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RATES OF CONVERGENCE FOR THE ESTIMATES OF THE
OPTIMAL TRANSFORMATIONS OF VARIABLES

By PraBIR BURMAN
University of California, Davis

We consider here spline estimates of the optimal transformations of
variables for multiple correlation and regression as dealt with in a recent
paper by Breiman and Friedman. We show that we can construct estimates
of the optimal transformations which have the same optimal rate of
convergence as in the usual nonparametric estimation of a univariate
function.

1. Introduction. Ever since the publication of the paper by Box and Cox
(1964), there has been a considerable interest in data transformation. Re-
cently, Breiman and Friedman (1985) have substantially generalized the idea
of Box and Cox and provided a very powerful tool for data analysis. Box and
Cox considered only power transformations, but Breiman and Friedman con-
sidered arbitrary transformations and provided an elegant method called the
alternating conditional expectation (ACE) to calculate such transformations.
When the random variables are discrete, there is a methodology closely related
to that of Breiman and Friedman and it is known in the literature as Optimal
Scaling [see Greenacre (1984)].

Let (Y, X,,..., X,;) be a (d + 1)-dimensional vector of univariate random
variables. Breiman and Friedman considered transformations A(Y),
o(X),...,0,X,) so that these transformed variables have zero means,

h2(Y) =1, E¢>2(X) <w j=1,...,d. Let e¥h,$) = E(Y) - $X))?
where ¢>(x) ¢>1(x1) + o dlxy), be the unexplained error for regression of
R(Y) on $X). Transformatlons (h*, $*) are called optimal if they minimize e2
Breiman and Friedman showed that under certain conditions, optimal trans-
formations exist though not necessarily uniquely.

In this paper, we address the question of rates of convergence. We consider
spline approximations to &, ¢,,..., ¢, and the problem of estimating these
splines from a sample of size n. The ACE algorithm requires iterative compu-
tations, whereas in our case the problem of estimating the optimal transforma-
tions reduces to a matrix eigenvalue problem. We show that the empirical
estimates £, d)l, cees qu, exist and'except on an event whose probability
approaches zero as n — «, these estimates are unique. By choosing the degree
of the splines and the number of knots properly, we can show that

inf{ A - h*l: h*isan optimal transformation}
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and
inf{”¢;j — ¢ “ ¢} is an optimal transformation}, j=1,...,d,

have the same optimal rate of convergence as in the usual nonparametric
estimation of a univariate function (e.g, a density). Here || || refers to the L2
distance with respect to the joint density of (Y, X, ..., X;). The arguments of
this paper could be easily adapted to the case of orthogonal series estimators.

We would like to mention here a related work by Koyak (1990). He has
recently shown that the sieve method provides consistent estimates of the
transformations.

The organization of the paper is as follows. In Section 2, we present some
basic results which are borrowed from the paper by Breiman and Friedman.
We discuss spline estimates and present the main result on the rates of
convergence in Section 3. In Section 4, we present a few technical results. We
prove all our technical results in Sections 5 and 6b. In Section 6a, we write
down a matrix version of the problem of estimating the optimal transforma-
tions. We would like to point out here that we use some perturbation theory of
linear operators in our proofs.

2. Some basic results. In this section, we will write down some defini-
tions and assumptions which we will need later on. Let (Y, X;,..., X,;) be a
(d + 1)-dimensional vector of univariate random variables on a compact set
(on R%*!) which we will assume to be [0, 1]*! without loss of generality (see,
however, Assumption 4 in Section 3). Let A, ¢,,..., d,, be any transforma-
tions of Y, X, ..., X, satisfying

o1 Eh(Y) =0, E¢;(X;)=0, j=1,...,d,
(21) ER¥(Y) <w, E¢*(X,)<w, j=1,...,d,

Let $(X) = L %¢,(X,) and e?(h, $) = E[h(Y) — ¢X)I?, where h, ¢, ..., by,
satisfy (2.1) and ||A|l = 1. (h*, ¢*) are called optimal if they minimize e2.
Breiman and Friedman proved that optimal transformations exist under cer-
tain conditions, but are not necessarily unique. The results presented in this
section are taken from Sections 5.2 and 5.3 of Breiman and Friedman’s paper.

DEeFINITION 2.1, (2) Let H % be the linear space of functions f of the form
f(y,x) = h(y) + ¢(x), where h and ¢ are as in (2.1), with the norm and inner
product defined as

IfI* = Ef?,  {fi, fo) = Efifo.

(b) Let Hy and ij’ j=1,...,d, be the usual subspaces of H? with the
same norm and inner product,

heHy if En(Y) =0and Eh%(Y) < x,
¢;€Hy if E¢;(X;)=0and E¢?(X;) < .
(c) Let Hy be the space of functions of the form ¢(x) = Z‘f(j)j(x ), ¢, €H X,
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It is easy to see that Hy, and H X, Jj=1,...,d, are Hilbert spaces. Breiman
and Friedman showed that under Assumptions 1 and 2, H? is a Hilbert space
and Hy, Hy and HXJ, Jj=1,...,d, are closed subspaces.

Throughout the paper we will make the following two crucial assumptions
which guarantee the existence of the optimal transformations.

AssumpTION 1. If the transformations 4, ¢,,..., ¢, with zero means and
finite variances satisfy

d
R(Y) + ). ¢;(X;) =0 a.e., then each of them is zero a.e.
1

AssuMPTION 2. The conditional expectation operators
E(¢;(X,)|Y): Hy, > Hy,
E(¢;(X;)| X,): Hy > Hy, i+,
E(h(Y)|X)): Hy > Hy,
are all compact operators.
It can be shown that a sufficient condition for Assumption 2 to hold is that

/f3v/(fx fy) < », where fx is the joint density of X,,..., X,, fxy is the
joint density of X and Y and fy is the marginal density of Y.

THEOREM 2.2. Under Assumptions 1 and 2, optimal transformations exist.

Now we will characterize the optimal transformations. We will see that the
optimal transformations are the eigenfunctions corresponding to the largest
eigenvalues of certain operators.

DerFINITION 2.3. In HY let Py, and Px be the orthogonal projections on
the subspaces Hy and Hy, respectively. Let U = Py, Py and V = PgPy,.

