootstrap residuals should be oversmoothed, consider the
means of 1 ,(x) — m(x) under the Y|X-distribution and 7}(x) — 7 (x) un-
der the *-distribution in the simple situation when the marginal density f(x)
is constant in a neighborhood of x. Asymptotic analysis as in Rosenblatt (1969)
shows that

EYX(hy(x) — m(x)) = h2(fu2K/z)m"(x).

E*(hj(x) — hg(x)) = h2(ju2K/2)m~(x)

Hence for these two distributions to have the same bias, we need m/%(x) —
m"(x). This requires choosing g tending to zero at a rate slower than the
optimal bandwidth h for estimating m(x), see Gasser and Miiller (1984).
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There are several ways to use the bootstrap approximation to understand
the variability in 7 ,(x). We prefer a finite set of error bars instead of a
continuous band because for a reasonably dense collection (as in Figure 1b),
there is little information lost and the bar approach is much easier to compute
and also to analyze. The simplest is to calculate pointwise 1 — a confidence
intervals, but these will then not be simultaneous in nature. A naive way of
extending pointwise intervals to M simultaneous confidence intervals is by
applying the Bonferroni method, which is to correct the significance level by
the number of locations at which the error bars are to be constructed. This
involves first finding M pointwise intervals with confidence coefficient 1 —
a/M. Then by the Bonferroni inequality, the collection of these intervals will
have simultaneous confidence coefficient at least 1 — @. A drawback to the
Bonferroni approach is that the resulting intervals will quite often be too long.
The reason is that this method does not make use of the substantial positive
correlation of the curve estimates at nearby points.

A more direct approach to finding simultaneous error bars is to consider the
simultaneous coverage on pointwise error bars and then adjust the pointwise
level to give a simultaneous coverage probability of 1 — a. Note that there are
also many other ways to obtain simultaneous error bars, but this has the
compelling feature of assigning equal size (in the confidence interval sense) to
each bar.

A general framework, which includes both the Bonferroni and direct meth-
ods, can be formulated by thinking in terms of groups of grid points. First
partition the set of locations where error bars are to be computed into M
groups. Suppose the groups are indexed by j =1,..., M and the locations
within each group are denoted by x; ,, 2 = 1,..., N,. The groups should be
chosen so that for each j, the x; , values in each group are within 2% of each
other. The reason for this is that when the x values are further than 2A apart,
the estimates are independent and independent theory simultaneous error
bars are quite close to those derived from Bonferroni theory (this can be seen,
for example, by calculating the lengths of independent theory and Bonferroni
theory intervals for standard normal random variables, which turn out to be
typically within about 3% of each other). In the one-dimensional case this is
easily accomplished by dividing the x-axis into intervals of length roughly 2A.
The asymptotics given later are based on the assumption that the number of
x’s in each group does not change with n. More precisely, the set of grid points
x; k= 1,..., N; has the same asymptotic relative location c, (not depending
on n) to some reference point x; , in each group j. Therefore define
(2.5) X;p=crh +x;,, k=1,...,N,.
In the multidimensional case, the simplest formulation is to have each group
lying in a hypercube with length 2k. Now within each group j we use the
bootstrap replications to approximate the joint distribution of

Aua(x) = m(x) = {Malx; ) — m(x; )k =1,..., N)).

J
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Next we state a theorem which shows that the bootstrap works for the set
of locations within each group. For notational convenience we suppress the
dependence on j. Technical assumptions are:

AssumpTioN 1. m(x), f(x) and o*(x) = Var(Y|X = x) are twice continu-
ously differentiable.

AssuMPTION 2. The kernel function K is symmetric and nonnegative,
cx=[K?<wand dg = [u’K(u)du < .

AssuMPTION 3. sup, E(e3|X = x) < .
AssumpTION 4.  f(x4) > n > 0.

Under Assumptions 1 and 2, reasonable choice of & will be in the set
H, = [cn V@ gn-1/E+D] - 0 <c<T <o,

For this choice of bandwidth, the kernel smoother 7 ,(x) is asymptotically
optimal, see Section 5.1 of Hirdle (1989). This assumption is not restrictive
because, for ¢ and ¢ reasonably small and large, respectively, it will be satisfied
with probability tending to 1 if A is chosen by cross-validation, for example,
see Hardle, Hall and Marron (1988). The exact specification of the rate of
convergence of g is less important for the validity of the following theorem,
although it must tend to zero at a rate slower than /. Hence it is assumed that
g is chosen from the set

Gn — [n—l/(4+d)+8,n76]’ $§>0.