Breiman and Friedman showed that U and V are compact, self-adjoint and
nonnegative definite. Let A, be the largest eigenvalue of U and let M be the
corresponding eigenspace. It is easy to see that

infle%(h,$): h € Hy, ¢ € Hy, |kl = 1}
=1-sup{¢h,Uh): h € Hy,|hll=1)} =1 —a,.

So if h € M, ||k|l = 1, then (k, $), ¢ = Pxh, are optimal transformations.
Indeed, all the optimal transformations are of this form. Let us note that
A; <1, by Assumption 1. Following Breiman and Friedman, we will assume
throughout that A, > 0. The case A; = 0 is a trivial one, because then for any
h in Hy with ||kl = 1, (h, Pxh) would be optimal. However, the behaviour of
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the sample estimate of A, in that case is still an open question. Since U is
compact and A; > 0, m = dim(M) < . This tells us that there are exactly m
linearly independent optimal transformations.

3. Spline estimates of the optimal transformations and rates of
convergence. Since we will discuss the rate of convergence, we will first set
some smoothness conditions on the optimal transformations. Let us recall that
the number of linearly independent optimal transformations (h*, ¢*) is finite,
which we assume to be m, and M is the Hilbert space generated by the A*’s,
the optimal transformations of the Y variable. Let N be generated by the
optimal ¢*’s. Let us note that dim(M) = dim(N) = m.

AssumpTiON 3. (a) If he M, |h|l=1, then h is p’' times continuously
differentiable and |A??(y,) — hPX(y,)| < cly; — y,|” for all y, and y,, for some
0O<v<landc>0.

(b) If € N and [|ll = 1, then each ¢ ; is p' times continuously differen-
tiable and ¢ (x,) — ¢{"X(xy)| < clx; — x,|” for all x, and x,.

We would like to point out that the constants ¢ and v in Assumption 3 do
not depend on 2 and ¢. Let us note that if m basis elements of M and N
satisfy Assumption 3, then every element of M and N will satisfy Assumption
3. It is possible to find simple sufficient conditions which imply Assumption 3
[see Remark (c) at the end of this section].

Let p = p’ + v and we will assume that p > 0. Let ¢ be any integer larger
than or equal to p. We will seek spline estimates of the optimal transforma-
tions. More specifically, we will minimize e? over the class of spline functions
(h, ¢). To make everything formal, let us first define spline functions. % is a
spline function on [0, 1] of degree ¢ with % knots if (a) 2 is a polynomial of
degree q on each interval [(t — Dk~ ¢tk 1], t =1,...,k,(b) h is (g — 1) times
continuously differentiable on [0, 1].

Let S, be the class of all such splines on [0, 1] satisfying (a) and (b). It is
well known that the dimension of S, is ¢ + & and there exists a basis of S,
consisting of normalized B-splines{B,;, j =1,...,q + k}[see de Boor (1978)].

In order to prove the main result of this paper we need the following
additional assumption.

AssumpTION 4. The joint density of Y, X,,..., X, is bounded and the
marginal densities of Y, X,,..., X, are bounded away from zero.

Now let us define our spline estimates. Suppose we have n observations
(v,X,),i=1,...,n. We want to estimate optimal transformations from the
data. Let

2

n d
(3.1) eb(h @) =n7 X (A(Y) — T 4(X)]
j=

t=1
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where ¢ = ¢, + -+ +¢, and h, ¢y,..., ¢, arein S , with the constraints

nTtY RA(Y) =1, n 'Y A(Y,) =0,
t=1 t=1

(3.2) ‘
n_12¢j(th)=0, j=1,...,d.
t=1

(h, ¢) are estimates of the optimal transformations if they are a solution to the
following minimization problem:

(33) e =inf(n"' T (A(Y,) - $(X,))": h and & satisfy (3.2))

Let us note that the minimization problem in (3.3) is a finite dimensional
problem and could be converted into a problem of finding the eigenvector
corresponding to the largest eigenvalue of a matrix [see Section 6a]. Well-known
computer packages are available for solving such a matrix problem.

Now we state the main result of this paper, which is an immediate conse-
quence of Theorems 4.1 and 4.2 given in the next section. We will write
k ~n”, y >0, to mean that ¢'n” <k < ¢"n” for positive constants ¢’ and c".

THEOREM 3.1. (a) Let k < n'=? for some & > 0.

A solution (h,, $,) to the optimization problem in (3.3) exists and except on
an event whose probability goes to zero as n — o, this sollAttion is unique.

(b) Let k ~n'/®P*Y and r=p/@2p + 1). Let (h,,d,) be a solution of
(3.3), where ¢, = byy + -+ +&byy. Then

inf{” h, — k*|: h* is an optimal transformation for variable Y} =0p(n™")
and »
inf{” d:k ;—¢F ” ¢; is an optimal transformation variable X j> =0p(n7"),
j=1,...,d.
(¢) Let e*? = inf{|h — ¢||* where h and ¢ satisfy (2.1) and ||k|l = 1}. Then

ef2=e*2+ 0p(n™").

The implication of Theorem 3.1 is that we can construct estimates of the
transformations which achieve the optimal rate of convergence associated with
the estimation of univariate functions. To clarify this point, let us consider the
following example. Suppose we are interested in estimating the regression
function u(x) = E(Y]X = x) from a sample of size n, where Y and X are
univariate random variables. As in Assumption 3, let us assume that u is p’
times differentiable and the p'th derivative satisfies |u®’(x;) — u®A(x,)| <
clx, — x,|” for all x, and x, for some ¢ > 0and0 <v < 1.Let r =p/Q2p + 1),
where p = p’ + v. Stone (1982) showed that no estimate /i of u can achieve a
rate better than n~", when the distance between [ and u is assumed to be the
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L? distance with respect to the marginal distribution of X. [See Stone (1982)
for details.] 3

In our case, the optimal transformations (h*, ¢*) are not unique. Still, we
can show that for each variable, we can construct an estimate of the transfor-
mation which is close to one of the optimal transformations with the optimal

r

rate n”".

ReEMARKS. (a) It may be desirable in practice to place the knots at the
sample quantiles. For variable Y, the knots could be placed at the (j/k)th
sample quantiles, j = 1,..., k. For each X variable, the knots could be
similarly placed at the corresponding sample quantiles. We believe that all the
results of this paper would remain true if we use spline estimates with the type
of variable knots described here, however, the proofs would be far more
complicated.

(b) The smoothness properties of the optimal transformations are not
known in practice. Since we are approximating the optimal transformations by
splines, it is important to select the knots in a data-dependent manner. Some
computationally inexpensive methods for tackling such problems are given in
Burman (1990b).

(c) It is not difficult to find sufficient conditions which imply Assumption 3.
If (h*, $*) are optimal transformations, then it can be shown that

R*(Y) = ATL T B{67(X;)|Y} and
$r(X,) = E(r*(Y)|X} - T Elex(X)|X)}, i=1,....d.
J#i

Let fx,y be the conditional density of X; given Y. It can be shown that
Assumption 3 holds if for any i = 1,...,d, and for any fixed x, fx y(x|-)is

p' times differentiable and the p'th derivative, which we will denote by
f¥v(x| - ) for notational simplicity, satisfies

| £ (xlyn) — FE(Ely2)| < ¢y — 3l

for all y,, y, and x, for some ¢’ > 0. Similarly, we can find sufficient conditions
which imply Assumption 3.

4. Some important results. We begin this section with a few defini-
tions.

DeFINITION 4.1. (a) Let Hy,, Hx,, j=1,...,d, and Hy, be the sub-
spaces of Hy, H X, J=1,...,d, and Hy, respectively, defined as

HYk=qunHy, HXJk=qumHXJ" j=1,...,d,

$=¢1+"’+¢dEHXk if¢jeHXJk7 j=1,...,d.
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() In HO, let Py,, Px,, Py, J=1,...,d, be the orthogonal projections
on the subspaces Hy,, Hyx, and H X ks Jj=1,...,d, respectively.

Let F be the joint distribution function of (Y, X, ..., X,;) and let F, be its
empirical estimate. Now we will define the Hilbert spaces similar to the ones
before but with respect to the norm defined by the empirical d.f. F,.

If f, and f, are two functions on [0, 1]%*1, we define

[fl2=n"*Y f2(Y,X,) and
t=1

(4.) }
(oo fdn =" T F(Y,X,) £o(Y, Xy,
t=1

DEFINITION 4.2. (a) Let ﬁYk, I:IXJk, j=1,...,d, and ﬁXk be the follow-
ing Hilbert spaces with respect to the norm and inner product defined in (4.1):

heHy,, ifheS,, n 'Y h(Y,)=0andlal, <,
t=1
¢; € Hyy, ifh €Sy, n™t Y ¢;(X;,) = 0and|¢;], <o,

=1
($EIA{Xk, if(z;:(ﬁl"""+¢dand¢j6ﬁxjk,j=1,...,d.

Finally, let A 2 be the Hilbert space of all functions f of the form f(y,x) =
h(y) + ¢x), h € Hy, and ¢ € Hy,, with the norm and inner product defined
in (4.1).

(b) In I:Iko, let Py,, Py, ISXjk, J=1,...,d, be the orthogonal projections
on the subspaces Hy,, Hy, and A X k> Jj=1,...,d, respectively.

The following series of expressions will show the main structure of the
proof.

Let e* be the same as in Theorem 3.1. Let

(42) er? = inf{|h — &I h € Hy,, & € Hyy, Ikl = 1.
Let U, = Py, Py, Py, and 0k = PYkPXkPYk, then

(4.32) e*? = 1 — sup{(h, U}L>: h € Hy, |kl = 1},
(4.3b) ef? =1—sup{Ch,U,h): h € Hy,, Al = 1},
(4.3¢) efZ=1- sup{(h, U,hdn: b€ Hy,, R, = 1}.

So, in each case the solution is an eigenfunction corresponding to the largest
eigenvalue, (4.3a) is the original problem, (4.3b) is the spline approximation to
the original problem and (4.3c) is the sample version of the approximation
problem in (4.3b).
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It is easy to see that Theorem 3.1 follows immediately from the following
two theorems. Let us recall from Section 2 that the number of linearly
independent optimal transformations (%, ¢) is m.

TuEOREM 4.1. (a) There exists an integer k, such that for k > k,, the
dimension of the solution space for the problem in (4.3b) is no larger than m.
Let Ay = Ay = -+ be the eigenvalues of U, with the corresponding eigen-
functions h,q, h,q, ... . Then

sup inf{||h,, — h*|: h* is an optimal transformation for variable Y)
l<t<m k¥

<ck7P,
for some ¢ > 0.
(b) Let ¢y, = Pxphyp =y + * +dpap t=1,...,m. Then, for j=
1,...,d,
sup 1nf {|| brje — OF||: & is an optimal transformation for variable X 2}
l<t<m ]

<ck7P.

Let M, be the Hilbert space spanned by %,,, t = 1,..., m, where h,,’s are
the same as in Theorem 4.1. If $(x) = ¢(x,) + -+ - +¢4(x,), then sometimes

we will refer to ¢, as the jth functional component of ¢. The following result
is true for any 0 < 8 < 1.

THEOREM 4.2. Letk < n'~° for some & > 0.

(@) G) A solution (h »» $,) to the optimization problem in (3.3)
exists. (ii) Except on an event whose probability approaches zero as n — «, the
solution to the optzmzzatwn problem in (3.3) is unique.

(b) Let (h k,d)k) be the solution to the minimization problem in (3.3),

lh,ll, =1, and d)k =Py, h, = buy + - +¢,,. Then each of the following
quantities is Op((k/n)/?),

inf{||A, — k|: b € My, |R| = 1),
inf{” $k = ” ¢; is the jth functional component
of § = Pxyh, h € My and |k =1}, j=1,....d.

The following important result follows from Theorem XII.1 in de Boor
(1978).

THEOREM 4.3. Let h be a function on [0, 1] which is p' times differentiable
and the p'th derivative satisfies |h?)(x,) — h'P(x,)| < clx, — x,|", for some
c>0and 0<v<1 Let p=p' +v and q be any integer greater than or
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equal to p. Then there exists a function h, € S, such that sup{|h (x) — h(x)I:
0<x<1} <cok™ for somec,> 0 (c, depends on h).