A fine tuning of the choice of bandwidth g is presented in Theorem 3.

THEOREM 1. Given the previous assumptions, we have along almost all
sample sequences and for all z € RY,

sup sup | PY¥{Vnh? [,(x) - m(x)] <2}
heH, geG,

~P*{Vnh? [ (x) - m(3)] <z}| 0.

Note that our assumption on the speed of the bandwidth A ensures that
each of the previous probabilities has a nontrivial limit. In fact, the proof of
the theorem comes from showing that both Vnh?[,(x) — m(x)] and
Vnh?[#}(x) — M ()] have the same limiting normal distribution. The reason
that uniform convergence (in 2 and g) in the previous result is important is
that it ensures that the result still holds when A or g are replaced by random
data driven bandwidths. For each group j this joint distribution is used to
obtain simultaneous 1 — a/M error bars that are simultaneous over k =
1,..., N; as follows. Let B > 0 denote a generic size for individual confidence
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intervals. Our goal is to choose B so that the resulting simultaneous size is
1—-a/M. For each x;,, k=1,...,N,, define the interval I; ,(8) to have
endpoints which are the 8/2 and the 1 — 8/2 quantiles of the (7}(x; ;) —
m (x; ;) distribution. Then define a; to be the empirical simultaneous size of
the B confidence intervals, i.e., the proportion of curves which lie outside at
least one of the intervals in the group j. Next find the value of B, denoted by
B,, which makes ag = a/M. The resulting B, intervals within each group ;j
will then have confidence coefficient 1 — a /M. Hence by the Bonferroni bound,
the entire collection of intervals I; ,(8,), k = s N;, J = , M will
simultaneously contain at least 1 — « of the dlstrlbutlon of m (x S k) about
1 (x; ;). Thus the intervals I, ,(8,) — i (x; ;) + h,(x; ;) will be simultane-
ous confidence intervals with conﬁdence coefficient at least 1 — «. The result of
this process is summarized as:

THEOREM 2. Define M groups of locations x; ,, k = 1,..., N,j=1,..., M,
where simultaneous error bars are to be established. Compute uniform confi-
dence intervals for each group. Correct the significance level across groups by
the Bonferroni method. Then the bootstrap error bars establish asymptotic
simultaneous confidence intervals, i.e.,

gy AP SLAE) Ryl n) a0
E=1,..,N,j=1,...,M}>1-a.

As a practical method for finding B; for each group j, we suggest the
following halving approach (also called a bisection search). In particular, first
try B = a/2M and calculate a,. If the result is more than «/M, then try
B = a/4M, otherwise next try B = 3a/4M. Continue this halving approach
unit neighboring (since only finitely many bootstrap replications are made,
there is only a finite grid of possible B’s available) values 8, and g* are found
so that @y < a/M < ag.. Finally, take a weighted average of the B, and the
B* intervals where the weights are (ag. — a/M)/(ag: — az ) and (a/M —
ag )/(ag — ag ), respectively.

Note that Theorem 2 contains, as a special case, the asymptotic validity of
both the Bonferroni and the direct simultaneous error bars. Bonferroni is the
special case N; = --- = N, = 1 and the direct method is where M = 1.

The previous theorems require that M, the number of neighborhoods,
remain constant with respect to n. The reason is that otherwise, the Bonfer-
roni method of combining across neighborhoods, will require the significance
level for each neighborhood to tend to zero. This means we could no longer
apply Theorem 1, because it is formulated in terms of fixed z. An interesting
direction for further work would be to investigate a suitable analogue of
Theorem 1, which would allow M to grow. The neighborhood approach should
be very useful here because only M need grow, not N.

The next issue is how to fine tune the choice of the pilot bandwidth g. While
it is true that the bootstrap works (in the sense of giving asymptotically correct
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coverage probabilities) with a rather crude choice of g, it is intvitively clear
that specification of g will play a role in how well it works for finite samples.
Since the main role of the pilot smooth is to provide a correct adjustment for
the bias, we use the goal of bias estimation as a criterion. We think theoretical
analysis of the previous type will be more straightforward than allowing the
N; to increase, which provides further motivation for considering this general
grouping framework.