5. Proof of Theorem 4.1. Before we prove Theorem 4.1, we need the
following useful lemmas.

First let us recall that the largest eigenvalue of U is A; > 0 and the
corresponding eigenspace is M. @, is the orthogonal projection on M and
dim(M) = m < ». Let A, be the second largest eigenvalue of U. Let U, =
Zj?;"f)thij, where A, > A0 > -+, A, = 0. The following lemma relates
the eigenvalues of U, to those of U.

LemMA 5.1.  There is a constant ¢; > 0 such that Ay — c;k™7 < A,; < A, for
J=1...,mand A} .1 <A,

Proor. From Theorems 7.1 and 7.2 in Weinberger (1974) we conclude that

(5.1) Apj <Ay forj=1,...,mand A, ,, .1 <Ay

Now we will show that A,; >A; —c,k7? for j=1,...,d. Let h,, t=
1,...,m, be an orthonormal basis of M. By Theorem 4.3, there exists a
constant ¢, > 0 such that [|[Py,h, — k)l <cok™? for all ¢ =1,...,m. Since

any h € M, ||h|l = 1, can be written as ¥ "a,k,, where © "a? = 1, we conclude
that for some ¢, > 0,

(5.2) sup([| Py,h — k|: h € M, ||kl = 1} < c k7.
A similar argument will show that for some c; > 0,

sup{" PXchﬁ = b || ¢; is the jth functional component of

(5.3) )
$ = Py, h € M, 1Al = 1} < cgk?.

Let h € M and ||h|| = 1, then
[<h,Uh) — (h,Uh)|
=[I Pxs Pysh|* | Pxh || < 2| Pxy Py, — Pxh]|
(since | Pg, ||, || Px| and || Py, || are < 1)
< 2{|| Pxyh — Pxh| +||Py,h — h|}.

(5.4)

From (5.2) we get
(5.5) ” PYkh - h” S 02k_p.
It is easy to see that

(5.6) | Pxyh — Pxh| = inf{”‘i;k _th””f’k EHXk}~
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Let Pxh = ¢; + -+ +¢,, then the right-hand side of (5.6) is less than

d d d
(5.7) Y PXjk¢j - é;|l < ) ” PXjkd’j —¢; ”
1 1 1

Now, (5.3) tells us that each term on the right-hand side of (5.7) is less than
c3k P and so (5.5), (5.6) and (5.7) prove that for some constant ¢, > 0,
(5.8) |[<h,U,h> — {h,Uh)| < ck™P.

Let us note that for any o € M, (h,Uh) = A, and that all the inequalities in
(5.5) to (5.8) could be proved uniformly for all ~ € M, |||l = 1. Consequently,

(5.9) inf{Ch, Uyh): h o€ M,IIhll =1} > A, — ¢ kP

and this proves that A,,, > A; — ¢,k7”. Since A,; > A, for j = 1,..., m, this
proves the result. O

ProoF oF THEOREM 4.1. We will prove part (a) later, but first we will show
how part (b) could be proved from part (a).

(5.10) Let h, € M,, lhul =1 and &, =Pgyhy=dp + * +dyq.
Because of Proposition (5.2) in Breiman and Friedman, it is enough to show
(5.11) inf{|| ¢, — Pxh|: b € M, |kl = 1} < csk7P.

For h € M and ||h|| =1,

(5.12) Ié: — Pxh| <l Pxsh — Pxh| + | hy = h.

We have shown in the proof of Lemma 5.1 [see (5.6) and (5.7)] that

(5.13) sup{|| Px,h — Pxh|: h € M,|Ihll = 1} < cgkP.

(5.12), (5.13) and the part (a) of the theorem together prove the second part.

Now let us prove part (a). Let T’ be a positively-oriented closed curve in the
complex plane which encloses only one eigenvalue of U, namely A,, and every
point A on T' is at least (A, — A,)/2 distance away from A, and A,. Because of
Lemma 5.1, there exist an integer %, such that for any & > kg, A,y,..., A,
are all inside I" and all of them are at least ¢, distance away from I' for some
€9 > 0. So the resolvents R,(A) = (U, — A)"'and R(A) = (U — 1)~ ! exist and
are bounded for each A on T.

Since U and U, are self-adjoint, the following are orthogonal projections
[see the proof of Theorem 2.27 and Section 2.7.7 in Chatelin (1983)].

(5.14a) S, = (27ri)‘1/FRk(A) dr,  8,=X Q)
1

(5.14b) S = (2~rri)_1fR(A) dr, S=@,.
T

Let us note that part (a) is proved if we can show that
(5.15) I(Sk = 8)Syll < erh.
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To show this we will prove that
(5.16) (S, —S)S| < cgk>.

Let us assume for the moment that (5.16) is correct. Then we can choose k, in
such a way that [(S, — S)S|| < 1 for & > k,. Because of (5.14a) and (5.14b),
M, =8S,Hy and M = SHy. We also know that dim(M,) = dim(M) = m. By
Lemma 5.2 given at the end of this section or by Theorem 6.34 in Kato [(1976),
page 56],
' (S, = S)Sell =[I(Se — S) S|

and this proves (5.15). [Though the result in Kato (1976) is stated for finite-
dimensional spaces, the author points out in the footnote that this result is
true even when the dimension of the space is infinite. Indeed, the proof given
in the book has nothing to do with the dimensionality of the space.]

So what is left to prove is (5.16). First let us state the following resolvent
equation which is quite simply to verify:
(5.17) R(A) = Ry(A) = R (M) (U, — U)R(A).

Since R(A)S = (A, — A)™1S, we have

(S-8,)S = (27Ti)_1/()t1 - ) 'R,V dANU, — U)S.

r

Since (27i)~Y(A; — A)"'R,(A)dA is a bounded operator and since for any
heM,|hl=1, Sh=h,
(5.18) I(S = Skl < el(U, — U
Now, (U, — U)hk|l = |Py, Pg; Py,h — Py Pgh|l and this can be bounded above
by

| PyxPxi(Pyi = Py)h| + | Pyi( Pxs — Px) k| +[[( Py, — Py) Pxhl|

<|Pyyh — h| +||Pxyh — Pxh| +|(Py; — Py) Pxh||.

We will show that each term in (5.19) is O(k7P). (5.2) tells us that the first
term in (5.19) is no larger than c,%2 ?. We have already shown in (5.6) and

(5.7) (in the proof of Lemma 5.1) that ||[Px,h — Pxh/| is no larger than dcgk ~>.
The third term in (5.19) is bounded above by

(5.19)

b

d d d B
Zl I(Pys — Py) ;| = 21 | Pyst; = R;| = 21: | Pyst; = &, ||7;
where ¢, + - -+ +¢d=PXh,71J-

= Py¢; and ﬁj = le/llz,j”. Using (5.2), we get

d d d
21: | Pyak; = B[ %] < cok™ L ||B; | < c2k ™ X [l 951]-
1 1
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By Proposition 5.2 from Breiman and Friedman,

2

Z "¢’ ” < Cyo 24’

where ¢, depends only on F. Since |l¢, + -+ +¢,ll = |[Pghll < 1, it follows
that the third term in (5.19) is bounded above by ¢,o&7P for some c;, > 0.
This completes the proof of Theorem 4.1. O

LEMMA 5.2. Let H, and H, be two finite-dimensional subspaces of a Hilbert
space H. Let us assume that dim(H,) = dim(H,) < . If P, and P, are the
orthogonal projections onto H, and H,, then

”(Pl - Pz)P1" ="(P2 - Pl)P2"~

Proor. Let dim(H,) = dim(H,) = [, say. Let &,,..., &, be an orthonormal
basis of H, and let m,,...,n, be an orthonormal basis of H,. It can be shown
that

”(Pl - Pz)Plll = sup{”u — Pu|:ueH,,|u| = 1}.
So,
|(Py = Py) Py|* = sup{|lu - Ppu|*:u € Hy, |u| = 1)
=1 - inf{| Pu|* u € H,, |u|| = 1)
=1- inf{z (mj,w*ueH,|u|= 1}.

Let us note that any u € H;, |u| = 1, can be written as a linear combination
of &;,...,&, that is, u = La;§; with a'a = Za? = 1. So we conclude that

I(P, - P)P,|P=1- inf{a'z Y 'a:acRaa- 1}

where ¥ is a / X ! matrix with (i, j)th element (§&;,m;. Similarly, we can
show that

(P, — P)P,|* =1 - inf{ajZ’ Y a:acR! aa- 1}.
The proof follows since 'Y and LY’ have the same eigenvalues. O

6a. Expressions for U, and U,. This section is devoted to finding
explicit expressions for U, and U,. & Since the transformation of any variable is
approximated by a linear combination of £ + q B-splines and since the mean
of this approximate transformation is zero, there are & + g — 1 free parame-
ters. We use this fact to construct exact expressions for U, and U,.

Let e,,...,e;,,_; be (k + g)-dimensional vectors which are orthogonal to
each other and orthogonal to 1, the vector of 1 and e’e; = 1 for all ;.
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Forl<t<dandl1l<i<k+q— 1, wedefine

_ e;;Br(x,)
Ur(x,) = g kbktj s

(6.1) B, (x,)

o _ €;j D X
wkti(xt) - g kl;ktj ’

where b,,; = EB, (X,) and b,,, = n"'L%_, B, (X,,).

Let us note that each B, ; is positive on its support which is an interval of
length (¢ + 1)k~ ! and consequently, EB, #(X,) > 0, by Assumption 4. For any
variable, say X,, b,, ;>0 for all j if each of the open subintervals ((I —
DE~LIk™Y, I =1,...,k, has at least one observation. By Assumption 4,
fx(x) >y, > 0 forall 0 < x < 1, where fx, is the marginal density of X,. An
easy calculation will show that

Prob{b i=0forsome j=1,...,k +q} <kexp(—y,n/k).
ktj 0

This probability is small when & < n!~? for some & > 0. Let us note that
Skt ;> 0 for all £ and j, if the knots of the B-splines are placed at the sample
quantiles (see the remark at the end of Section 3).

It is easy to check that [¢,,; dF = 0 and [{,,; dF, = 0 for all ¢ and i. It is
also easy to see that for a transformation ¢,, of the ¢tth X-variable which is a
linear combination of B-splines,

iff¢ktdF=0,

then ¢,, is a linear combination of {¢,,,: i = 1,...,k + ¢ — 1},
if [y, dF, =0,

then ¢,, is a linear combination of {tzl,m.: i=1,...,k+q - 1}.

Let ¥,, and lilkt be the (¢ + q¢ — 1)-dimensional vector of the ¢ functions
and let B,, be the (2 + g)-dimensional vector of B-splines corresponding to
variable X,. So we can easily write

(6.2) U,.(x;) = Dy, B, (x,) and "i‘kt(xt) = DktBkt(xt)’

where D,, and D,, are (k + q¢ — 1) X (k + ¢) matrices. The elements of the
ith rows of D,, and D,, are {e;;j/(kby,;), j=1,...,k +q} and {eij/(klsktj),
J=1,...,k + q}, respectively, i = 1,...,k +q — 1.

Let ¥, be the (kd + gd — d)-dimensional vectors of all the ¢ functions. We
define tilk similarly. Then we can write

(6.3) Uu(x) = D;B,(x), ¥,(x) = D,B,(x),

where B, is the vector of all the B-splines corresponding to the X variables
and D, and Dk are (kd + qd — d) X (kd + qd) block diagonal matrices. D,,,
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t=1,...,d, are the diagonal blocks of D, and Dk,, =1,...,d, are the
dlagonal blocks of D,.
Let us define the following matrices,

Ag = EB(Y)Bi(Y),  Axx =EB,(Y)U(X),
Axx = B4, (X)¥(X),

(641) Aoy =" X BU(GBLY),  A=n L B,

j=1

(6.4a)

Agg=n"1 Z ‘i‘k(xj)‘i’é(xj)’
(6.4c) j=1

Axo = Aox and Axo = A,ox~
It is easy to see that, for A(y) = 0'B,(y),
(6.5a) (Uph) () = 9'onA{o%AonSOIBk(y)
(6.5b) (Ukh)(y) = voxA Axo 00 Bk(y)

In the last expression, if Axx is singular, we take A + to be a generalized
inverse of Ayy. The same is true for Ayl It is easy to check that

(6.6) E(U,h)(Y)=0 and n™* Y (O.h)(Y;) =0
j=1
We end this section with the following remarks.