In particular, recall that the bias in the estimation of m(x) by 7 ,(x) is
given by

by(x) = EYh,(x) — m(x).
The bootstrap bias of the estimator constructed from the resampled data is
by, ((x) = E*[m}(x)] — 1h ()
_ 1 Xn‘, K (x _AXi)mg(Xi) _
ni-1 fr(x)

The following theorem gives an asymptotic representation of the mean square
error for the problem of estimating b,(x) by b,, ,(x). It is then straightforward
to find g to minimize this representation. Such a choice of g will make the
means of the Y|X and * distributions close to each other.

For notational simplicity, we state this result explicitly only for the case
d = 1. Extension to general d is straightforward, but messy, because the
derivatives need to be replaced by sums of partial derivatives. In addition to
the technical assumptions required for Theorem 1, we also need:

Mg(x).

AssSUMPTION 5. m and f are four times continuously differentiable.
AssuMPTION 6. K is twice continuously differentiable.

THEOREM 3. Under Assumptions 1-6, along olmost all sample sequences,
A 2
(2.7) E[(bh,g(x) — by(x)) |X1,...,Xn] ~ W[Cin-g~ + Cye],
in the sense that the ratio tends in probability to 1, where

_ ((ED((1/2)dg)’o%(x)
¢-J F®) ’
o _ (/2d)[(m)® ~ (mpry](x)?
’ f(x)? '

An immediate consequence of Theorem 3 is that the rate of convergence for
d =1 of g should be n~'/°. This makes precise the previous intuition which
indicated that g should be slightly oversmoothed. In addition, under these
assumptions, reasonable choices of A will be of the order n~'/5 Hence, (2.7)
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shows once again that g should tend to zero more slowly than k. Note that
unlike the previous results, Theorem 3 is not stated uniformly over h. The
reason is that we are only trying to give some indication of how the pilot
bandwidth g should be selected. Note also that Theorem 3 applies only to the
mean of the distributions, when a better choice of g would probably take into
account other distributional aspects as well. For example, some preliminary
calculations along this line show that the effect of g on the variances is of the
same order as the effect on the mean. We do not choose to pursue this further,
because deeper analysis appears quite complicated and seems too tangential to
the points we are trying to make in this paper.

All of the results in this paper have been stated in terms of the so-called
stochastic design model where the regressors X are thought of as realizations
of random variables. Since these results are all conditional on Xj,..., X,, our
ideas carry over immediately to the case where the X’s are fixed and chosen by
the experimenter.

In the case of binary regression [dose-response curves, Cox (1970), page 8],
where the response variable Y takes on only the values 0 or 1, there are more
natural ways of obtaining bootstrap confidence intervals than those described
here. A direct application of our method would give bootstrapped data Y*
which take on values different from 0 and 1. A seemingly more natural
approach would be to bootstrap from a Bernoulli distribution with parameter
m (X))

3. Simulations and application. In this section we consider three main
points. The first is investigation of how much practical difference there is
between pointwise, simultaneous and Bonferroni confidence intervals. Second,
we compute the coverage probabilities of the bootstrap confidence intervals,
introduced in Section 2, in several simulation settings. Third, we give further
details concerning the example considered in Section 1.

To study the practical difference between the various types of error bars, we
consider the distribution of m,(x) — m(x) at a grid of x values for some
specific examples. We chose the underlying curve to be m(x) =x +
4e~%%" / \/2rr . To see what this looks like, consider Figure 2. The solid curve in
each part of Figure 2 is this m(x). This form is both convenient to work with
when calculating various constants, and also is challenging for the methodol-
ogy, because the hump is an interesting feature to be detected.

We chose the marginal distribution of X to be N(0,1) and took the
conditional distribution of Y|X to be N(m(X), o?), for o = 0.3,0.6, 1, 1.5. For
each of these four distributions, 200 observations were generated.

To study the differences between the various error bars, for each setting,
500 pseudodata sets were generated. Then we calculated kernel estimates, at
the points x = —2,—-1.8,—-1.6,...,1.8,2, using a standard normal density as
kernel. The bandwidth was chosen to be &, as previously discussed. Figure 2
shows, for the o = 1 distribution, m(x) overlayed with error bars whose
endpoints are various types of quantiles of the distribution of 7 ,(x). The
centers of the error bars are at the means of these distributions and show
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sk

T

Fic. 2. Overlay of m(x) with empirical (from 500 simulation runs) quantiles of 1y, (%)
distribution. Centers of bars are means of distributions. Error bars are 80% simultaneous.

clearly the bias that is inherent to nonparametric regression estimation. Note
in particular how substantial bias is caused by both the curvature of m(x)
near the hump and by the curvature of f(x), near x = —2,2. The bars in
Figure 2 are simultaneous bars.

For easy comparison of the lengths of these intervals with the other types,
consider Figure 3. This shows, for the same x values, the lengths of the four
types of bars. Of course these bars are all shorter near the center, which
reflects the fact that there is more data there, so the estimates are more
accurate. As expected, the lengths increase from pointwise, to actual simulta-
neous, to neighborhood, to Bonferroni. Also note that, as stated in Section 2,
the difference between the actual simultaneous bars and the neighborhood
simultaneous bars is really quite small, while the pointwise are a lot narrower.
The one perhaps surprising feature is that the Bonferroni bars are not very
much wider than the neighborhood bars.

To see how the bootstrap methodology proposed in Section 2 performed for
the simulation settings considered here, we calculated estimates of the simul-
taneous coverage probabilities for 21 equally spaced error bars on [—1,1].
These estimates were calculated by applying the methodology to 500 psuedo-
data sets, for each of the various settings. For each data set we used 500
bootstrap replications. The pilot bandwidth g was taken to minimize a global
version of the asymptotic representation given in (2.7), where the quantities
that depend on x were replaced by their integral over [—1, 1]. The bootstrap
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distribution was then used to derive the four types of error bars: pointwise,
actual simultaneous, neighborhood simultaneous and Bonferroni. Then for
each type of bar, the estimated simultaneous coverage probability is the
proportion of times that the 500 bars cover the true curve m(x) at each x
value. The estimates are given in Table 1. To give an idea of the Monte Carlo
variability in these estimates, also included are the radii of approximate 95%
confidence intervals, of the form 1.96‘/ p(1 —p) /V500, where p is the
estimated probability. Such confidence intervals are of course rather poor for

TABLE 1
Estimated ( from 500 simulation runs) coverage probabilities for bootstrap error bars

Pointwise Simultaneous Neighborhood Bonferroni
0c=03,h=h, 0.03 + 0.02 0.52 + 0.04 0.55 + 0.04 0.65 + 0.04
oc=06,h=nh, 0.09 + 0.02 0.55 + 0.04 0.59 + 0.04 0.69 + 0.04
o=10,h=h, 0.10 + 0.03 0.59 + 0.04 0.63 + 0.04 0.74 + 0.04
o=15h=h, 0.16 + 0.03 0.56 + 0.04 0.65 + 0.04 0.79 + 0.04
oc=10,h=hy/2 0.04 + 0.02 0.57 + 0.04 0.60 + 0.04 0.65 + 0.04
0=10,h=h, 0.10 + 0.03 0.59 + 0.04 0.63 + 0.04 0.74 + 0.04

0=10,h =2%h, 0.01 £ 0.01 0.10 + 0.03 0.16 + 0.03 0.33 + 0.04
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close to 0, but in most cases suffice to give a decent idea of the variability
involved.

This table looks somewhat disappointing since the observed coverage proba-
bilities are all significantly below the desired value of 80%. Careful investiga-
tion revealed that this was due to problems with the estimated bias. More
precisely it was caused by a systematic underadjustment in our bias correction
(i.e., bias in the estimated bias adjustment). In Figure 4 the difference between
the solid curve m(x) and the dashed curve Eri,(x) is the true bias for our
simulation setting in the case o = 0.3, & = h,. This bias is estimated for each
data set by the difference between i (x) and E*m}(x). The bias in this
estimation process is then the difference between the curve made of dots and
dashes Er (x) and the dotted curve E(E*m}(x)). Observe that because
Em (x) has less curvature than m(x), the estimated bias will typically be
smaller than the actual bias. The effect does not look very large, but simulta-
neous coverage turns out to be a very sensitive quantity. Note that this also
explains why the h = 2% h, line of Table 1 has much smaller coverage
probabilities than the others, since such a large 2 value means more bias than
in the other settings. Of course this bias effect goes away asymptotically, but in
the example considered here, Figure 4 shows that it is not negligible (and we
believe this problem will exist quite often). Experiments with different values