ReMARK 1. For any 1 <t < d, the sample estimate of the transformation
of variable X, is a linear combination of By i J = , B +q — 1. By con-
struction i, ;’ j '8 are well-defined if 5,, ;s are positive. In practlce this condition
is satisfied, since the knots of the B-splines are usually placed at the sample
quantiles (see the remark at the end of Section 3).

ReEMARK 2. The following scheme could also be used to estimate the
optimal transformations. For each X variable, consider the first 2 + ¢ — 1
B-splines with their sample means subtracted. Let B,(x) be the d(k + g — 1)-
dimensional vector of such sample mean adjusted B-splines for all the X
variables. Let Lgx = /B,(y)B,(x) dF (y,x), Ly, = Lyx and Lgx =
/B,B, dF,. Let Lz be the inverse of Lyy. If Lyy is singular, then we take
Lxx to be the Moore-Penrose generalized inverse (or any symmetric and
reflexive generalized inverse) of Lxx [see Section 1b.5 in Rao (1973)] If
h(y) = 0B,(y), 0 € R**? and ||hl2 = 0'Ayy0 = 1, then ||h — Py, hl2 =
1 - 0'L,0, where L, = Lyx Lxx Ly, Let 8, be the vector at which the quadratic
form 6 Lk() attains its supremum subject to the constraint 6 "Agd = 1. If
h,(y) = 8,B,(y), then (h,, Py, h,) are estimates of the optimal transforma-
tions.
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6b. The proof of Theorem 4.2. Before we prove Theorem 4.2, we need a
few preliminary results. The first lemma can be easily derived from Lemma 4.4
in Section 4 of Burman (1985). Let 0 < 8’ < §/2, where § is the constant in
Theorem 4.2.

LemMA 6.1. (a) There exist constants 0 < ¢qy < cyy such that all the eigen-
values of Ay, and Axx lie between ¢, k™' and ¢,k 1.

(b) Let 8,;, = (kn'~%)"'/2 Then ||AOO Agoll, 1Ax — Agxll and | Agx —
Axxll are 0p(8,,,) uniformly for k < n'

Proor. (a) Let w € R**? with |l® = Zu? = 1. Then, wAyu =
fZu;B, j}z dF. Using the two-sided inequality (12) in Section 4 of Stone
(1986), we get

(6.7) cigk ' ud swAgu<c, kY ul
This proves the result for A,,. Now let us prove it for Ayx.

Let us note that for any u € R¥**9-D which is composed of u,,...,u,,
u,/’s in R**97! wAgyu can be written as [[¢, + - - +¢,]°dF, where

¢ x,) =u,(x,), ¢t =1,...,d. By Proposition 5.2 of Breiman and Friedman,
2 , 2
ci5 2 1" < wAxxu <cig ) ¢
Arguing the same way as before we can show that forany ¢t = 1,...,d,
- 2 2 - 2
ekl <llé, " < crgk ™, |
This proves the result for Axy.

(b) By Theorem 1.19 in Chatelin (1983),

"Aoo — Ayl < ” sup
1<z<k+qJ 1

/ By Bio,; d(F, = F)|.

Here B,,’s are the B-splines for variable Y. Since B, B,,; = 0 for |i —j| >
g + 1and Var(B,(,(Y)B,,(Y)) = O(k™") for i — j| < q + 1, an application of
Hoeffding’s inequality [Theorem 3 in Hoeffding (1963)] will prove the result.

We will give only an outline of the proof for ”Axx — Axxll = 0p(8,,;). The
proof for the other result ||Agy — Ayl = 0p(8,,) is similar. The detailed
proofs are given in Burman (1990a). Here, all the probability statements like
0p(8,;) and so on are understood to be uniform for & < n'~®. Now, Axy =
D,/B,B, dF D, and Ayy = D,/B,B, dF, D), where B, is a vector
of all the B-splines for all the X varlables It can be easily shown that
ID, — D,ll = 0p(k5,,) and hence the proof follows if we can show that
/BB, d(F, — F)ll = 0p(5,,). Let B,; be the vector of the B-splines for
variable X;, i =1,...,d, and G; kal v A(F, —F), 1<i,j<d. Argu-
ments s1m11ar to those used in provmg 1Ay — Agoll = 0p(8,;) can be used to
show that ||G;;ll = 0p(8,,), i = 1,...,d.



CONVERGENCE OF THE OPTIMAL TRANSFORMATIONS OF VARIABLES 717

For i + j, IIG,-J-IIZS < trace((G,;G,;)°). It can be shown that
E[trace((GijGij)s)] <c(s)(kn) ",

where c(s) is a positive constant depending only on s. By choosing s > 8~ — 1,
it can be shown that |G, ;|| = 0p(8,,) for 1 <i,j <d. O

Let us recall that A,;’s are the eigenvalues of the operator U,. Let A, ;s be
the eigenvalues of the operator U,.

LEMMA 6.2.

max{l):kj —Ajlil<j<m+ 1} =o0p(kd,;,) uniformlyfork <n'~?.

Proor. Let us first note that the eigenvalues of the operator U, are
identical to the eigenvalues of the matrix W, = Ag'/?Aox Axx AxoAgy % Also,
the eigenvalues of the operator U, are identical to those of the matrix
W, = A5 %A x Axx Axo Agy”

This tells us that our lemma will be proved if we can show that

IIW W, |l = 0p(k8,,,) uniformly for £ < n'~%, where || - || refers to the usual
operator norm for matrices. Let us note that IIWk W, |l is bounded above by
A5 7% — Ag”?[| | Aox Axk Axo Aol
-WAI”HAM—AMHAQAmA*”H
(6.8) +] A Aox | | Axx — Axx| || Axo Aol

+] Age A ox Azl | Axo — Axoll | Agg ]
+]| Age A ox Axx Axoll | Ags”? — Age 2.
By part (b) of Lemma 6.1 and part (a) of Lemma 6.3, the following is true
uniformly for £ < n'™2:
145672 = Agg /2] = Op(k**)]| Aoy — Aol = 0p(%%/%3,4).