............................... E(E*m},

1 1 1 1 1 1 1 1 i 1 -l A 1 L 1 1 1 1 1

-1.0 -0.5 0.0 0.5 1.0

Fic. 4. Comparison of true bias (Efi;, — m) with expected estimated bias (E(E*}) — Ef,) for
o=03,h=h,
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TABLE 2
Estimated (from 500 simulation runs) coverage probabilities for bootstrap error bars with bias
correction

Pointwise Simultaneous Neighborhood Bonferroni

0=03,h=nh, 0.09 + 0.02 0.85 + 0.03 0.87 + 0.03 0.94 + 0.02
a=06,h=nh 0.15 + 0.03 0.83 + 0.03 0.86 + 0.03 0.94 + 0.02
o=10,h=h, 0.20 + 0.03 0.83 + 0.03 0.88 + 0.03 0.94 + 0.02
o=15h=nh, 0.24 + 0.04 0.82 + 0.03 0.87 + 0.03 0.94 + 0.02
o=10,h =hy/2 0.05 + 0.02 0.87 + 0.03 0.89 + 0.03 0.93 + 0.02
o=10,h=nh, 0.20 + 0.03 0.83 + 0.03 0.88 + 0.03 0.94 £ 0.02
o=1.0,h=2xh, 0.37 + 0.04 0.79 + 0.04 0.86 + 0.03 0.95 + 0.02

of g failed to alleviate this problem. An approach to the problem motivated by
Figure 4 is to replace A by c-h for some ¢ > 1 in the bias estimate.
Determination of ¢ and further analysis is beyond the scope of this paper.

To further verify that the problem here was with the bias, as indicated in
Figure 4, and not with the wild bootstrap technique, we reran the simulations
with the following bias adjustment. The bootstrap residuals £} were replaced
by unbiased residuals e**, which were resampled as previously indicated,
except that £, was replaced by Y; — m(x;). Then the bootstrap data Y.* was
replaced by unbiased data Y;** = m(x;) + ¢*. Table 2 shows the resulting
coverage probabilities.

Observe that now most of the coverage probabilities for the simultaneous
bars are essentially 80%, with those that are off being slightly larger. This
indicates that if the previously discussed bias problem did not exist, then the
bootstrap methodology proposed here would give very slightly conservative
performance (i.e., error bars too wide) for the example we have considered.
Note that as expected from the previous analysis, the neighborhood bars
exhibit coverage probabilities which are slightly bigger than the simultaneous
(not a significant difference in most cases), but the Bonferroni are quite a bit
larger. Also as expected, the coverage probabilities for the pointwise bars are
far too small.

In the example on demand theory treated in Figure 1, the functional form of
this so-called Engel curve is of specific interest for theoretical economists. In
particular the concavity of the curve at about two times the mean income
(x = 2.0, as these data have been normalized by dividing by their mean) has
important implications regarding the law of demand, see Hildenbrand and
Hildenbrand (1986). The error bars for this potato/income example were
constructed using the previous bootstrap method. Figure 1b indicates the
nonmonotonicity of this Engel curve and supports other functional forms than
those traditionally used, such as linear or working-type forms.

The previously described problems with bias are not a major problem in this
example, because if the underadjustment of bias were improved, then our
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conclusion of concavity near x = 2.0 is in fact strengthened. Also as the sample
size in much larger now, it seems reasonable to hope that the asymptotic
negligibility of the bias problem is closer to being realized.

4. Proofs.

Proor oF THEOREM 1. For notational simplicity, the proof is given explic-
itly only for the case d = 1. The theorem is an immediate consequence of the
following lemmas.

LEmMA 1. Along almost all sample sequences,
Vrk [#y(2) = m(x)] = N(B,V),
uniformly in h and g, in the sense that for all z € R,

sup sup |PY¥{Vnk [ y(z) — m(x)] <z} - ®pv(2)| -0,
heH, geq,

where ®p , denotes the normal cumulative distribution with mean B and
covariance V and where

, . f(®)
B=dg m(@)+2m(zc)—f-(~7) ,
K® — ¢ o? 0
V= s (Ckf(;;; =

for K@ the convolution of K with itself.

LeEMMA 2. Along almost all sample sequences,
Vnh [ (x) = h,(x)] > N(B,V),

uniformly in h and g, in the same sense as in Lemma 1 (except that the Y|X
distribution is replaced by the * distribution).

ProoF oF LEMMA 1. The Cramér-Wold device is used in this proof. We will
show that for all ¢ € RN and all z € R,

‘PY‘X{ET(W['M(@) -m(x)]) <z}

~o((z - 7B) [y Ve )| - 0,

uniformly over h € H,, where ® denotes the univariate standard normal c¢.d.f.
To obtain uniformity over A requires some modification of the Cramér-Wold

(4.1)
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device. In particular, Theorems 7.6 and 7.7 of Billingsley (1968) need to be
extended in a straightforward fashion. To establish this, following Héardle and
Marron (1985), we first make the linear approximation

(4.2) Vnh [ (x) = m(x)] =L, +0,(L,),
where
L,= m{l v Kalz ~X)[¥ - m(x)] }
nia f(x)

The term o,(L,) is of lower order uniformly over H, by (5.1) of Hérdle and
Marron (1985) and by Lemma 1 of that paper. Now write

L,=V,+B,,

where

and ¢, = Y, — m(X)),

1 2 Ky(x - X)[m(X) - m(z)
Bﬁm{ﬁ,{‘l [f(ac) ]}'
The proof of Lemma 1 follows from
(4.3) t"V, - N(0,¢t"Vt),
(4.4) t'B, - t'B,

uniformly over h € H,,.

To prove (4.1), we use Esseen’s inequality for arbitrary independent random
variables given, for example, on page 111 of Petrov (1975). For this purpose
define W, (x) = n~/2h1/2K (x — X,)/f(x),

Spn = ¥ Var(tTW,,(x)e| Xy, ..., X,,)

i=1

n
3
Ssn = L E(|t"W,u(x)e 1%y, ., X,).
i=1
The Esseen inequality completes the verification of (4.3), when we show that
sup,, S3,/S83/2 =0(1) a.s.

To evaluate S,,, note that EXS,, = ¢V, ¢, where the (%, [) element of V,, is
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by the assumption on x,

[Eu(xs = w)Kp(x, = u) f(u)o?(u) du/(f(x:) F(x))
= h7'K®(c; = ¢)0?(x,) /f(x,) + O(h?).
Since S,, — ES,,, a.s. by Theorem 1 of Feller [(1970), page 238] we have that
Sy = hTIK®(c, = ¢,)a?(x,) /f(x0) + 0(1) as.

Uniformity over A is obtained by a suitable strengthening of the previous
theorem. In the same manner the term Sj, can be evaluated to see that

sup, n*/2h1/2S;, = O(1) a.s.

Thus the statement (4.3) follows.
For the proof of (4.4), see the bias evaluation in Collomb (1981) or Hirdle
(1989). O :

The proof of Proof of Lemma 2 is similar in spirit to that of Lemma 1, but is
slightly more complicated because more terms arise.

Proor oF THEOREM 3. The proof of (2.7) uses methods related to those in
the proof of Theorem 1, so only the main steps are explicitly given. The first
step is to decompose into variance and squared bias components,

A 2
(4.5) E[(b,,,g(x) — by(x)) ]Xl,...,Xn] -7+ B2,
where
7, = Var(b, (2)|X,,..., X,),
B, = E(b), ,(x) — by(x)|Xy,..., X,).
Using the same linearization technique as at (4.2) together with
‘@n = ‘@nl + O(‘@nl)7
where
B,; = [/Kg(x — t) (1) dt - %(x)]/f(x)
for
U(x) = [Ky(x = s)[m(s) — m(x)] f(s) ds.

Now by first integrating by substitution, then differentiating and finally Taylor
expanding and collecting terms,

U (%) = K2 (3dg)[(mf)® = (mf")](x) + o(R2).
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Hence, by another substitution and Taylor expansion,

B2 = &°h*(3d ) [(mf)® = (mf")](x) + o(£°h%).
Thus, along almost all sample sequences,
(4.6) B = Cyg*h* + o(g*h*)

for C, as defined in the statement of Theorem 3.
Calculations in a similar spirit show that

7, =n"'h*'g°C, + o(n"'h*g "),

where C, is defined in the statement of Theorem 3. This, together with (4.5)
and (4.6) completes the proof of Theorem 3. O
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