Since by Lemma 6.1, ”on" = O0p(k™Y), IIAXXII = Op(k) and IIAO 12| =
Op(k'/?), we can conclude that the first term in (6.8) is 0p(£3,,;) uniformly for
k < n'7%. Similar arguments will show that the other terms in (6.8) are
0p(k$,,;) uniformly for £ < n'~?. This concludes the proof. O

Before we state the next result, let us note that by part (a) of Lemma 6.1,
A, is a positive definite matrix and consequently, p(1) = (Ay, + A) ™! exists
for any A > 0. In the next lemma, we will use the following representation of
A /? [see relation (3.43), page 282 in Kato (1976)]

Ajl/? = 77_1[ A~ %(1) dA.
0
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This integral is well-defined since A, is a positive definite matrix [see Section
3.11, Chapter V in Kato (1976)].

LeEmMaA 6.3. We have that
() [A507? = A5e”?| = Op(k**)| Aoy — Acoll, uniformly for k < n'~?,

(b) Ag/?—Agt/2= —m! _[w)‘_l/zp(’\)(Aoo —Ag)p(A)dr + G,
where |G|l = 0p(k5%/282,) uniformly for k < n'~?.

Proor. (a) In the proof of this lemma all the probability statements like
0p( ), Op( ) and so on are understood to be uniform for & < n'~?. For A > 0,
let p(A) = (Ay +A)"L By Lemma 6.1, (1) exists since A,, is positive
definite (for any k& < n1 %) except on an event whose probability goes to zero
as n — . The following resolvent equation is easy to verify:

(6.9) p(A) —p(A) = _P(A)(Aoo - Aoo)ﬁ()‘)-

Using this resolvent equation we obtain:

Ay = A =7t [CA72{p() = p(M)) dA
(6.10) o
= =71 [ A72(4)(Aoo — Aoo)B(A) dA.
0

The following can be proved easily and is stated without a proof.

U TATV2(A + £) TP A < oppt @2
(6.11) i fo (A +1) 19

for some ¢, > 0,¢>0,i=1,2,3.

Let 7 be the minimum of the smallest eigenvalues of A,, and A,,. Then,
by Lemma 6.1, ! = Op(k). Noting that [lp(M)l| < (A + 7)~! and ||p()t)|| <
(A + %) for any A > 0, we get from (6.10) and (6.11)
| A5? = A2 < w=t [TA12(0 + 9) 72 da] Ago — Aol
0
< 17 2 Aoy — Agoll = Op(E3/?)| Aoy — Ago -
(b) Using the resolvent equation (6.9) once again in (6.10), we get
Az = A = =1 [(A72(2)(Agg — Ago)p(A) dA + G,
0

where

= 77_1[ ATV ()‘) Aoo oo)P(/\)(Aoo _Aoo)ﬁ()‘) da.
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So,

161 <77 [ () P10 4] Ago — Acol
<7t A2+ 5) 7 dA| Ago — Agoll
0

- A 2
< e 52| Agy — Agol| [by (6.11)]
= Op(k**)op(82;). [by Lemma 6.1]

This concludes the proof of this lemma. O

PrOOF OF THEOREM 4.2. (a)i) Let B,(%), Lo, Ly, Lxx and L, be the
same as in Remark 2 in Section 6a. If A(y) = 0'B,(y), 6 € R**9, then

(pth)(X) = 0'Lox LxxB(X).
A simple calculation will show that

2 _ 5 2 _
(6.12) ern = lnf{”h Pth”n. h € Siy, IRl 1}

=1 - sup{0'L,0:06 € R¥*9,0'4,,0 = 1}.

If 0, is a solution to this maximization problem and h,(y) = 6;B,(y) and
é,, = Px,h,, then (h,, ¢,) are the sample estimates of the optimal transforma-
tions. Clearly, (6.12) has a solution if A, is nonsingular. We will now argue
that (6.12) has a solution even if A, is singular.

In R**9 let Q be the vector space generated by the eigenvectors corre-
sponding to the nonzero eigenvalues of A,,. For 6, and 0, in R**9, let
s{y) = 0;B,(y) and s,(y) = 6;B,(y). Then

0£Lk02| =

[51(9)Bi(x1) Lk Bi(X2) 55(y2) dF,(y1, %) dF, (32, %)

Let us recall that Ly is a generalized inverse of Lyx. The last expression is
no larger than (by the Cauchy—-Schwarz inequality)

A 1/2

. 3 3 1/2
(01A0091) (%Aooez)l/z[f{B;e(xl)L;QIKBk(xz)}z dF,(y1,x%,) an(yz,Xz)]

= (0£A0001)1/2(65A0002)1/2{rank(L,'Ql()}lﬂ.

So, if either 6, or 0, (or both) is in the space which is orthogonal to (), then
0;L,0, = 0. This tells us

ef2=1—sup{0'L,0:0 € Q,0A,,0 = 1}.

Clearly, this optimization problem has a solution and hence we have proved
the existence of the estimates of the optimal transformations.
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(i) Let us note that if Agy and A, are nonsingular, then by (4.3c) and
(6.5),

ef? =1 — sup(0'Ajx Azt Ax(0: 0 € R**9, 9’4 0 = 1}.

By the result of Okamoto (1973), this maximization problem has a unique
solution with probability 1 if Aoo and Axx are nonsingular. Hence our result
is proved by noting that by Lemma 6.1, Aoo and Axx are nonsingular except
on an event whose probability goes to zero as n — .

(b) As we have noted in the proof of Lemma 6.2, the eigenvalues of U, and
W, are the same and the eigenvalues of U, and W, are the same. Let a kjs
J=1,...,k + g, be the eigenvectors of the matrix W, and a,,j=1,...,k+
g, be the eigenvectors of the matrix Wk, with lla,;ll = lla,;ll = 1 for all j, where
Il Il is the usual Euclidean norm. Then it is easy to see that h,;,(y) =
a),; Ay /’By(y) and h,;(y) = &),;A5?B,(y), j = 1,...,k + g, are the eigen-
functions of the operators U, and ﬁk, respectively. To prove our result we will
use arguments similar to those used in proving Theorem 4.1, except now we
will use them for matrices.

As in the proof of Theorem 4.1, let T be a positively oriented closed curve in
the complex plane which encloses Ay, Ay, ..., A, for &>k, with A, and
Ay, m+1 outside T'. Let

m m
Tk = Z akja’]ej and Tk = Z é.kjﬁlkj.
1 1

Then T, and T, are projection matrices. Let ry(A) = (W, — A)~1and #,(1) =
(W, — )7L 1t is clear that r,(A) exists and is bounded for every A € I'. By
Lemma 6.2, #,(1) exists and #,(A), A € T, are uniformly bounded except on an
event whose probability goes to zero as n — «. Arguing the same way as in the
proof of Theorem 4.1, we obtain:

(6.13) T, - T, = —(2mi) ™" frk(A)(Wk — W) (A) da.
r
Multiplying both sides of (6.13) by the vector a,,, we get

a,, = T,a,, — (2mi)"" fr (AW, = W) (Res — 1) dAay,

(6.14) m '

=2 a;a,; — Fk(Wk - Wk)ﬁkn say,
1

where F, = 2mi)~Yr(AXA,; — A)"1dA and a; = &),;a, ;. Let us note that

|F,ll = Op(1). We have already shown in the proof of Lemma 6.2 that IIWk -

- .
(6.15) a,, - E a;a,; <|| Fll "(Wk - Wk)ﬁmll =0p(kd,;).
1
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Multiplying both sides of equation (6.14) by A;,/?B,(y) and by noting that

hkj(y) akJAO /ZBk(y) and hkj(y)_akj 1/2Bk(y)

we get

m
hu(y) = X a;a),; A B, (y) — ﬁ,kl(W Wk)FkA o/ ?B(¥)
1

(6.16) - - A
) =) a;h,(y) + P "‘J"‘l,kj(A(;ol/2 - Aaol/z)Bk(y)
1 1

- ﬁ,kl(Wk Wk)FkAO /2Bk(y)
Equation (6.16) gives us

m
k1 T Z ajhkj
1

m
<) |a; |||akj Ao /2 - A501/2)" [ Aooul/2
1

+[ @ (W = W) I Eull | Ag2] | Ago I

Since [|Agoll = O(k~1) and [|A54/2ll = Op(k/?) by Lemma 6.1, the last expres-
sion tells us

Z ahy;| < Z ;1| @ (Aot — Agi /) |O(R=2/2)
- W,)|05(1).
We will first show that
(6.17) by — XL ajhy;| = Op((k/n)'?).
1

Since la;| < 1 for j = 1,...,m, (6.17) is proved if we can show that

(6.18a) |la),;(As/? — Ag/?)|| = Op(kn"V?),  j=1,...,m

)| = 05((k/n)"?).
Let us first prove (6.18a). By part (b) of Lemma 6.3,

b

(6.18b)

a'kj(Aaol/z - A7) + a,kj{”'_lfo A_I/zp()‘)(Aoo —Agy)p(A) d’\}“
= OP(k5/26'21k) = Op(kn_l/z).
For the moment let us assume that for any u € R**9, with |ul| =

(6.19) E|w(4Aq - AOO)||2 < ¢go(kn) ™" for some ¢y > 0.
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We will now show that (6.18a) follows from (6.19). Let ¥ be the smallest
eigenvalue of A,,. By part (a) of Lemma (6.1), ¥y~ ! = Op(k).

E a%j{”_l fom"‘l/zp()t)(fioo ~Aw)p(d) dA} “

<m ! /OOQA_I/2E||a,kjp(A)(AOO - Aoo)" le(A) 1 dA
< coo(kn) /a1 fo “A7172] ), p(A)]| le(2) ]l da
< caglhn) " 2rt [ A2 p(A) [P dA

< cyo(kn) V21 fo A"VZ(A +3) 2dA

< eyoCrg(kn) /Y2 [by (6.11)]
= 0(1)(kn) k%% = O(kn"'/%).

So the proof of (6.18a) would be complete if we prove (6.19). Let u € R**9,
with [[u[ = 1. Now, lu(A,, — Ag)l? can be written as

1= [&(y1,72) d(F, = F)(31) d(F, = F)(3),
where g(y;,y,) = uB,(y)B,(y,)B,(y,)B}(y,)u. Since the B-splines we con-
sider here are normalized, sup{IB;(y)l: 0 <y < 1} < 1, and hence g(y,y) <
u'B,(y)B;(y)u. Noting that [g(y,,y,) dF(y,) dF(y,) = 0, we get
E(l) =n"' [g(y,9) dF(y) — ™" [g(31,52) dF(31) dF(y;)

<n7! [g(y,5) dF(y) < n""WAwu <Y Agll = O(n "R,
This proves (6.18a). Now let us prove (6.18b). Inequality (6.15) tells us that

m
SHWk - Wk" a, - » a;ay;
1

ﬁ,kl(Wk - Wk) - Z aja,kj(Wk - Wk)
1

= 0p(k282,) = oP((k/n)l/Z).

So, (6.18b) is proved if we can show that |laj, (W, — W)l = Op((k/n)'/?) for
Jj =1,...,m, and this can be done by using arguments very similar to the ones
used in proving (6.18a). Let us just very briefly outline these arguments. In the
proof of (6.18a), the main step has been to expand Ags/2 — Ay/? as the sum
of two matrices Z,; + Z,,, where Z,, is linear in Ay, — Ay, [more precisely
Zy = —m YA V2(AX Ay — Age)p(A)dA] and Zi, is the remainder. Then
we showed that IIa'ijHII2 = Op(k/n) and IIa’ijmII2 = 0p(k/n). Similarly, we
can expand W, — W, as Z,, + Z,,, where Z,, is the collection of terms which
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are linear in Agy — Ay, Agx — Agx and Ayy — Axx and Z,, is the remainder.
It can be shown that IIa’ijmH2 = Op(k/n) and IIa’,”~Z2’2||2 = o0p(k/n).

Let us note that the first part of part (b) of this theorem follows from (6.17)
once we note that ©7"la;|* = 1 + Op((k/n)/?). The rest of the theorem can
now be easily proved. O
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